
J. Math. Pures Appl. 163 (2022) 450–472
Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

www.elsevier.com/locate/matpur

Spectral multipliers in group algebras and noncommutative 

Calderón-Zygmund theory

Léonard Cadilhac a,∗, José M. Conde-Alonso b, Javier Parcet c

a Institut de Mathématiques de Jussieu, Sorbonne Université, 4 place de Jussieu, 75252 Paris Cedex 05, 
France
b Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
c Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera 
13-15, 28049, Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 November 2021
Available online 16 May 2022

MSC:
primary 42B20
secondary 46L52, 42B15

Keywords:
Noncommutative Lp-spaces
Singular integrals
Fourier and Schur multipliers
Nondoubling measures

In this paper we solve three problems in noncommutative harmonic analysis which 
are related to endpoint inequalities for singular integrals. In first place, we prove 
that an L2-form of Hörmander’s kernel condition suffices for the weak type (1, 1)
of Calderón-Zygmund operators acting on matrix-valued functions. To that end, we 
introduce an improved CZ decomposition for martingale filtrations in von Neumann 
algebras, and apply a very simple unconventional argument which notably avoids 
pseudolocalization. In second place, we establish as well the weak L1 endpoint for 
matrix-valued CZ operators over nondoubling measures of polynomial growth, in the 
line of the work of Tolsa and Nazarov/Treil/Volberg. The above results are valid for 
other von Neumann algebras and solve in the positive two open problems formulated 
in 2009. An even more interesting problem is the lack of L1 endpoint inequalities 
for singular Fourier and Schur multipliers over nonabelian groups. Given a locally 
compact group G equipped with a conditionally negative length ψ : G → R+, we 
prove that Herz-Schur multipliers with symbol m ◦ψ satisfying a Mikhlin condition 
in terms of the ψ-cocycle dimension are of weak type (1, 1). Our result extends to 
Fourier multipliers for amenable groups and imposes sharp regularity conditions on 
the symbol. The proof crucially combines our new CZ methods with novel forms 
of recent transference techniques. This L1 endpoint gives a very much expected 
inequality which complements the L∞ → BMO estimates proved in 2014 by Junge, 
Mei and Parcet.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans ce papier, on résout trois problèmes d’analyse harmonique non-commutative 
qui sont liés aux inégalités limites pour les intégrales singulières. Premièrement, on 
démontre qu’une condition d’intégrabilité L2 de type Hörmander suffit pour obtenir 
l’inégalité de type (1, 1) faible pour les opérateurs de Calderón-Zygmund agissant 
sur des fonctions à valeurs matricielles. Pour cela, on définit une décomposition de 
CZ améliorée pour des filtrations non-commutatives et on applique un argument 
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non conventionnel mais simple qui permet notamment d’éviter l’usage de la 
pseudo-localisation. Par la suite, on établit le même type de résultat pour des 
mesures non doublantes à croissance polynomiale dans la lignée de travaux de 
Tolsa/Treil/Volberg. Les résultats ci-dessus restent vrais pour des fonctions à valeurs 
dans d’autres algèbres de von Neumann et répondent positivement à deux questions 
posées en 2009. Un problème plus intéressant encore est le manque d’inégalité 
limite dans L1 pour les multiplicateurs de Fourier et de Schur singuliers sur les 
groupes non-abéliens. Etant donné un groupe discret G équipé d’une longueur 
conditionnellement négative ψ : G → R+, on démontre que les multiplicateurs 
de Herz-Schur associés à un symbole de la forme m ◦ ψ satisfaisant une condition 
de Mikhlin en terme de la dimension de cocycle de ψ sont de type (1, 1) faible. Ce 
résultat s’étend aux multiplicateurs de Fourier sur les groupes moyennables et fait 
intervenir des conditions de régularité optimales. La preuve combine de nouvelles 
techniques d’intégrales singulières et de transfert. Cette inégalité limite dans L1
donne un complément attendu aux résultats L∞ → BMO obtenus pas Junge, Mei 
et Parcet en 2014.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction

