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Abstract 67 

Soils are the foundation of all terrestrial ecosystems 1. However, unlike for plants and animals, 68 

a global assessment of the hotspots for soil nature conservation is still lacking 2. This hampers 69 

our ability to establish nature conservation priorities for the multiple dimensions supporting the 70 

soil system: from soil biodiversity to ecosystem services. Here, we conducted a global field 71 

survey including biodiversity (archaea, bacteria, fungi, protists, and invertebrates) and function 72 

(critical for six ecosystem services) observations within 615 composite topsoil samples from a 73 

standardized survey in all continents, to identify global hotspots for soil nature conservation. 74 

We found that each of the different soil ecological dimensions (i.e., soil species richness [alpha 75 

diversity, measured as ASVs], community dissimilarity, and ecosystem services) peaked in 76 

contrasting regions of the planet, and were associated with different environmental factors. 77 

Temperate ecosystems showed the highest species richness, while community dissimilarity 78 

peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of 79 

ecosystem services. These findings highlight the complexities of simultaneously protecting 80 

multiple soil ecological dimensions. We further show that most of these hotspots are not 81 

properly covered by protected areas (over 70%), and are vulnerable in the context of multiple 82 

global change scenarios. This first global estimation of soil nature conservation priorities, 83 

highlights the fundamental importance of accounting for the multidimensionality of soil 84 

biodiversity and ecosystem services to conserve soils for future generations. 85 

Main text: 86 

Soils are essential to support terrestrial life on the planet 1. They are home to diverse 87 

assemblages of organisms across all major lineages of life from bacteria to invertebrates, and 88 

provide multiple ecosystem services such as soil fertility, carbon (C) storage, waste 89 

decomposition, pest control, and water retention 3–5 that are critical for food production and 90 

human well-being 6–8. However, soils are also highly vulnerable to anthropogenic disturbances 91 

such as climate change 9,10 and land use intensification (e.g., land-use change, pollution, and 92 

erosion 11,12). For an adequate conservation of soils, it is critical to consider and protect the 93 



 

multiple ecological dimensions supported by soils, from their biodiversity to the different 94 

ecosystem services they support. A first step in this direction is identifying the global ecological 95 

hotspots for soil nature conservation 13 to inform and guide policymakers and conservation 96 

managers on how to extend nature conservation to the world belowground. Concurrently, 97 

establishing and negotiating adequate global nature conservation policies and priorities (e.g., 98 

the 2030 biodiversity targets 14) requires knowledge about the distribution of global 99 

biodiversity, including identifying ecological hotspots 2. While these ecological hotspots were 100 

established decades ago for plants and animals, this critical information for soil biodiversity 101 

and ecosystem services does not exist and is therefore absent from current biodiversity 102 

assessments 15. Recent developments in ecological modeling and soil macroecology have 103 

improved our understanding of the global distribution of multiple soil communities 16–21 and 104 

their potential future trends 9,22. These studies have found potential mismatches between 105 

below- and aboveground biodiversity, suggesting that hotspots of plant diversity are poor 106 

proxies of belowground diversity 23 and, therefore, are unlikely to provide sufficient protection 107 

for life belowground. While this may be true, plant species richness, like the one found in the 108 

tropics, is known to increase the diversity in soil organic matter compounds and, therefore, 109 

provide resources for a diverse soil microbiological community 24. This also opens the question 110 

to if the hotspots of different soil ecological dimensions (e.g., diversity, community 111 

composition, functions) coincide in space and how these are affected by global change, with 112 

recent studies pointing to diverging global patterns 22. Yet, many recent developments are 113 

based on merged meta-analytical data, which are rarely measured using the same methods 114 

or do not simultaneously consider multiple soil ecological dimensions in the same locations. 115 

Unfortunately, we still lack globally standardized field surveys that explicitly consider the 116 

ecological multidimensionality of soils that simultaneously capture information on multiple soil 117 

taxonomic groups and ecosystem services, across a wide range of global environmental 118 

conditions 25. Closing these knowledge gaps is essential to inform the establishment of nature 119 

conservation areas, steer management decisions, and set effective policy targets that address 120 

the ecological conservation of soils. 121 

Herein, we combined machine learning models with a standardized global field survey, 122 

including 615 composite topsoil samples from all continents and climates (Supplementary 123 

Fig.1) to estimate, for the first time, the extent, associated environmental factors, and climate 124 

change vulnerabilities of the global hotspots of soil biodiversity and ecosystem services. Our 125 

dataset is based on >11,000 individual standardized observations and including information 126 

on 16 biodiversity and ecosystem service attributes (Methods; Supplementary Table 1). Our 127 

study moved beyond the analysis of alpha diversity (here based on soil DNA amplicon 128 

sequence variant, ASVs) and extended its scope to community dissimilarity (i.e., composition 129 



 

heterogeneity, based on Jaccard distance from presence/absence data) of five soil groups of 130 

organisms (archaea, bacteria, fungi, protists and invertebrates). Measuring the hotspots of 131 

community dissimilarity and comparing them to the ones of alpha diversity allows us to identify 132 

areas with high local diversity that, at the same time, contain unique communities. In addition, 133 

to fully grasp the conservation potential of soil systems, soil functional properties related to six 134 

key soil ecosystem services were assessed, including soil C storage (total soil organic C), 135 

fertility (total nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) contents; 136 

terrestrial ecosystems in this study were not fertilized, and therefore, total nitrogen represents 137 

the stocks of nitrogen in soil organic matter), organic matter decomposition (three enzymes 138 

associated with starch and chitin degradation, and P mineralization), water retention (water-139 

holding capacity), pest control (inverse of the proportion of soil-borne fungal phytopathogens), 140 

and mutualism (i.e. plant-mycorrhizal mutualism, an ecological relationship between plants 141 

and fungi that is beneficial to both partners, assessed as the proportion of mycorrhizal fungi). 142 

We acknowledge that our study does not cover the entire environmental spectra found on 143 

Earth, but it represents a large portion of the environmental variability found in the planet 144 

(Supplementary Fig. 1). Locations showing environmental conditions under-represented in our 145 

study were excluded from our spatial analyses (Figs. 1-3).  146 

Our analyses revealed that the assessed soil biodiversity and ecosystem services variables 147 

are associated with contrasting environmental factors at the global scale (Extended Data Figs. 148 

1 and 2). For example, while soil pH was the main factor associated with alpha diversity of soil 149 

fungi and bacteria, soil organic matter (soil C and N contents) was positively associated with 150 

the alpha diversity of protists and invertebrates (Extended Data Figs. 2 and 3), and elevation 151 

was positively correlated with the alpha diversity of archaea. In the case of the assessed 152 

ecosystem services, soil pH was positively associated with soil C content, water retention and 153 

pest control, whereas, temperature was associated with organic matter decomposition and 154 

fertility, and precipitation seasonality with mutualism (Extended Data Figs. 2 and 3). Although 155 

many of these environmental associations are well-described in the literature (e.g., 26,27), the 156 

fact that different soil ecological dimensions could be predicted by contrasting environmental 157 

factors was much less clear due to the lack of standardized global field surveys. These 158 

contrasting associations and environmental drivers explain the different global distributions 159 

found for each ecological dimension and reveal that important trade-offs may exist when 160 

considering nature conservation of multi-faceted soil systems. To further visualize these trade-161 

offs, we used machine learning random forest spatial regression models together with 162 

available current data and future projections for both climate and land-use change (2015-163 

