FAIR EVA - EGI 2022 Demo
September 2022
Fernando Aguilar
EOSC-SYNERGY in a nutshell

Promote EOSC High Quality Services
Software quality as a service, FAIRness evaluation and quality certification badges

Thematic Services Integration
10 thematic services addressing 4 scientific areas (Earth Observation, Environment, Biomedicine and Astrophysics)

22 partners in 10 countries (ES, PT, FR, UK, DE, NL, CZ, SK, PL and BR)

Skills development
Environment for tutorials with a dedicated MOOC platform, courses methodology and a Hackaton as a service platform

Capacity Expansion at the Infrastructure level
Integration of services and resources from the RIs of the consortium partners

Alignment at the Policy Level
Collaboration with regional projects on landscaping activities, gap analysis and contribution to EOSC policies

https://eosc-synergy.eu/
Overview of the FAIR Principles

• Findable
• Accessible
• Interoperable
• Reusable

Refer to three types of entities: data (digital object), metadata (information about that digital object), and infrastructure.

FAIR Indicators
F1: (Meta) data are assigned globally unique and persistent identifiers
F2: Data are described with rich metadata
F3: Metadata clearly and explicitly include the identifier of the data they describe
F4: (Meta)data are registered or indexed in a searchable resource
A1: (Meta)data are retrievable by their identifier using a standardised communication protocol

A1.1: The protocol is open, free and universally implementable

A1.2: The protocol allows for an authentication and authorisation where necessary

A2: Metadata should be accessible even when the data is no longer available
Interoperable

- I1: (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation
- I2: (Meta)data use vocabularies that follow the FAIR principles
- I3: (Meta)data include qualified references to other (meta)data
Reusable

- R1: (Meta)data are richly described with a plurality of accurate and relevant attributes
- R1.1: (Meta)data are released with a clear and accessible data usage license
- R1.2: (Meta)data are associated with detailed provenance
- R1.3: (Meta)data meet domain-relevant community standards
FAIR EVA - Evaluator, Validator & Advisor

1. FAIR indicators technical implementation.
 a. Starting from RDA
2. Modular, Scalable, Flexible
 a. Generic implementation OAI-PMH
 b. Plugins
3. Not only evaluate, but also validate and advise
4. Target: data producers, repository/data portal admins, funders.
5. Python. API + Web Interface
6. Stand-alone - Docker
FAIR Assessment tools - FAIR EVA

• FAIR EVA functionality
 • Comply with FAIR Data principles:
 1. **Data**: use a proper format
 2. **Metadata**: community standard. Machine-actionable (JSON, XML, RDF...)
 3. **PIDs**: Persistent Identifier (e.g. DOI). Provided by an accepted authority.

• Integration: Different types of repositories/data portals
Your Digital Object is 64.38% FAIR

Findable: 93.93%
Accessible: 68.51%
Interoperable: 57.89%
Reusable: 38.33%
Technical Implementation examples

<table>
<thead>
<tr>
<th>Indicator Code</th>
<th>EN_title</th>
<th>EN_tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDA-F1-01M</td>
<td>Metadata is identified by a persistent identifier</td>
<td>Search within a predefined list of potential metadata terms to identify the metadata (dc.identifier.uri and dc.identifier.doi) if any information is available.</td>
</tr>
<tr>
<td>RDA-A1-04M</td>
<td>Metadata is accessed through standardised protocol</td>
<td>Checks the protocol to access metadata (OAI-PMH, API..)</td>
</tr>
<tr>
<td>RDA-I1-01M</td>
<td>Metadata uses knowledge representation expressed in standardised format</td>
<td>Checks metadata terms including controlled vocabulary information. So far, it checks GEONAMES, Library of Congress Subject Headings and ORCID, but it's being extended.</td>
</tr>
<tr>
<td>RDA-R1-01M</td>
<td>Plurality of accurate and relevant attributes are provided to allow reuse</td>
<td>Depending on the metadata schema used, checks that at least the mandatory terms are filled (75%) and the number of terms are high (25%)</td>
</tr>
</tbody>
</table>
FAIR EVA - Architecture
Launch application