Fourier multipliers in group von Neumann algebras were early recognized by Haagerup as a key tool to 
reveal the geometry of these algebras via approximation properties [9,11,16,17]. The Lp theory has provided 
in the last decade new rigidity theorems via Fourier and Schur approximation [12,27,39] and extensions of 
the Hörmander-Mikhlin multiplier theorem with a broad interpretation of tangent spaces for nonabelian 
groups in terms of their cohomology [15,22,23,39]. In 2010, at an early stage in the typing process of [22], 
Marius Junge already formulated the problem of establishing weak type L1 bounds for Mikhlin multipliers 
in group von Neumann algebras. This natural question was appropriate since a noncommutative form of 
Calderón-Zygmund theory was launched in 2009, appearing as the next natural step after the development 
of operator space theory and noncommutative martingale inequalities. Unfortunately, the first contribution 
in this direction [37] has been so far the only one to establish significantly new weak L1 endpoint inequalities 
for noncommutative singular integrals. The main result in [22] was the L∞ → BMO endpoint inequality for 
Mikhlin multipliers in discrete group von Neumann algebras. Both the Mikhlin condition and the BMO space 
are encoded in terms of a conditionally negative length ψ : G → R+. Before that, the Lp-boundedness of 
Fourier multipliers in group algebras was widely unexplored up to isolated contributions. Later connections 
with rigidity, geometric group theory or noncommutative geometry were found in [15,23,39] with a crucial 
contribution of noncommutative CZ theory. In this paper, we shall develop stronger Calderón-Zygmund 
methods to establish weak L1 endpoints for Mikhlin multipliers and solve two further open problems in the 
process.

Beyond the strong connection with Fourier analysis in group von Neumann algebras, the theory of non-
commutative CZ operators immediately showed a great versatility to solve problems in other areas. The main 
result in [37] —CZ operators are of weak type (1, 1) when acting on Euclidean matrix-valued functions— 
was the key tool for the recent solution of the Nazarov-Peller conjecture [4], a strengthening in turn of 
the celebrated solution of the Krein conjecture [43] on operator Lipschitz estimates. In a different direc-
tion, pseudodifferential operators in noncommutative tori or the Heisenberg-Weyl algebra play a key role in 
Connes’ noncommutative geometry. Lp-bounds for their commutative analogs are crucial in PDE and math-
ematical physics, but their proof requires CZ methods. This program was completed in the quantum realm 
for general quantum Euclidean spaces in [14], which involved the first CZ results for a fully noncommutative 
algebra. Other algebraic tools led to a CZ theory for general von Neumann algebras in [24]. The theory has 
developed rapidly in further directions over the last decade. Other interesting results and applications can 
be found in [3,5,19,20,25,31,50,51] and the references therein.

http://creativecommons.org/licenses/by-nc-nd/4.0/


452 L. Cadilhac et al. / J. Math. Pures Appl. 163 (2022) 450–472
The proof of the main inequality in [37] is extremely technical. After [4], it became a challenge to find 
a simpler argument which culminated in [1], where the original approach was significantly streamlined. In 
spite of that, the so-called pseudolocalization theorem was still unavoidable. This has been the fundamental 
obstruction to solve problems i) and ii) below, originally formulated in [37, Remarks 5.5 and 5.6]. In this 
paper, before considering Fourier and Schur multipliers, we shall need a new and much simpler approach to 
solve both of them:

i) Kernel regularity. The inequality

sup
y1,y2∈Rn

∫
|x−y1|>2|y1−y2|

∣∣k(x, y1) − k(x, y2)
∣∣ dx < ∞

is known as Hörmander’s integral condition for the kernel k(x, y). When the associated CZ operator 
Tk is L2-bounded, this condition is best known to imply the weak L1 boundedness of Tk and it can be 
found in almost any book on Euclidean harmonic analysis over the last 50 years. Compared to other 
regularity assumptions like the gradient or Lipschitz conditions it incorporates fundamental singular 
integral operators, prominently Hörmander-Mikhlin multipliers. In the context of operator-valued func-
tions, involved techniques from [37] or even in the simpler proof from [1] forced one to impose Lipschitz 
regularity on the CZ kernel. It was left as an open problem to decide whether it is possible to weaken 
the kernel regularity. We shall get an L2-form of Hörmander’s condition in Theorem A and we shall 
discuss the possible failure of Hormander’s optimal condition in this setting.