2070), to predict the distribution of soil biodiversity and ecosystem services and assess their 164 

major drivers according to multiple future scenarios (shared socioeconomic pathways (SSP); 165 



 

SSP1: global sustainability, SSP3: regional rivalry, SSP4: inequality, and SSP5: fossil-fueled 166 

development 28). We standardized each of these spatial distributions and used a Getis-Ord 167 

Gi* spatial clustering algorithm to obtain a representation of the global hotspots (clusters of 168 

statistically high values) for the modelled distribution of each single biodiversity and ecosystem 169 

service variable. These were then aggregated into each soil ecological dimension (Fig. 1A, B, 170 

and C). To further strength our conclusions we performed a comparison across multiple 171 

methods (Supplementary Figs. 7 and 10) and an uncertainty assessment for the spatial 172 

predictions (Supplementary Figs. 5, 11, 12 and 13). A rationale supporting the spatial analysis 173 

from our standardized survey, and explaining the limitations of our approach, is available in 174 

the Method section. 175 

Further, we showed that different ecological dimensions for soil conservation peak in different 176 

regions of Earth (Fig. 1A, B, C). Model fitness (measured as overall training R2) varied between 177 

0.855 and 0.914 for alpha diversity and community dissimilarity (Supplementary Table 5) and 178 

between 0.801 and 0.936 for ecosystem services (Supplementary Table 6). Hotspots of alpha 179 

diversity tend to have a wider distribution across the world, peaking in temperate and 180 

Mediterranean regions, as well as in alpine tundra (overall occupying between 30.9%, for 181 

archaea, and 42.4%, for bacteria, of the world). However, hotspots of community dissimilarity 182 

occur around two contrasting global conditions, tropical systems and drylands (overall 183 

occupying between 35.7%, for Archaea, and 43.0%, for Fungi, of the world). For Fungi, our 184 

results were further compared and validated with an independent dataset (Supplementary Fig. 185 

6). While higher alpha diversity may intuitively imply a direct decrease in dissimilarity, directly 186 

varying in tandem, our results show that at the global scale this is not the case (Supplementary 187 

Table 15). Archaea showed the highest proportion of shared hotspot areas with 19%, with all 188 

other groups obtaining less than 8% (alpha diversity and community dissimilarity for the same 189 

taxa; Supplementary Table 3). Our findings further suggest the existence of important trade-190 

offs in soil nature conservation priorities (Extended Data Fig. 3). For example, locations with 191 

higher alpha diversity tend to be less dissimilar, and only a small proportion of locations were 192 

found to support both high dissimilarity and alpha diversity (Fig. 1B). This proportion is smaller 193 

for fungi (3.9%) and higher for Archaea (19.0%; Supplementary Table 2). Similarly, locations 194 

with higher dissimilarity tend to have less soil C content, fertility, and higher proportion of plant 195 

pathogens (Extended Data Fig. 3). Moreover, our global maps indicate that alpha diversity 196 

(Fig. 1A), community dissimilarity (Fig. 1B), and ecosystem services (Fig. 1C) have their 197 

hotspots in mostly contrasting regions of the planet, existing only in a few locations supporting 198 

high levels of more than one of these dimensions (0.1% of the evaluated areas in the world; 199 

based on Fig. 1). This contrasts with results found for other biodiversity groups like plants and 200 

mammals e.g., 29,30 and supports recent findings of a mismatch between soil biodiversity and 201 



 

other taxonomic groups (Supplementary Table 13; 23) While globally, tropical and arid systems 202 

were mostly classified as locations with relatively low alpha diversity across taxa, these areas 203 

are hotspots for soil community dissimilarity, supporting the most unique soil community 204 

assemblies (Fig. 1B). In the case of bacteria, for example, locations with high pH support a 205 

higher richness (e.g., in temperate systems); however, these are always similar organisms 206 

which thrive in neutral-alkaline soils. This suggests that, while local diversity in tropical 207 

systems may be low (e.g., as a consequence of acidic soils), these environmentally 208 

contrasting areas of the globe may harbor unique communities, which in turn may result in 209 

high gamma (regional) diversity. While this was already suggested in the past 16,22, the present 210 

study represents the first robust confirmation of this hypothesis. 211 

Our results highlight the fact that preserving soils from a nature conservation perspective 212 

requires a holistic approach that considers multiple soil ecological dimensions such as alpha 213 

diversity, community dissimilarity, and ecosystem services in the context of a nature 214 

conservation profile (Fig. 1D). Being able to position a given area within this soil nature 215 

conservation profile allows to establish adequate conservation goals that effectively target the 216 

preservation of soil communities and their effects on ecosystems 31. For example, an area that 217 

falls into a community dissimilarity hotspot may focus on indicators and conservation goals to 218 

track and prevent species losses, since these may be unique to its limits, while an area in an 219 

ecosystem service hotspot may favor indicators that target ecosystem service supply. This 220 

does not imply that conservation areas should not prioritize all soil ecological dimensions, but 221 

rather that management strategies and conservation targets should be adjusted to the 222 

ecological reality of each region and conservation area 2. Moreover, while local approaches 223 

are still needed to refine the local distribution of these hotspots 32, these results also suggest 224 

that no particular region can protect all dimensions of soil conservation, making a further 225 

argument for global cooperation and for establishing global soil nature conservation targets.  226 

Given the contrasting regions supporting the highest biodiversity and services, identifying 227 

which ecological dimension is the most relevant for the conservation of soil ecological 228 

conditions is not a simple task. Some ecosystems depend on a high alpha diversity while 229 

others do not need such high levels of alpha diversity to properly function but rely on more 230 

dissimilar soil communities (Fig. 1D; 33). Conversely, while for microbial communities 34, 231 

functional redundancy driven by community composition may be more important than alpha 232 

diversity per se, in general terms, ecosystems with lower alpha diversity are likely to be more 233 

sensitive to ecosystem change 35 and for that, more targeted conservation actions are 234 

required. Although it is known that soil organisms play a crucial role in ecosystem service 235 

supply 36, it is not clear that it is biodiversity per se that governs this entire process. For 236 

example, some specific ecosystem services may depend on the presence of only a few 237 



 

species, such as specific components of the soil nitrogen cycle 37, while others are the result 238 

of the activity of many species with high levels of redundancy, such as soil respiration 38. 239 

