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The Lévy flight foraging hypothesis states that organisms must have evolved adaptations to exploit
Lévy walk search strategies. Indeed, it is widely accepted that inverse square Lévy walks optimize
the search efficiency in foraging with unrestricted revisits (also known as non-destructive foraging).
However, a mathematically rigorous demonstration of this for dimensions D ≥ 2 is still lacking.
Here we study the very closely related problem of a Lévy walker inside annuli or spherical shells
with absorbing boundaries. In the limit that corresponds to the foraging with unrestricted revisits,
we show that inverse square Lévy walks optimize the search. This constitutes the strongest formal
result to date supporting the optimality of inverse square Lévy walks search strategies.

I. INTRODUCTION

Lévy stable distributions, Lévy walks and flights, have
attracted wide attention since the 1990s in areas as
diverse as particle kinetics [1, 2] and random lasers [3, 4].
In particular, almost a quarter of a century ago it was
proposed [5] that Lévy walks with an inverse square
law distribution for the step lengths can lead to optimal
search strategies since they maximize the encounter rate
with sparse, randomly distributed, revisitable targets
when the search restarts in the vicinity of the previously
visited target (thus available for further visits) and with
no information about the past behavior — an uninformed
process. This key fact about “non-destructive foraging”
has motivated the formulation of the Lévy flight
foraging hypothesis (LFH) in ecology which holds that
for many species such optimization may have led to
adaptations for Lévy walk search strategies [6, 7]. When
originally published, the result caused surprise, because
it questioned and then overturned the assumption that
organisms move solely according to Brownian motion. In
the last couple of decades, however, these results have
been exaustively verified in many different instances [8],
becoming widely accepted (see, e.g., Ref. [9]).
More recently there has been renewed interest in

certain fundamental and formal aspects of the problem.
For example, eventual theoretical findings against the
optimality of inverse square Lévy walk searches for
any spatial dimensions D [11] have been shown not
to be applicable to the paradigmatic non-destructive
random search context [12]. But this debate is
understandable given that although several concrete
situations have pointed to the aforementioned optimality,
it is mathematically very hard to prove (or disprove)

and no general developments have appeared so far in the
literature.

Aiming to provide an important advance towards
finally settling positively the issue, here we study a
very closely related problem that is helpfully much
easier to deal with. Specifically, we investigate in
detail a Lévy walker inside a 2-dimensional annulus with
absorbing boundaries. The analysis is also valid for
higher dimensions by considering hyperspherical shells.
The essential point is that the original foraging problem
can thus be analyzed indirectly by proxy, through
characterizing the first passage time (FPT) in annuli
and shell geometries. Indeed, the first passage time can
be thought as the basic building block, representing the
finding of successive targets in the random search for
many targets, see Fig. 1. The inner boundary represents
the previously found target site in the foraging problem.
The outer boundary replaces all other targets.

As shown below, our main result is that inverse square
Lévy walks strategies become optimal for extremizing the
mean FPT when the initial position becomes arbitrarily
close to the inner radius. In other words, the first
passage time for a Lévy walker to reach the boundary
of the annulus or shell is minimized under certain initial
conditions that correspond to the case of foraging with
unrestricted revisits, i.e., for the non-destructive limit of
the original foraging problem.

But before continuing, a few words about commonly
used jargon would be in order. The traditional definition
of “non-destructive foraging” seems not to capture the
most general conditions for the relevant search scenario
here. Instead, we adopt the term “foraging with
(unrestricted) revisits”. Here by “unrestricted” is meant,
e.g., that there is no regenerative (or waiting) times
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[13, 14] to approach any previously visited target. Nor
some targets are more difficult to reach than others,
apart from their Euclidean distance to the walker.
Although a subtle difference, we shall make sure that
our analysis encompasses a large number of instances, so
that the revisits could occur for several reasons besides
just retracking regions or areas previously scanned:
sensory errors, re-emergent or replenishable targets,
heterogeneous target distributions in patches that can
be exploited in several visits, and so forth.
The foraging model and the model of search inside

annuli and spherical shells are presented in Section II.
Sections III and IV present analytical and numerical
results, respectively. We end with concluding remarks
in Section V.