Docker deployment

docker pull ferag/fair_eva:latest

docker run --name=fair_eva -dit --network host ferag/fair_eva:latest
Launch application

Stand-alone mode

git clone https://github.com/EOSC-synergy/FAIR_eva.git
cd ./FAIR_eva
pip3 install -r requirements.txt
cp config.ini.template config.ini
/FAIR_eva/fair.py &
/FAIR_eva/web.py &
Demo

localhost:5000
OAI-PMH generic implementation
DOI: 10.5281/zenodo.23176
OAI-PMH Endpoint: https://zenodo.org/oai2d
Configuration

The config.ini file contains all the configuration parameters. They are distributed in different sections. To customize your FAIR EVA deployment. It will work by default, but this is what you can edit:

```
[local]
# Defines if your service is deployed close to the data service and if it is only configured to work with that service
# only_local = true if it will run only for your service
only_local = false
    repo = oai-pmh
```
Configuration

The repositories or data portals that implements a plugin can be listed in the service. You can configure those that you want to appear in the list. Every repository should be shown with the display name equal python Class name. The Generic class is "Evaluator"

```
[Repositories]
oai-pmh = 'Evaluator'
digital_csic = 'Digital.CSIC'
example_plugin = Example_Plugin
```
Configuration - Metadata schemas

[oaipmh]

Metadata terms to find the resource identifier
identifier_term = ['identifier']

Metadata terms to check richness (generic). These terms should be included [term, qualifier]. None means no qualifier
terms_quali_generic = [['contributor', None],
 ['date', None],
 ['description', None],
 ['identifier', None],
 ['publisher', None],
 ['rights', None],
 ['title', None],
 ['subject', None]]
Metadata terms to check richness (disciplinar). These terms should be included [term, qualifier]

terms_quali_disciplinar = [['contributor', None],
 ['date', None],
 ['description', None],
 ['identifier', None],
 ['publisher', None],
 ['rights', None],
 ['title', None],
 ['subject', None]]

Metadata terms that defines accessibility

terms_access = [['access', ''], ['rights', '']]
Configuration - Metadata schemas

Metadata terms which includes controlled vocabularies. More controlled vocabularies can be implemented in plugins

terms_cv = [['coverage', 'spatial'], ['subject', 'lccsh']]

List of data formats that are standard for the community

supported_data_formats = [".txt", "pdf", "csv", "no", "doc", "xls", "zip", "rar", "tar", "png", "jpg"]

Metadata terms that defines links or relation with authors, contributors (preferably in ORCID format)

terms_qualified_references = ['contributor']

Metadata terms that defines links or relation with other resources, (preferably in ORCID format, URIs or persistent identifiers)

terms_relations = ['relation']

Metadata terms that defines the license type

terms_license = [['license', '', '']]
Changing metadata term to check [license - rights]
FAIR EVA - New plugin

- How metadata can be gathered?
- Persistent Identifier minted?
- How data is gathered?
- Any standard protocol for metadata/data harvesting?

[Diagram showing the integration of FAIR principles with PID Handling and new plugin]

- Metadata
- Data
- OAI-PMH?
Files to edit

- example_plugin.py
- rda.py

BackEnd:
- Generic Implementation
- Plugin 1
- Plugin N
- Indicators: rda.py

FrontEnd

API

DATA service

Digital.CSIC

Repository N
FAIR EVA - DIGITAL.CSIC plugin flow
Demo: Configuring...
PID: 10261/256232, \textbf{10261/153475}

http://digital.csic.es/dspace-oai/request
Easy way
API exploitation

Demo Jupyter
Next steps

- Improve plugin system. Automatic
- Plugin validation
- Web Interface
- Any feedback is welcome

Links:
- DOI: 10.20350/digitalCSIC/14559
- GitHub repository: https://github.com/EOSC-synergy/FAIR_eva
Semantics

FAIR vocabulary
https://w3id.org/fair/principles

Subprinciple
- definition

RDA indicators ontology

indicator
- priority

skos:broadMatch

FAIR EVA ontology
https://fair.csic.es/vocabulary/

test_id
- code
- technical
- tip

skos:closeMatch
Thank you!

Fernando Aguilar (CSIC)