Therefore, we defined priority areas for soil nature conservation as areas supporting relatively 240 

high levels of either soil biodiversity or ecosystem services. We were then able to identify key 241 

regions of the planet surpassing high thresholds of either biodiversity or ecosystem service 242 

provision - the hotspots for soil nature conservation - (Fig. 2). Considering the areas with the 243 

highest accumulation of soil biodiversity hotspots (top 5% of areas), it is possible to identify 244 

tropical systems and substantial areas in North America, in Northern Europe, and in Asia as 245 

having high priority for nature conservation (Fig. 2A). These areas maximize different 246 

dimensions of soil ecology and may thus require integrative strategies, not only from a nature 247 

conservation perspective but also considering the socio-economic appropriation of 248 

belowground systems. To this respect, it is striking that ~50% of these global nature 249 

conservation priority areas are not under any form of nature conservation, and that only ~10% 250 

correspond to areas fully preserved (Fig. 2B). Since these global soil nature conservation 251 

priority areas are the areas with the highest nature conservation relevance and given that 252 

currently soils do not have any specific nature conservation targets, this is a worrisome state 253 

for the conservation of soil biodiversity worldwide 2. This situation is also observed if we 254 

consider other thresholds for the soil nature conservation potential (Fig. 2B). While soil 255 

conservation may not be able to maximize all ecological dimensions at the same time, and 256 

each region may have different specificities with specific research being required, a number 257 

of actions may be considered. These include nature-based solutions in land management for 258 

enhancing ecosystem services 39, landscape-level actions like the preservation of permanent 259 

forest and natural coverage in the surrounding of managed systems 40, or nature-based 260 

solutions focused on restoring or improving soil functional outputs 41. Our work provides key 261 

information for regional and continental decision-makers to develop nature protection goals 262 

that specifically target soil systems and biodiversity, including identifying areas with high 263 

potential to establish soil-based nature conservation areas. 264 

In the context of climate and land-use change, nature conservation areas and targets will need 265 

to adapt to new conditions and also focus on mitigating potential impacts 42–44. Thus, focusing 266 

on the global soil nature conservation priority areas (top 5%), we conducted an additional 267 

analysis to predict the future changes in hotspots according to four shared socio-economic 268 

pathways (Fig. 3; 2015-2070). Our projections highlight the fact that the soil nature 269 

conservation hotspots will change as a result of climate and land-use change linked to 270 

substantial declines in both alpha diversity and ecosystem services. Globally, across 271 

scenarios, net differences between 2015-2070 range from 1.5% net gains in SSP3 and -12.2% 272 

net losses in SSP5. In most cases these net changes actually hide substantial losses of 273 



 

current soil nature conservation priority areas with 7.1% (SSP4) to 17.5% (SSP5) of current 274 

areas being lost globally across different future scenarios (Supplementary Table 7). Our 275 

results reveal that most of the net area losses are related to declines in ecosystem services, 276 

particularly C stocks (average loss across scenarios = -6.8%) and mutualism (-3.8%) and litter 277 

decomposition (-3.6%), and in alpha diversity of specific groups, particularly invertebrates (-278 

2.6%), fungi (-1.3%) and archaea (-1.1%). Our projections also show that new areas will 279 

emerge as key areas for soil nature conservation across the world, corresponding to 280 

expansions ranging from 5.3% in SSP5 (relative to the current area) to 9.5% in SSP3. 281 

Surprisingly, scenarios that consider higher challenges for adaptation to climate change 282 

motivated by higher regional income inequality and rivalry (SSP3 and SSP4; 45), also show 283 

the most positive effects for maintaining or expanding current nature conservation priorities 284 

for soils, particularly in Africa and South America (Fig. 3). Overall, these positive effects are 285 

mostly expected in the global south, with systematic negative effects in the global north across 286 

scenarios. In fact, the only scenario where the global north has slight net gains (0.3-2.0%) 287 

corresponds to the so-called “sustainability scenario” (SSP1). Nevertheless, in this scenario, 288 

most of the rest of the world shows important net losses (-5.7% in Africa and -5.9% in Asia 289 

Pacific) or just mild net gains (0.8% in South America) due to expected increases in global 290 

economic development (Fig. 3). This is even more worrisome when considering recent reports 291 

that show that 30% of the population across tropical countries are highly dependent on nature 292 
46. Across all regions, the fossil-fueled economy scenario (SSP5) produces the strongest net 293 

losses, with regions losing priority areas from -5.9%, for Asia-Pacific, to -31.8%, in the case of 294 

North America (with most of these losses being driven by decreases in ecosystem services). 295 

Furthermore, our results suggest that the current simplistic view on carbon-based targets 296 

provides little protection for all soil ecological dimensions. In fact, the sustainability scenario 297 

shows an overall global improvement in ecosystem services, with soil C leading these 298 

improvements but with clear losses in alpha diversity. Together, these results indicate that 299 

hotspots of soil biodiversity and ecosystem services are highly threatened by future climatic 300 

and land-use changes, and stress the need for immediate protection of these locations. Our 301 

findings also suggest that these hotspots might move in the future, with current sanctuaries of 302 

soil biodiversity being subject to degradation. 303 

In summary, based on the largest global standardized survey, including sixteen biodiversity 304 

and ecosystem service variables, our work provides the first estimate of the global hotspots 305 

for nature conservation of multiple soil ecological dimensions. Here, we identified critical 306 

unique areas for the conservation of soil biodiversity and ecosystem services at the global 307 

scale, with soil alpha diversity, dissimilarity, and services peaking in temperate, tropical, and 308 

boreal regions, respectively. While recent literature highlights the need for extending nature 309 



 

conservation to ensure global sustainability and the preservation of biodiversity 47, it also 310 

underlines that this increased protection requires context-based solutions 48. By unveiling 311 

important trade-offs in soil biodiversity and ecosystem services, we also highlighted that no 312 

particular region of the world could simultaneously protect all soil ecological dimensions. 313 

Therefore, the conservation of soil biodiversity and ecosystem services requires an integrated 314 

approach that probably should not focus on locally maximizing all ecological dimensions at 315 

the same time. Also, the fact that we found that these three ecological dimensions do not 316 

necessarily match in terms of their spatial hotspots also showed the complexity of soil 317 

ecosystems and highlighted the difficulty that land managers and policymakers face when 318 

designing soil conservation measures. Nevertheless, we also showed that these nature 319 

conservation priority areas are currently highly unprotected, with less than ~10% of these 320 

locations under adequate conservation status. We acknowledge that our study is just a first 321 

step towards understanding and mapping the global hotspots of soil nature conservation and 322 

that high-resolution monitoring systems and multiple time periods are needed to better guide 323 

regional conservation and policy options 2. Still, our work suggests that current priority areas 324 

of soil nature conservation are vulnerable to global change drivers in all future scenarios 325 

considered, and stresses the need for immediate nature conservation targeting and protection 326 

of these regions. This novel information and indicators should enable governments and 327 

decision-makers to set soil nature conservation as a priority in the context of the 2030 328 