II. THE MODELS

A. Foraging

The foraging model consists of a general strategy rule
for the walker (of unit velocity, so that the distance
traveled L = t, with t the traveled time) to search for
targets randomly distributed in a D-dimensional space
(Fig. 1 (a) and (b)):
(i) If there are targets within a radius of detection (or
sight range) rv, then the searcher moves in a straight
line to the nearest target.
(ii) If there is no target at distance rv from the searcher,
then for its j-th step, the searcher chooses a random
direction and draws a distance from a power law tailed
probability distribution

p (ℓj) ∼ 1/ℓµj , (1)

So, the walker starts moving incrementally, continually
looking for a new target within sight radius rv along the
way. If no target is detected, the searcher stops after
covering the distance ℓj and (ii) resumes. Otherwise, it
proceeds according to rule (i).
The time-averaged search efficiency η is defined as

η = lim
t→∞

N/t, (2)

where N is the number of targets found in time t.
In 1D, the present foraging model can be solved

analytically for the target density going to zero [5, 15, 16].
Specifically, the “mean-field” treatment in Ref. [5] was
later rigorously established in Refs. [15, 16] using
fractional differential equations with a Riesz kernel.
From such framework, one finds that inverse square Lévy
walk searches are optimal in the limit of very low target
density (ideally vanishing).
In 2D, the problem is substantially more difficult.

Numerical simulations have strongly suggested that the
1D result for the optimality of inverse square Lévy
walks extends to 2D and 3D (see, e.g., Ref. [8–10] and
references therein). At present, the rigorous analytical
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Figure 1. The random search model is depicted in (a)–(b). (a)
Always leaving from a position close to the previously found
target, the walker follows the Lévy walk strategy (main text)
looking for the next target. (b) Once the n− 1–th target has
been found, the n–th one can be either a revisit to the previous
n−1–th target — case (A) — or the finding of any other than
it — case (B). (c) A random walker (of similar locomotion
rules of the random search model) inside an annulus geometry.
The circumferences (A) and (B) represent the inner and outer
annuli of radii a and L. lc marks the restart point each time
the walker reaches one of the annuli borders. There is a proxy
between (A) and (B) in (b) and (A) and (B) in (c), where
being absorbing means finding a target.

treatment of the general 2D problem is considered to
be extremely hard, with the eventual exception of the
limit that corresponds to the foraging with revisits (which
just happens to be the most important case in real
applications) as discussed in [12].

B. Walk inside absorbing annuli and spherical
shells

A natural way to tame the original foraging problem,
while still retaining most of its important ingredients,
is to consider the simpler situation of a Lévy walker
inside a 2D annulus, with absorbing boundaries at the
inner (border A) and outer (border B) radii, see (c)
in Fig. 1. Indeed, to find either the previously found
target (the closest one) or any other farther away bears a
close relation to reaching one of these two “frontiers”,
Fig. 1. Indeed, the inner circle or sphere represents
the previously visited target, whereas the outer circle or
sphere represents all the other targets averaged out.
Regarding the borders geometry, given the searcher

detection radius and that it starts very close to the
previously visited target, then in passing from a random
search to a walk with absorbing borders, it is natural
to map the closest target to a circle of radius associated
to rv, see below. By the same token, the distribution
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of the distances to all other nearest targets along any
given direction from such previous target is replaced by
its mean value, which is independent on the direction
because the distribution rotational symmetry. But in
D dimensions the locus of points with a fixed distance
from a reference — the previously found target — is the
surface of a D-dimensional sphere, whose radius should
be related to the mean distance between targets in the
original problem. Hence, the random walk takes place
within the annuli/spherical shells region until absorption
(akin to finding a target in the foraging process).
The dynamics of this simplified model follows the rules:

(1) The walker always starts (or restarts) at (ℓc, θ = 0),
close to the border of the inner circle (ℓc − a is positive
but small compared to the outer radius L). It then
moves between the inner and outer spherical shells, being
absorbed upon hitting any of the two.
(2) At the j−th step, the walker follows the rule (ii) of
the random searcher, with the difference that instead of
looking for a target the step terminates if ℓj is enough to
reach one of the borders, when then (1) resumes.
The FPT efficiency of the above model is characterized

as in Eq. (2), but with N now being the number of
times the walker is absorbed by the annuli borders. Very
importantly, it is simple to realize that there is a direct
correspondence between optimizing the foraging η and
minimizing the FPT for the absorbing shells problem.