Biodiversity Targets negotiations, paving the way for a more integrative view of nature. 329 
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List of figures: 464 
Fig. 1 Current distribution of global soil ecological hotspots. The proportion of land occupied by hotspots 465 
of alpha diversity (A), community dissimilarity (B) and ecosystem services (C) (Supplementary Table 2; 466 
Extended Data Fig. 4 and 5). The top row corresponds to the proportion of global area occupied by 467 
single taxa (A, B) or ecosystem services (C), and the bottom row to the global representation of 468 
accumulated hotspots across taxa (A, B) or ecosystem services (C). Together, these three soil 469 
ecological dimensions create a soil nature conservation profile where both areas that maximize a given 470 
dimension and areas that allow for preserving a combination of global soil biodiversity hotspots are 471 
identified (D). Grey areas correspond to areas that were not assessed during calculation due to high 472 
uncertainty and insufficient environmental coverage (corresponding to 38.4% of the terrestrial world; 473 
Supplementary Figure 5). A further estimation of spatial uncertainty for each dimension considered is 474 
given in Supplementary Figures 12 and 13.  475 
 476 
Fig. 2 Current distribution of the global soil nature conservation priority areas. Spatial representation of 477 
the top 5%, 10%, 20%, and 30% areas with the highest accumulation of soil biodiversity and ecosystem 478 
services hotspots (A), and the proportion of those areas that are under some form of nature 479 
conservation regime (B). Grey areas correspond to areas that were not assessed during calculation. 480 
 481 
Fig. 3 Expected changes (2015-2070) in the total area of soil nature conservation priorities (top 5%) 482 
according to 4 different future shared socio-economic pathways (SSP1, SSP3, SSP4, and SSP5 28). 483 



 

ECA: Europe and Central Asia, NMA: North and MesoAmerica, SA: South America, AP: Asia-Pacific, 484 
Af: Africa. Light grey areas correspond to areas that were not assessed during calculation. 485 
 486 
  487 



 

Methods  488 
 489 
A global standardized survey to investigate topsoil biodiversity and function 490 

We used composite topsoil samples from global field surveys which were conducted between 491 
2016-2019 following standardized field protocols. This global field survey includes 151 492 
locations from all continents and 23 countries, from which 615 composite topsoil samples were 493 
collected, providing a large representation of all climatic and vegetation biomes in the planet 494 
(Supplementary Fig. 1). The locations of the soil samples was not established following a 495 
random protocol but rather were selected taking into account the local representativeness of 496 
the vegetation within the ecosystem types sampled. In global terms, the approach aimed to 497 
include as much climatic and edaphic variability as possible given the constraints of such a 498 
sampling scheme. Between three and five composite soil (top ~0-10cm) samples (from 5-10 499 
soil cores) were collected in these locations (ranging between 0.09-0.25 ha) following the 500 
protocol described in Maestre et al. (2012). By including multiple composite samples within 501 
each location, we aimed to account for within-location heterogeneity variation in soil 502 
properties, biodiversity and services. We focused on the topsoils, because they are known to 503 
hold the largest portion of soil biodiversity, and constitute the critical zone supporting key soil 504 
processes from OM decomposition to plant-soil interactions. A portion of these soils was 505 
frozen (-20 ºC) after sampling for molecular analyses, while another portion was air-dried and 506 
used for determining soil properties. We recognize that while our dataset provides a quite 507 
complete coverage of global environmental conditions, an increase of sampling locations in 508 
less represented regions of the globe would increase the strength of the study. To this respect, 509 
we aimed at adequately representing the spatial limitations of our study by eliminating and 510 
masking out all the regions that were poorly represented (Supplementary Figure 5). It is also 511 
important to mention that reaching this spatial representation is not a trivial endeavor with 512 
several logistic limitations (e.g., absence of local resources for sample preservation and 513 
consequent material degradation; 25), and overshadowed by war and current transport 514 
embargos. These issues disproportionally affect these underrepresented regions and result in 515 
important gaps in Africa and South-East Asia. Dataset available here: 516 
figshare.com/s/fb33c5a79f cee29e70dc 517 

Soil biodiversity 518 

The alpha diversity (corresponding to the number of phylotypes) and community dissimilarity 519 
(averaged Jaccard distance across samples from presence/absence matrices to account for 520 
dissimilarity in phylotypes, measured as ASVs, rather than in their proportions) of archaea, 521 
bacteria, fungi, protists and invertebrates was determined using amplicon sequencing 522 
technology (Illumina Miseq platform) following the protocol in Delgado-Baquerizo et al. (2019). 523 
Both these measurements are critical to understand the nature and conservation potential of 524 
specific areas. While alpha diversity refers to the number of species (or ASVs in this case) 525 
contained in a particular location, typically seen as priority areas for nature conservation, 526 
community dissimilarity refers to the uniqueness of the community, signaling the presence of 527 
specific species that are not common elsewhere. The later also represents a critical aspect for 528 
the selection of new conservation areas 49. Soil DNA was extracted using the Powersoil® DNA 529 
Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s 530 
instructions. A portion of the bacterial/archaeal 16S and eukaryotic 18S rRNA genes were 531 
sequenced using the 515F/806R and Euk1391f/EukBr primer sets 50–52, respectively. 532 



 

Bioinformatics processing was performed using a combination of QIIME 53, USEARCH 54 and 533 
UNOISE3 55,56. Phylotypes (i.e. Amplicon sequence variant; ASVs) were identified at the 100% 534 
identity level. The ASV abundance tables were rarefied at 5000 (bacteria via 16S rRNA gene), 535 
100 (archaea via 16S rRNA gene), 2000 (fungi via 18S rRNA gene), 1000 (protists via 18S 536 
rRNA gene), and 250 (invertebrates via 18S rRNA gene) sequences/sample, respectively, to 537 
ensure even sampling depth within each belowground group of organisms. Protists are defined 538 
as all eukaryotic taxa, except fungi, invertebrates (Metazoa) and vascular plants 539 
(Streptophyta). Note that not all samples passed our rarefaction cut-off. The total number of 540 
samples included in each soil group is available in Supplementary Table 2. 541 

Library preparation and Sequencing 542 

Triplicate PCR reactions were performed for each of the extracted DNA samples, and we 543 
included and sequenced multiple negative controls per plate to check for possible 544 
contamination. Each 25μl PCR reaction contained: 12.5μl of Promega GoTaq Hot Start 545 
Colorless Master Mix; 0.5 μl of each barcoded primer (bacterial 16S, 515F [5´-546 
GTGCCAGCMGCCGCGGTAA-3´] and 806R [5´-GGACTACHVGGGTWTCTAAT-3´] OR 547 
eukaryotic 18S, Euk1391f (5´-GTACACCGCCCGTC-3´) and EukBr (5´-548 
TGATCCTTCTGCAGGTTCACCTAC-3´); 10.5 μl water; 1 μl of template DNA. ‘Fusion’ primers 549 
also included Illumina adapters and 12-bp barcodes to enable multiplexed sequencing. PCR 550 
conditions for bacterial 16S rDNA amplifications were 94ºC for 3min; 35 cycles of 94ºC for 551 
45s, 50ºC for 60s, 72ºC for 90s; 72ºC for 5 min. PCR conditions for eukaryotic 18S rDNA 552 
amplifications were 94ºC for 3 min; 35 cycles of 94ºC for 45s, 57ºC for 60s, 72ºC for 90s; 72ºC 553 
for 10 min. PCR products were cleaned with the MoBio Ultra Clean PCR Clean-Up Kit. Next, 554 
we performed PCR-mediated Nextera barcode ligation following the manufacturer’s 555 
instructions, adding unique barcodes onto amplicons, to allow for multiplexed sequencing. 556 
Samples were normalized with the SequalPrep Normalization Plate Kit (Invitrogen) prior to 557 
sequencing on the Illumina MiSeq platform. 558 

DNA was first cleaned up using AMPure Xp beads (Beckman Coulter, California, USA) and 559 
then quantified using the automated fluorescence-based PicoGreen assay (Invitrogen, 560 
Massachusetts, USA). The cleaned DNA was normalized to 1.5 ng/μl and a total of 7 ng of the 561 
input DNA was used for each amplicon PCR reaction. Illumina’s instruction does not 562 
recommend pooled three PCRs (which shouldn’t be considered as technical replicates), and 563 
one PCR reaction was performed per amplicon. While to minimize the PCR bias in the 564 
sequencing, the number of PCR cycles was reduced to 25. In detail, the PCR conditions for 565 
bacterial 16S rDNA amplification are: 95 °C for 3 min, 25 cycles of 95 °C for 30 sec, 55 °C for 566 
30 sec, 72 °C for 30 sec, 72 °C for 5 min then hold at 4 °C; and PCR conditions for eukaryotes 567 
18S rDNA amplification is: 94 °C for 5 min, 30 cycles of 94 °C for 30 sec, 55 °C for 30 sec, 72 568 
°C for 30 sec, 72 °C for 5 min then hold at 4 °C. The Illumina forward overhang (5’-569 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) and reverse overhang (5’-570 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’) adapters were included in the 571 
amplicon PCR. Each sample was barcoded with two 8 base indices using the Illumina Nextera 572 
XT Index Kit. The 15 ul reaction system was prepared with KAPA HotStart ReadyMix Kit 573 
(Merck KGaA, Darmstadt, Germany). A ZymoBIOMICS Microbial Community DNA Standard 574 
was used as a positive control together with the samples to assess the bias in PCR. Molecular 575 
analysis of the full-length ITS region for fungi was performed using ITS9mun/ITS4ngsUni 576 
primer sets and PacBio third-generation sequencing as described in 57.Our sequencing run 577 
yielded 3861042 fungal sequences (18s), 534286 invertebrate sequences (18s), 2388020 578 



 

protist sequences (18s), 8901512 bacterial sequences (16s), and 168749 archaeal sequences 579 
(16s). 580 

Bioinformatics 581 

Bioinformatic processing was performed using a combination of QIIME, USEARCH and 582 
UNOISE. Briefly, data was demultiplexed and primers were trimmed before further analyses. 583 
Default parameters were followed in USEARCH pipeline, except for the bases with a quality 584 
score lower than 20 were end-trimmed from the forward/reverse primer reads to minimize the 585 
mismatch in merging and to maximize the portion of successful mergers. A maximum of 586 
expected error (ee) was set as 1.0 for the merged reads quality filtering using USEARCH 587 
(Edgar 2010). zOTUs (or Amplicon Sequence Variant) were gained by denoising (error-588 
correction) the dereplicated merged reads using unoise3 (Edgar 2016). Representative 589 
sequences of ASVs were annotated against the Silva database (Quast et al. 2012) in QIIME 590 
(Caporaso et al. 2010) using UCLUST 54. 18S taxonomy annotation used both SILVA and 591 
Protist Ribosomal Reference database (PR2, https://pr2-database.org/)58. Resultant ASV 592 
tables were rarefied at 5000 (bacteria via 16S rRNA gene), 100 (archaea via 16S rRNA gene), 593 
2000 (fungi via 18S rRNA gene), 1000 (protists via 18S rRNA gene), and 250 (invertebrates 594 
via 18S rRNA gene) sequences/sample, respectively, to ensure even sampling depth within 595 
each belowground group of organisms. They were then imported into QIIME 53for downstream 596 
analysis including diversity and community composition. 597 

Rarefaction resolution and primer set cross-validations  598 

Rarefaction resolution 599 

First, we conducted additional analyses to provide evidence that our choice of rarefaction level 600 
did not affect our results or conclusions. Here, using the samples with the highest 601 
sequence/sample yield, we tested for the impact of different levels of rarefaction on soil 602 
biodiversity. We found highly statistically significant correlations between the diversities of soil 603 
archaea (rarefied at 100 vs. 500 sequences/sample; Spearman ρ = 0.764; P < 0.001; n = 128), 604 
bacteria (rarefied at 5000 vs. 10000 sequences/sample; Spearman ρ = 0.992; P < 0.001; n = 605 
509), fungi (rarefied at 2000 vs. 10000 sequences/sample; Spearman ρ = 0.971; P < 0.001; n 606 
= 88), protists (rarefied at 1000 vs. 5000 sequences/sample; Spearman ρ = 0.971; P < 0.001; 607 
n = 287) and invertebrates (rarefied at 250 vs. 1000 sequences/sample; Spearman ρ = 0.952; 608 
P < 0.001; n = 274), for a subset of samples wherein high numbers of sequences were 609 
available. These results are supported by previous independent global surveys providing 610 
evidence that rarefaction options do not influence global patterns in microbial communities 611 
59,60. See rarefaction curves in Supplementary Figure 3.  612 

Primer set cross-validation 613 

Then, we provide additional evidence that primer sets are not influencing the global patterns 614 
reported here. For a subset of samples, we generated additional molecular information for 615 
fungal (ITS PacBio sequencing; ITS9mun/ITS4ngsUni primer sets) and bacterial (16s rRNA 616 
Miseq Sequencing; 341F/805R primer sets) data. We found that the richness soil microbial 617 
communities used in this study were highly significantly and positively correlated to those 618 
using these alternative primer sets both for bacteria (Spearman ρ = 0.403; P < 0.001; n = 128) 619 
and fungi (Spearman ρ = 0.656; P < 0.001; n = 228). Similarly, the community composition of 620 
bacteria (Spearman ρ = 0.479; P < 0.001; n = 128) and fungi (Spearman ρ = 0.414; P < 0.001; 621 