C. The step lengths distribution

For the walk step lenghts we consider the α-stable Lévy
distribution, whose probability density P (ℓ;α, β, d, s)
reads

P (ℓ;α, β, d, s) =
1

2π

∫

∞

−∞

exp[φ(t)] exp[−iℓt] dt, (3)

with

φ(t) =

{

itd− |s t|α
(

1− i β sign[t] tan[π
2
α]
)

, if α 6= 1,
itd− |s t|

(

1 + i β 2
π sign[t] ln[|t|]

)

, if α = 1,

for d, s reals and β ∈ [−1, 1]. The Lévy index α ∈ (0, 2]
governs the asymptotic behavior of P (ℓ;α, β, µ, s) in the
form of the power-law tail ∼ 1/ℓµ, with µ = α + 1 for
α < 2. For α = 2 one recovers the Gaussian, since
then the second moment is finite and the usual central
limit theorem holds. Further, β, d and s represent,
respectively, the distribution asymmetry or skewness,
shift or location and the scaling for the x variable.
In what follows, we assume without loss of generality

that p(ℓ) is given by P (ℓ;α, 0, 0, s). Taking β = d =
0 is justified because the model should have rotational
symmetry (e.g., with p(ℓ) = p(−ℓ)) and then s can be
interpreted as a width. With this choice, µ = α + 1 for
α < 2.
We should note that there is more than one way of

generating Lévy walks in higher dimensions. The method

we use here bears resemblance to the uniform model of
Lévy walks considered by Zaburdaev et al. [17]. Further
detailed discussions lie beyond the scope of the present
contribution. Hopefully, this rather technical aspect will
be addressed in a future study.
But most importantly, due to the generalized central

limit theorem for Lévy α-stable distributions [18, 19],
there are many power law tailed distributions which
should lead to similar results in the relevant particular
context we shall solve our absorbing borders model.

III. ANALYTICAL RESULTS

In the foraging problem, there is a well-behaved
relationship between the mean free path λ between
targets and the target density ρ. With a being the radius
of detection, in 2D we have 2aλρ = 1. In D dimensions,
we similarly have ρ ∼ 1/(aD−1λ). Noting that for annuli
and shells the mean free path goes with L, we can define
the effective density according to

ρ =
1

aD−1L
. (4)

Equation (4) agrees with the definition for the foraging
problem up to a constant factor.
Based on Fig. 1 (c), Eqs. (1)–(4), remembering that s

is the scaling factor of the step lengths distribution, and
observing that in fact η = η(α, δ, ρ, σ), we can define

δ =
lc
a
− 1, σ =

s

a
, η0 =

η

ρ aD−1
= ηL. (5)

Note that η0 is adimensional.
The asymptotic behavior of our random walk inside

annuli or D-dimensional spherical shells of inner radius
a can be obtained analytically in the triple limit

lc → a (so δ → 0), L → ∞, s → 0 with s < lc − a.
(6)

As discussed in [12], this corresponds to the key case
of foraging with revisits. In fact, δ → 0 means, for
the foraging model, that the previously visited target
becomes revisitable again almost immediately, whereas in
the annulus model, it correponds to the walker starting
extremely close to the inner circle (we recall the inner
radius corresponds to the radius of detection for the
foraging case). Further, in both models σ → 0 implies
that the smallest individual random walk steps goes to
zero. If this limit is not taken, for δ sufficiently small,
the very first Lévy walk step might be larger than the
distance to the previously found target in the foraging
model, or else to the inner radius in the annulus model.
In fact, we need lc − a ≫ s to avoid difficulties with the
first step being the only dominant, and this condition
is equivalent to δ ≫ σ. Finally, ρ → 0 (i.e., L → ∞)
corresponds to the target site density (outer circle radius)
to be extremely low (large) in the foraging (annulus)
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model. We estress that in the next analysis, we have
been careful to take the limits in the right order, i.e.,
first σ, then δ, and finally ρ.
Note that for δ → 0, the curvature of the inner

circumference can be neglected: in the very few first
steps, the walker sees the surface of the inner circle
or sphere as a “flat wall” regardless the dimension D.
This is the reason why the walker behavior is well
approximated by an one-dimensional description. In this
way, the rigorous theory of the Riesz operator [16] on
an interval of length L with absorbing ends becomes
applicable [12]. Thence, for σ > δ the efficiency
increases when σ decreases because there are fewer large
jumps away from the previous target that makes re-
encountering it difficult [12]. When σ ≈ δ the efficiency
saturates and should reach its maximum. In fact, for
σ ≈ δ → 0 we must have the same scaling behavior as in
D = 1.
The 1D behavior has been known exactly for a few

decades (for details see Refs. [15, 16]). Extending it to
the present case, we get

η0 ∼

{

δ−α/2, α < 1,
δ−1+α/2, α > 1.