 

n = 228) were significantly and positively correlated to those using these alternative primer 622 
sets. More importantly, we also found that the main predictors of bacterial and fungal richness 623 
(soil pH in both cases; Supplementary Fig. 2) in this study followed the same pattern for 624 
bacterial and fungal richness using alternative primer sets (Supplementary Fig. 4). We would 625 
like to further highlight that the 18s primer sets used here to describe protists and invertebrates 626 
are the gold standard for the sequencing of these organisms 52,61 and have been previously 627 
cross-validated in the literature 62–64. We acknowledge that there are multiple alternative primer 628 
sets, especially when specifically targeting particular groups of organisms within protists (e.g., 629 
mtDNA COI gene). Nevertheless, while specific primers may deliver higher resolution for 630 
specific groups, these are known to be inefficient in identifying a wide range of organisms from 631 
environmental samples 65. 632 

Mapping the distribution of fungal functional guilds 633 

Finally, to provide further evidence that 18s rRNA Miseq Sequencing can in this case provide 634 
a solid representation of the global patterns in soil-borne mycorrhizal fungi and fungal potential 635 
plant pathogens, we compared the global patterns (see mapping method below) in the 636 
proportion of soil-borne mycorrhizal fungi and fungal potential plant pathogens determined 637 
using 18s rRNA Miseq Sequencing with the subset of data including ITS PacBio sequencing 638 
(see above). Our results showed that the proportion of soil-borne mycorrhizal fungi and fungal 639 
potential plant pathogens determined using two independent methods followed similar 640 
patterns and had a strong and positive correlation worldwide (Supplementary Fig. 6 and Table 641 
8 and 9), allowing us to tentatively use the 18S rRNA gene as a proxy for phylotype richness. 642 
The number of AMF phylotypes retrieved from ITS PacBio sequencing was not enough to 643 
conduct this analysis, so we used Ectomycorrhizal fungi in our mapping comparison. 644 

Soil ecosystem services 645 

Six soil functions directly related to key ecosystem services were determined using highly 646 
standardized methods: water retention (water holding capacity), fertility (nitrogen, phosphorus, 647 
potassium, and magnesium content), carbon storage (total soil organic carbon content), 648 
mutualism (proportion of arbuscular and ectomycorrhizal fungi), pest control (inverse of the 649 
proportion of soil-borne potential plant pathogens; as defined here 66) and OM decomposition 650 
(three enzymes associated with C, N and P cycle). Percentage of water holding capacity was 651 
determined as in 67. Soil nitrogen was determined using a CN analyzer. Soil phosphorus, 652 
potassium, and magnesium concentrations were determined using ICP (Inductively Coupled 653 
Plasma) Spectroscopy after acid digestion 68. Total soil organic C content was determined 654 
from CN analyzer (after removing soil carbonates) and wet-chemistry methods 59. The 655 
proportion of soil-borne fungal potential plant pathogens and fungal plant-soil mutualistic 656 
organisms (arbuscular and ectomycorrhizal fungi) were determined as the sum of all taxa 657 
classified as such from Funguild 69 using our 18S dataset. We found Funguild information for 658 
297 ASVs of arbuscular mycorrhizal fungi, 217 ASVs of ectomycorrhizal fungi, and 165 ASVs 659 
of soil-borne potential fungal plant pathogens. Pest control was calculated as the inverse of 660 
the proportion of soil-borne potential plant pathogens (-1 x proportion) as done in 66. Thus, 661 
locations with higher levels of pest control also have lower proportions of plant pathogens. We 662 
only focused on those taxa supporting unique trophic life styles. The activity of phosphatase 663 
(phosphorus mineralization), beta-glucosidase (starch degradation) and N-acetyl-β-664 
glucosaminidase (chitin degradation) was determined as in 70 using a high-throughput 665 
fluorescence microplate method. The exact number of available information might differ for 666 



 

different ecosystem services (available in Supplementary Table 2). The total number of 667 
samples available for each soil attribute is available in Supplementary Table 2. We calculated 668 
ecosystem services as the standardized (0-1) average of soil attributes within each ecosystem 669 
service (e.g., Fertility: N, P, K and Mg; Mutualism: arbuscular and ectomycorrhizal fungi; OM 670 
decomposition: phosphorus mineralization, chitin and starch degradation) using a 671 
multifunctionality approach 71. Furthermore, we acknowledge that the number and type of 672 
ecosystem services considered here might be limited to characterize the range of ecological 673 
functions driven by soil communities. Therefore, for a subset of the data where other variables 674 
are available, we correlated our ecosystem services to additional information on carbon 675 
content, enzymes, nutrient availability from IEMS (a proxy of N mineralization; 72) and 676 
metagenomics (see Supplementary Table 10). 677 

Environmental data 678 

Elevation and climatic information for each location was obtained from WorldClim v2 (1 km2 679 
resolution; https://www.worldclim.org/data/bioclim.html), including information on 680 
climatologies and on the seasonality of temperature and precipitation. Soil pH was determined 681 
with a soil pH-meter from a soil-water mix 73. Texture was determined as in Maestre et al. 73 682 
and, in the case of missing information, this was filled using Soilgrid v2 (https://soilgrids.org; 683 
as in 16). Information on dominant vegetation (forest, shrublands or grasslands) was obtained 684 
as part of the field survey. 685 

Drivers of soil biodiversity and services 686 

To investigated the environmental factors associated with soil biodiversity and services, we 687 
first used machine learning Random Forest modeling 74. We used the R package “rfpermute” 688 
to conduct these analyses. To further strengthen our results, we repeated the same analysis 689 
using XGboost algorithms 75,76. XGboost allows for fine-tuning of the model outcomes, and 690 
thus results are interesting for answering not only this comment by the reviewer but also the 691 
next four comments. In brief, we used a gbtree booster using as an objective function the 692 
RMSE using k-fold cross-validation. We tunned the ETA (learning rate), min_chld_weight, max 693 
depth, resample, gamma and nfold 77 using a Bayesian optimization approach with the 694 
package “ParBayesianOptimization” in R 78. This allows for efficient implementation of an 695 
optimizing search. The parameter we decided to optimize was the test rmse (rather than the 696 
train one), in order to prevent overfitting 79. The number of trees fitted was also estimated on 697 
this criterion using the function xgb.cv from package xgboost in R with 10% of data as 698 
validation set. As feature importance, we extracted the gain obtained in predictive, using the 699 
function xgb.importance (the results for this second analysis can be found in Supplementary 700 
Figure 7; Supplementary Table 11 and 12). Here we chose to train the resulting models using 701 
the function xgcv, which fits from 1 to 200 trees to the data and confronts trained models to 702 
the cross-validation set. We chose to use the number of trees that minimized the test RMSE. 703 
In general, this procedure allows to prevent overfitting (whereas train RMSE might continue 704 
being improved, the point where validation RMSE is minimized corresponding to the maximum 705 
learning ability without overfitting. In the new analyses, we parameterized 8 important 706 
hyperparameters, including the number of trees (nroud) and the number of features 707 
(colsample_bytree). A full table of the resulting parameters is reported in Supplementary Table 708 
11). To further strength our analysis, we compared the results obtained with our approach with 709 
results obtained using a GAMM model (considering random factors). GAMMs were performed 710 
by flooring coordinates (latitude and longitude) and using their combination as a random factor: 711 



 

("mdl=gamm(data = ddi,formula = 712 
y~s(Latitude)+s(Longitude.cosine)+s(Longitude.sine)+s(s_elev)+Forest+Grassland+Shrubla713 
nd+ s(s_MAT)+s(s_TSEA)+s(s_PSEA)+s(s_MAP)+s(s_SOC)+s(s_Texture)+s(s_pH) random 714 
= list(RF=~1))"; being RF the floored combination of latitude and longitude: 715 
"dd$RF=as.factor(paste(floor(coords$long),floor(coords$lat)))"). This approach allows to 716 
control for spatial autocorrelation, apart from the nested structure of our data. Our results show 717 
(Supplementary Fig. 10) that the GAMM model provided highly correlated results (Spearman 718 
correlations >0.7) for all variables considered and almost identical (very aligned to 1:1 line) 719 
predictions to the machine learning algorithms used in our manuscript, suggesting that the 720 
type of modelling (e.g., Random Forest vs. GAMM) does not influence our results and 721 
conclusions. We also conducted Spearman correlations to better describe the direction of the 722 
relationship between environmental factors and soil biodiversity and services. We also 723 
correlated all soil biodiversity and services attributes looking for potential trade-offs using 724 
Spearman rank correlations. All the analyses in this section are non-parametric, and are 725 
especially recommended when dealing with both linear and non-linear relationships. Analyses 726 
were done at the sample level to account for within-location variation in soil properties, 727 
biodiversity and services.  728 

Global hotspots of soil biodiversity and services 729 

We used spatially explicit random forest models to predict the distribution of each soil 730 
biodiversity and ecosystem service variable. We were able to do these spatial analyses for 731 
three main reasons: (1) the high-quality standardized biodiversity and ecosystem service 732 
dataset wherein biodiversity and services are measured for the same samples, and analyzed 733 
using the same protocols; (2) biodiversity and ecosystem services were highly correlated with 734 
key environmental factors at the global scale (Extended Data Figs. 2-3); and (3) the large 735 
gradient of environmental conditions in our global dataset covers a large portion (61.6% based 736 
on a Mahalanobis analysis) of the large scale environmental variability of the planet. Note that 737 
we further spatially constrained our analyses to exclude all environmental outliers 22,80. 738 

To map each soil biodiversity and ecosystem service variable we used spatially explicit 739 
random forest models. For that, we used ArcGIS Pro that estimates random forest models by 740 
using an adaptation of the random forest algorithm (a supervised machine learning regression 741 
approach) proposed by Breiman et al. 74,81,82. Forest-based regressions were trained based 742 
on 90% of the dataset, the remaining 10% of the dataset were used for validation purposes. 743 
Regression training and validation parameters are given in Supplementary Tables 5 (for Alpha 744 
diversity and Community dissimilarity) and 6 (for Ecosystem services). The fitted prediction 745 
model was then used to predict the unknown space using a prediction dataset that included 746 
all environmental explanatory factors i.e., elevation, carbon, pH, fine texture, mean annual 747 
temperature and precipitation, temperature and precipitation seasonality, forest, grassland, 748 
shrubland. In the case of the analyses related to the ecosystem services, carbon was excluded 749 
from all the models. All models were fitted using 1000 runs for validation and fitting. Prior to 750 
prediction all variables included in the dataset and the predictors were resampled to 0.25 751 
degrees using an average estimator and scaled. All predictions were made using a 0.25x0.25 752 
deg. pixel size. All environmental variables used for spatial projection are listed in 753 
Supplementary Table 14. 754 

Global hotspots were then calculated using a Getis-Ord Gi* spatial clustering method 83–85. 755 
The Getis-Ord Gi* statistic was calculated for each location (0.25x0.25 deg. pixel) in the 756 



 

dataset. The resulting z-scores were used to estimate if a given location has statistically high 757 
or low values and if these values are spatially clustered. This is done by assessing each 758 
location within the context of neighboring locations. Statistically significant positive z-scores 759 
indicate clustering of high values (hot spot) and statistically significant negative z-scores the 760 
clustering of low values (cold spot). Values for classifying hotspots (positive z-scores) for each 761 
variable were taken from the 99% confidence interval. Getis-Ord allows the use of the False 762 
Discovery Rate (FDR) correction, which was also applied here, and adjusts the statistical 763 
significance of a hot-spot detection to account for multiple testing (with a confidence level of 764 
0.95) and spatial dependency 86. This analysis resulted in a hotspot map for each combination, 765 
i.e., five hotspot maps for alpha diversity, five for community dissimilarity, and six for 766 
ecosystem services (Extended Data Figs. 4 and 5). We then overlayed the maps for each 767 
ecological dimension (i.e., by summing the hotspot maps for each variable in each ecological 768 
dimension: alpha diversity, community dissimilarity, and ecosystem services) to obtain a 769 
global representation of soil biodiversity hotspots, where a high value corresponds to a 770 
concentration of hotspots across multiple taxa or ecosystem services (Fig. 1A, B, and C) 771 

Spatial uncertainty estimations 772 

One of the difficulties of performing prediction of response variables using a new input dataset 773 
is the fact that the new input environmental values might differ substantially from values used 774 
to estimate the models. Therefore, estimating uncertainties on the environmental coverage of 775 
the datasets as well as the estimations of both biodiversity and ecosystem services is a 776 
complex but necessary requirement in such scenario modelling approaches 87. For this, we 777 
have implemented a two-stage approach to tackle both the assessment of the environmental 778 
representation of the soil biodiversity and ecosystem services dataset used and the 779 
uncertainty related to the estimation of each variable or group of variables. Regarding the first, 780 
we calculated the Mahalanobis distance in multidimensional space (here considering the 781 
twelve dimensions given by the environmental variables used for modelling (i.e., elevation, 782 
carbon, nitrogen, pH, fine texture, mean annual temperature and precipitation, temperature 783 
and precipitation seasonality, forest, grassland, shrubland) and centered on the known 784 
distribution given by the characteristics, for the same environmental variables, of the soil 785 
biodiversity and ecosystem service dataset. This analysis calculates the distance of any point 786 
in space to the statistical center, given by the multivariate mean (considering all environmental 787 
variables used) of the known distribution. It is often used to detect outliers in point cloud 788 
distributions that are assumed to follow a multivariate Normal distribution 80,88. The 789 
Mahalanobis distance follows a Chi-squared distribution with d degrees of freedom, where d 790 
is the dimension of the multidimensional space (d = 12 in our case). Environmental outliers 791 
were estimated for a Chi-square of 0.9 (areas in grey in Supplementary Fig. 5). 792 