(7)

Here it is worth presenting a simplified summary of this
optimization result. On the one hand, for α > 1 the
mean step size is finite and as α increases, the searcher
spends larger and larger amounts of time backtracking,
which increases the time to reach both outer and inner
boundaries. The minimum time to reach the boundary
is thus given by α ≤ 1. On the other hand, for α <
1 the mean step size diverges and as α decreases, the
probability of reaching the outer boundary on the first
step increases, which reduces the probability of reaching
the inner boundary which is extremely close. Hence, the
optimal efficiency is given by α ≥ 1. The two inequalities,
α ≥ 1 and α ≤ 1, are of course satisfied only if α = 1.

In summary, as a fundamental result from Eq. (7),
one has that η0 displays an arbitrarily strong maximum
at α = 1 when σ ≈ δ → 0 in any dimension. This is the
key advance reported here for the annulus problem. See
the Appendix A and B for very similar results obtained
via alternative arguments, respectively, for the foraging
and annulus models. Moreover, a renormalization group
analysis of how the efficiency scales with ρ is presented
in Appendix C.

IV. NUMERICAL RESULTS

In what follows we verify the analytical derivations
via numerical calculations (whose details about
implemenation are given in Appendix D). We first
perform simulations for the parameters values still not
corresponding to the proper limits discussed in the
previous section. Then, we consider some representative
situations to show that in these limits the simulations
do corroborate our theoretical predictions.
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Figure 2. Efficiency η0 as a function of the Lévy index α for
different values of (a) Lévy scale parameter σ (ρ = 5.6×10−2

and δ = 10−2), (b) the relative distance from the inner radius
δ (σ = 10−2 and ρ = 5.6×10−2), and (c) the effective density
ρ (σ, δ = 10−2). The vertical line α = 1 is just guide for the
eye.

We consider η0 for small values of pertinent
parameters, but not yet fully corresponding to the limit
in Eq. (6). In Fig. 2 we plot η0 as a function of α
assuming different σ, ρ and δ. For instance, when δ and
ρ are fixed and σ is decreased, the efficiency η0 for large
α decreased, as seen in Fig. 2 (a). This behavior should
be expected since smaller σ’s implies smaller step sizes,
hence making it less probable to reach the target in the
first few steps. On the other hand, for σ and δ fixed,
as ρ increases the relative prominence of the peak for η0
increases, Fig. 2 (c), again an expected result. Actually,
an ever-increasing maximum for η0 is only possible in the
limit ρ → 0. Lastly, by decreasing δ, while keeping ρ and
σ, we observe an overall increase of the curve η0 versus α.
This agrees with the fact that for smaller δ the searcher
will more frequently find the closer target regardless of
α, thus increasing the total efficiency.

If σ, δ and ρ, Eq. (5), go to zero in a proper manner
(see Eq. (6)) we should expect η0 to become arbitrarily
large near α = 1. Exactly as predicted by the theory,
Fig. 3 shows how the limit δ, σ, ρ → 0 influences the
shape of the efficiency curve. Observe that the peak shifts
to α = 1 for the case of search with unrestricted revisits.
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Figure 3. Efficiency η0 as a function of the Lévy index for
various values of σ, δ, and ρ for search inside a 2D annulus.
As these parameters tend to zero, the optimal Lévy index
goes to 1, corresponding to inverse square Lévy walks. The
efficiency η0 is so large for the case σ = δ = 10−6 and ρ =
1.77× 10−3 (black curve) that the other curves appear to be
zero on a linear scale. For large α > 1.2 some points are
not shown because the computational runtime can become
extremely large. What is important to note, however, is the
behavior near the peak.
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Figure 4. Efficiency η0 as a function of the Lévy index for
various values of σ, δ and ρ for search inside a 3D spherical
shell. As predicted theoretically, a maximum emerges near
α = 1 as σ, δ, ρ → 0. Again, for α > 1.2 the points are not
shown because the computational runtime, even more critical
in 3D.

Finally, Fig. 4 shows that likewise the maximum at α = 1
also occurs for search in 3D spherical shells, in precise
agreement with our findings.