Although this distance is an informative measure of how close a new data point is to the 793 
distribution of points in space used to estimate each model, we used a second measure to 794 
assess the spatial uncertainty of the estimated values for each model. In order to do this 795 
analysis, for each soil biodiversity and ecosystem service variable, we calculated 1000 random 796 
iterations of each random forest model and estimated the upper and lower 25% quantile of the 797 
distribution of values. We then evaluated uncertainty as the difference between the upper and 798 
the lower level of the iteration space for each individual variable. An average representation 799 
for each dimension is given in Supplementary Fig. 5. 800 

Projections of soil biodiversity and ecosystem services under global change scenarios 801 



 

For the projections of soil biodiversity and ecosystem services, we used the available datasets 802 
from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 89 and from the land-803 
use Model Intercomparison Project (LUMIP)90 both activities from the Intergovernmental Panel 804 
for Climate Change (IPCC). The selection of scenarios followed the protocol laid out by 91. 805 

In terms of climate change projections, we used a bias-corrected future projections dataset for 806 
both precipitation and temperature related variables 89. We considered three Representative 807 
Concentration Pathways RCP2.6, RCP6.0, and RCP8.5 89 with forcing data from three 808 
different general circulation models, the IPSL-cm5a-lr, gfdl-esm2m, and noresm1-m 92. For 809 
land-use projections, we used the dataset provided by the land-use Harmonized v2.0 project 810 
(http://luh.umd.edu/) 28,93,94. This dataset was produced in the context of the World Climate 811 
Research Program Coupled Model Intercomparison Project 6 (CMIP6) 28,45,95,96 and contains 812 
a harmonized set of land-use scenarios that are consistent between historical reconstructions 813 
and future projections. These modeled projections reproduce annual land-use reconstructions 814 
for different integrated assessment models (IAMs) and shared socioeconomic pathways (SSP, 815 
from 2015 to 2100) at 0.25 degrees resolution, which was developed and widely used to 816 
support future biodiversity projections 97,98. These shared socioeconomic pathways represent 817 
a range of plausible futures based on different socioeconomic challenges for climate change 818 
mitigation (low in SSP1 and SSP 4; high in SSP3 and SSP5), and potential challenges for 819 
adaptation (low in SSP1 and SSP5; high in SSP3 and SSP4). While full descriptions of these 820 
pathways and scenarios are given in 28 we provide here a summary of the main characteristics 821 
(based on 45): 822 

SSP1: in SSP1 the world shifts gradually, but pervasively, toward a more sustainable path, 823 
with its focus on achieving the global development goals, increasing environmental 824 
awareness, and a gradual move toward less resource intensive societies. Currently, emerging 825 
economies have followed the resource-intensive development model of industrialized 826 
countries, but in SSP1, with the focus on equity, and the de-emphasis of economic growth as 827 
a goal in high-income countries, leads industrialized countries to support developing countries 828 
in their development goals, including green growth strategies, by providing access to human 829 
and financial resources and new technologies. 830 

SSP3: in SSP3 a resurgent nationalism, concerns about competitiveness and security, and 831 
regional conflicts push countries to increasingly focus on domestic or, at most, regional issues. 832 
International fragmentation and a world characterized by regional rivalry can already be seen 833 
in some of the current regional rivalries and conflicts, but contrasts with globalization trends in 834 
other areas. Regional conflict over territorial or national issues produces larger conflicts 835 
between major countries, giving rise to increasing antagonism between and within regional 836 
blocs, reducing support for international institutions and weakening progress toward the global 837 
development goals, particularly in some middle-income countries. 838 

SSP4: in SSP4 highly unequal investments in human capital, combined with increasing 839 
disparities in economic opportunity and political power, lead to increasing inequalities and 840 
stratification both across and within countries. Both across- and within-country inequality is 841 
assumed to arise from biased technology development, generally low and highly unequal 842 
investments in education resulting in increased restricted access, and reinforced wealth 843 
inequality. This pathway assumes that growth is substantially smaller than it is today, but does 844 
not assume that it is halted entirely. It also assumes an increased conflict over energy 845 



 

resources between consuming countries and producing countries, particularly if resources are 846 
further constrained. 847 

SSP5: in SSP5 there is a foreseen acceleration in globalization and rapid development of 848 
developing countries. The digital revolution enables an enhanced global discourse which may 849 
lead to a rapid rise in global institutions and promote the ability for global coordination. This 850 
pathway is driven by the economic success of industrialized and emerging economies to 851 
produce rapid technological progress and development of human capital as the path to 852 
sustainable development. Global markets are increasingly integrated, with the push for 853 
economic and social development coupled with the exploitation of abundant fossil fuel 854 
resources and the adoption of resource and energy intensive lifestyles around the world. All 855 
these factors lead to rapid growth of the global economy. There is the ability to effectively 856 
manage social and ecological systems, including by geo-engineering if necessary. While local 857 
environmental impacts are addressed effectively by technological solutions, there is relatively 858 
little effort to avoid potential global environmental impacts due to a perceived tradeoff with 859 
progress on economic development.  860 

All temporal changes (2070 minus 2015, using forecasting predictions) were calculated using 861 
2015 as a baseline to which all future predictions were compared. 862 
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Extended Data Figures 975 

Extended data Fig. 1 Results of Random Forest analysis to identify the main environmental 976 
factors associated with soil biodiversity and ecosystem services. Random Forest analyses 977 
were done using the rfPermute function of the R package with the same name. MSE = Mean 978 
Square Error. 979 
Extended data Fig. 2 Spearman correlations between environmental factors and soil 980 
biodiversity and ecosystem services. N in Supplementary Table S1. 981 
Extended data Fig. 3 Spearman correlations between soil biodiversity and ecosystem 982 
services. Total n-values in Supplementary Table S1. 983 
Extended data Fig. 4 Hotspot and coldspot maps for alpha diversity (left) and community 984 
dissimilarity (right). The Getis-Ord Gi* statistic was calculated for each location (0.25x0.25 deg 985 
pixel size) in the dataset 1–3. The resulting z-scores were used to estimate if a given location 986 
has statistically high or low values and if these values are spatially clustered. This is done by 987 
assessing each location within the context of neighboring locations. Statistically significant 988 
positive z-scores indicate clustering of high values (hotspot) and statistically significant 989 
negative z-scores the clustering of low values (coldspot). Values are plotted for both positive 990 
(hotspots) and negative (coldspots) 99%, 95%, and 90% confidence levels. 991 
Extended data Fig. 5 Hotspot and coldspot maps for ecosystem services: soil carbon, fertility, 992 
OM decomposition, pest control, mutualism, water retention. The Getis-Ord Gi* statistic was 993 
calculated for each location (0.25x0.25 deg pixel size) in the dataset 1–3. The resulting z-994 
scores were used to estimate if a given location has statistically high or low values and if these 995 
values are spatially clustered. This is done by assessing each location within the context of 996 
neighboring locations. Statistically significant positive z-scores indicate clustering of high 997 
values (hotspot) and statistically significant negative z-scores the clustering of low values 998 



 

(coldspot). Values are plotted for both positive (hotspots) and negative (coldspots) 99%, 95%, 999 
and 90% confidence levels. 1000 
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