V. CONCLUSION

We have presented solid analytical results, checked
through numerical simulations, showing that the inverse

square Lévy walks optimize the time to reach the
absorbing boundaries of annuli and spherical shells.
Given the relationship of this problem to the original
foraging model, these results should be expected to
extend to the latter by proxy. Most importantly, our
analysis unveils the real reason for the optimality of
inverse square Lévy walk search strategies for foraging
with unrestricted revisits (hence also non-destructive
foraging) in any dimension. Regardless of the dimension
D, the general process essentially reduces to the well-
understood 1D model in the case of scarce distribution
of targets, not unlike how the approximately spherical
earth appears locally flat for small enough organisms.
We hope that such findings can finally settle positively
the key fact in the theory of Lévy random search.
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Appendix A: The foraging problem revisited

The foraging problem in 1D is equivalent to a Lévy
walker inside an interval with absorbing boundaries. As
explained in the main text, the one-dimensional case was
rigorously solved in 2001, see Refs. [15,16] (hereafter
all cited references refer to those in the main text). In
higher dimensions, however, the mathematical difficulties
seem to be extremely high, probably demanding the
development of new methods and tools for a proper
solution. As far as we know, to date the only
exception is the triple limit discussed in the main
article. However, it is possible to treat the problem
approximately, thus obtaining some insight into the main
physically important features determining the optimal
search strategy. So, in the following we give such an
approximate treatment.
In Fig. 5 we show the initial condition of a non-

destructive search in 2D. We define the dimensionless
parameter δ = (lc − a)/a, with lc the searcher initial
distance to the nearest target and δa its distance to the
circumference of radius a around the target. We assume
the typical length scale (ρ a)−1 calculated for a Lévy
walker in 2D, Ref. [11], so that η = η0 ρ a. Comparing
with Eq. (5) of Ref. [11], we have that η0 = Kd/a (the
notation Kd is borrowed from Ref. [11], it represents the
efficiency gain). The dimensionless searching efficiency
is η0(α, δ, a, s) = f/〈L〉, where f(α, a, s) has dimensions
of length (leaving η0 dimensionless) and 〈L〉(α, δ, a, s) is
the average distance traversed until the the encounter
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of a target. We shall calculate η0 when the search is
nondestructive, δ → 0, and in the scarce regime, ρ → 0.

For δ and ρ going to zero, in 2D the encounter of the
very close target (hereafter CT) essentially determines η0.
In fact, in the 2D scarce regime, the probability for the
faraway target (FT) — at a typical distance λ ≫ δa
— to be the first one to be found is much lower than
[δa/λ]α/2, the corresponding probability in 1D. Thus, in
2D with δ → 0 and ρ → 0, to first order one should be
concerned essentially with the finding of the CT. Now,
to reach this nearby target in the first walk step we need
σ = s/a ≈ δ → 0, with s the scale of the α-stable Lévy
distribution (see main text). However, if the searcher
eventually misses the CT in the very first step, the next
few successive steps still will lead to the CT provided
the searcher does not move away too much from the CT
location, say by keeping wandering around within a small
region of radius na for n few units, see Fig. 5.

Therefore, it is a good approximation to assume that in
the above mentioned small region, the fractional diffusion
equation that governs the Lévy searcher dynamics leads
to solutions displaying basically the same qualitative
behavior in 1D and 2D. This way, for δ → 0, ρ → 0
in 2D we have η0 ∼ f/(〈n〉1D 〈ℓ〉), where the 1D result
for a Lévy walker starting from a distance δ a → 0 to the
absorbing CT within a distance na can be approximated
as in Ref. [5], or

〈n〉1D ∼

(

δ n a2

s2

)α/2

,

and

〈ℓ〉 ∼ s

[

(

δ a

s

)1−α

+ b

]

,

where b ∼ 1. We thus get

〈n〉1D 〈ℓ〉

f
∼

a

f
δ1−α/2, with δ → 0, ρ → 0, α > 1

and

〈n〉1D 〈ℓ〉

f
∼

a

f

(a

s

)α−1

δα/2, with δ → 0, ρ → 0, α < 1.

Then, we obtain in the non-destructive (δ → 0) scarce
(ρ → 0) regime that η0 scales with δ in the form

η0 ∼

{

δ−1+α/2 , α > 1,

δ−α/2 , α < 1.

We once more shall stress that this is an approximate
calculation. A far more grounded procedure is developed
in Refs. [15,16]. Nonetheless, the above analysis gives the
same result as the more rigorous approach in Ref. [12].

Figure 5. The spatial disposition and relevant distances of
the searcher (dot) and nearest target (blue square). The
searcher’s detection radius is a, the initial distance from the
searcher to the target is lc, and s is the scaling factor of the
distribution of step lengths.

Appendix B: An approximate analytical treatment
for the annulus problem

The 1D equivalent of an annulus or spherical shell is of
course just an interval, which has already been discussed
in the main text. Moreover, the foraging problem in 1D
is identical to the problem of the walker inside an interval
(with absorbing boundaries). But although in higher
dimensions these two models are not exactly mapped into
each other, they are still very closely related.

In the same spirit of the foraging problem in
Appendix A, below we present an approximate solution
for the absorbing annulus model. It is especially
noteworthy that this treatment gives the same answer
for the optimality of inverse square Lévy walks in the
triple limit σ, ρ, δ → 0 obtained in the main text
through mathematically more well founded arguments.
Nonetheless, an interesting aspect of the approach below
is that it is a kind of mean field method for the present
problem.

The searcher starts from a distance lc of the center.
For δ = (lc − a) /a as before, we are interested in
the lc → a ≪ b limit, i.e., δ → 0+ for which the
probability of the walker reaching the border r = b is
very small, P ≪ P1D. Note that we can approximate

P1D = [(lc − a) / (b− lc)]
α/2

as the probability of finding
the distant site in 1D, with the step lengths ℓ distributed
as a power-law of exponent µ = α+1 (i.e., of Lévy index
α). The efficiency can then be written as

η ≈
1

〈n〉〈|ℓ|〉
. (B1)

Thus, we focus in the case δ → 0+ for the encounter
with the r = a ring and take into account only the walks
that do not stray too far from the r = a ring. In other
words, we restrict the random walk to the region r < γ a,
where γ must be of the order of unit. In such framework,
the average number of steps is fairly given by the 1D
result, but with λ → γ a. Using η ⋍ 1/ [〈η〉 〈|ℓ|〉], we
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obtain

η ∼

{

δ−α/2, α < 1,

δα/2−1, α > 1.

which coincides with the 2D result in Ref. [12] for the δ →
0+ limit (assuming a Poissonian distribution of targets
whose density ρ → 0). That is (for x0 the near (λ − x0

the far away) target initial distance to a searcher in 1D)

〈η〉1D = f(α)

[

x0 (λ− x0)

s2

]α/2

→

〈η〉 ∼ f2D(α)

[

δa (γa− δa)

s2

]α/2

, (B2)

where s is the scale parameter of the Lévy distribution
P (ℓ), defined from its characteristic function P̄ (k) =
exp[−|sk|α] (see also φ(t) in the main text).

For a power law instead of a Lévy stable distribution,
we can take s = l0. The function f(α) in 1D depends
on whether p (ℓ) is Lévy or power-law, e.g., f(α) =
1/Γ (α+ 1) in the Lévy case (for Γ the Gamma function).
But for purposes of scaling laws of 〈η〉 when δ → 0+, this
pre-factor is not important once it does not depend on δ.

Lastly, to compute 〈|ℓ|〉 we also can adapt the
calculations for 1D by just supposing walks in the region
r < γ a. We can approximate following Ref. [5]

〈|ℓ|〉 ∼ c

[

(

δ a

c

)1−α

g (η, α) + h (α)

]

. (B3)

Here the functions g and h do not depend on δ. Thence

〈η〉 〈|ℓ|〉 ∼ f2D

[

δ a2 (γ − δ)

c2

]α/2

c

[

(

δa

c

)1−α

g + h

]

.

(B4)
Taking the limit δ → 0+

〈η〉 〈|ℓ|〉 ∼

{

δα/2, α < 1,

δ−α/2+1, α > 1,

by retaining only the dependence of 〈η〉 〈|ℓ|〉 on δ.

Remarkably, such straightforward and easy-to-
understand considerations yields a similar result to the
procedure followed in the main text. Indeed, recall
that there the analysis is as follows: (1) The 2D search
inside the annulus problem is first setup. This general
problem has not been solved. (2) The limit it taken of
σ → 0, δ → 0, ρ → 0. In this limit, the problem becomes
effectively one dimensional. (3) Eq. (7) is thus obtained
in this limit.

But of course, from a fundamental point of view
the findings in the main text represent a much more
important and rigorous achievement.

Appendix C: Renormalization group derivation for
the efficiency scaling with ρ

As it should be clear from the main text, the
association between the foraging and annulus models
arises from the fact that the latter represents one target
(CT) at the center, the origin, and the mean of all other
targets (the FTs) are at the outer radius b, so that λ = b.
Rigorously one should have λ = b−a, but we can neglect
a in the low-density limit since then b ≫ a.
Consider now an annulus with outer radius L0 = 1 and

inner radius a. In 2D we will define the effective density
as usual, according to

ρ = 1/(2 a λ), (C1)

where λ is the mean free path λ = b. Further, let
T denote the mean first passage time and v = 1 the
adimensional unity velocity, so that

η =
1

T
. (C2)

If now we have an absorbing annulus system of outer
radius L ≫ L0, obviously its ρ will be much smaller
than the density corresponding to L0. We then can use
renormalization to map the two cases as the following.
We set φ = L/L0 and suppose the mapping

L 7→ L/φ = L0 = 1 (C3)

λ 7→ λ/φ = L0 = 1 (C4)

a 7→ a/φ (C5)

ρ 7→ ρφD (C6)

s 7→ s/φ (C7)

lc 7→ lc/φ (C8)

δ 7→ δ (C9)

T 7→ T/φ (C10)

η 7→ η φ . (C11)

Now, assume that the problem for L0 has been solved.
By recalling that

η0 = ηL, (C12)

we have

η0 7→ η0 [φ/φ] = η0. (C13)

Since

η = η0 ρ a
D−1 (C14)

and given that η0 is an invariant of the renormalization
group flow map, we can expect to find η ∼ ρ for fixed a
and δ (so fixed lc).
The above is a non-rigorous scaling argument for

the claim first published in Ref. [11] (and stated as
proposition (i) in Ref. [12]), namely, that the efficiency
η is linear in the density asymptotically. Note that only
Eqs. (C3) and (C11) are needed, the other mappings are
shown only for generality.



8

Figure 6. Flowchart of the search algorithm for concentric annuli with absorbing boundaries.

Appendix D: Algorithm

double rng_levy48(double alpha, double rr){
double ee, phi;
double mu=alpha-1;
double mu1=mu-1;
double xmu=1/mu;
double xmu1=xmu-1;
phi=(drand48()-0.5)*PI;
ee=-log(drand48());
return rr*sin(mu*phi)/

pow(cos(phi),xmu)*pow(cos(phi*mu1)/ee,xmu1);
}

The random variables are generated from the Lévy
α-stable distribution with asymmetry parameter β = 0
and zero mean, also the scale is s=rr. The simulations
were performed with a homemade code written in C (the
language C has been chosen due to speed). The Lévy
distributed random numbers were generated using the C
code displayed in the chart.

For the computational simulations, the 2D algorithm
checks, at each walk, whether or not the Lévy
searcher has intercepted the inner or the outer annuli.
Figure 6 depicts the algorithm flowchart. We use as
parameterization r (t) = r0 + l t, where r0 is the walker
starting position.

The algorithm consists of repeating many iterations
of the walker always starting a distance lc from the
center, and performing successive Lévy walk steps one
at a time. For each step, possible intersection points
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of the trajectory and the inner or outer annuli (or
shells) are calculated, by simultaneously solving the
equations for the line of the trajectory and the circles
or shells, considered as quadratic equations for D-
dimensional conic sections. The full procedure allows
accessing intermediate values between the points r0 and
rf = r (t = 1) from the function r (t), associating this
parameterization to the equations of each annulus. We
derive the t value necessary for the intersection from

tinner =
1

2A

(

−B ±
√

B2 − 4A (C − a2)
)

, (D1)

touter =
1

2A

(

−B ±
√

B2 − 4A (C − L2)
)

, (D2)

with A = 2l2, B = 2 (x+ y) l and C = x2+y2. Therefore,
we have two solutions for the inner and two for the outer
annulus. Those with values in the interval (0, 1] indicate
that there were one or more intersections. We choose the
lowest t in the interval to compute the distance traveled
d = lt. At the end of the flight, the distance traveled is
counted, and there are three possible subsequent actions:
(i) if there is an intersection, the searcher will return
to the starting point of the simulation, (x, y) = (lc, 0);
(ii) if there is no intersection, the next flight will depart
from rf ; (iii) if the total distance value exceeds a certain
threshold, then the simulation ends.
The 3D version of the code was written by adapting

the 2D code.
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