ii) Nondoubling measures. Calderón-Zygmund methods exploit the relation between metric and measure 
in the underlying space. This is particularly well understood when the measure μ is doubling i.e. when 
there exist α > 1 and β > 0 such that μ(αB) ≤ βμ(B) for every ball B in the given metric. Strong 
applications in geometric measure theory [30,35,47–49] are intimately connected with a CZ theory for 
nondoubling measures of polynomial growth: μ(B) is just dominated up to a constant by a fixed power of 
its radius. It is definitely interesting to investigate a matrix-valued CZ theory for nondoubling measures 
and explore its applications. All our attempts to prove nondoubling forms of pseudolocalization —the 
technique from [1,37]— failed for several years and it seems highly difficult to decide whether it holds or 
not. We shall overcome this difficulty in Theorem B with our new CZ tools and a nonregular filtration 
from [8].

Let (Ω, μ) be either the d-dimensional Euclidean space with the Lebesgue measure or with other measure 
μ of polynomial growth, as described above. Let Tk be a CZ operator with kernel k defined on (Ω, μ). We 
may extend it to matrix-valued functions f : Ω → Mm by letting Tk(f) be the matrix (Tk(fij)) where fij(ω)
is the (i, j)-th entry of the m ×m matrix f(ω). The first goal of this paper is to prove the inequality

sup
λ>0

λ

∫
Ω

tr
{
|Tkf(ω)| > λ

}
dμ(ω) ≤ CΩ

∫
Ω

tr
(
|f(ω)|

)
dμ(ω) (WL1)

for certain constant CΩ independent of m and kernels k satisfying the weakest possible form of regularity. 
The strategy for (WL1) in [1,37] relied on a noncommutative martingale extension of CZ decomposition for 
scalar-valued functions. It looks as follows

f =

gλ︷ ︸︸ ︷∑
̂ pjfj∨kpk +

bλ︷ ︸︸ ︷∑
̂ pj(f − fj∨k)pk .
j,k∈Z j,k∈Z
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Here, Ẑ = Z ∪ {∞} and fj = Ej(f) is the standard j-th dyadic conditional expectation. Moreover, the pj’s 
are a noncommutative analog of the sets where fj > λ but fj−� ≤ λ for every � ∈ Z+. In the commutative 
case m = 1, if we consider the λ-level set for the dyadic maximal function Lλ = {Mdf > λ}, pj is 
nothing but the union of maximal dyadic subcubes of Lλ with side-length 2−j and p∞ plays the role of 
Rd \ Lλ = {Mdf ≤ λ}.

Note that pjpk = 0 for j �= k, but it does not kill the off-diagonal elements in the noncommutative case 
m > 1. The off-diagonal terms are harder to deal with than the diagonal ones. In the above decomposition, 
the off-diagonal terms for the good part gλ behave surprisingly worse than those for bλ. For reasons we shall 
omit, the estimate of Tk(gλ,off) required to have a precise knowledge of the L2-rate of decay of Tkh away 
from supph. Roughly speaking, given a norm 1 function h ∈ L2(Rd) with supph = Σ compact, we need∫

R+

( ∫
Rd\δΣ

|Tkh(ω)|2 dμ(ω)
) 1

2
dδ < ∞.

This pseudolocalization principle shows that the L2-mass of Tkh is somehow concentrated around supph

and is a fundamental obstruction to solve the above mentioned problems. Pseudolocalization was success-
fully proved in [37] with exponential decay —[1] gives a simpler proof— for the Lebesgue measure (or any 
other doubling measure) under the Lipschitz kernel condition, much stronger than the Hörmander integral 
condition. As explained in [37], the relation between pseudolocalization and the T1 theorem —for which 
one needs Lipschitz regularity or similar— makes impossible to weaken the kernel assumptions substan-
tially when following that approach. In addition, it is still unknown whether pseudolocalization holds for 
nondoubling measures.

Our first contribution is a new CZ decomposition which circumvents the pseudolocalization technique 
and still yields L1 endpoints for matrix-valued functions. The solution for doubling measures is surprisingly 
simple, just replace j ∨ k = max{j, k} by the minimum j ∧ k. The key advantage is that pjfj∧kpk = 0 for 
j �= k:

f = qfq +
∑
j∈Z

pjfjpj︸ ︷︷ ︸
New gλ

+ 1
2
∑
j∈Z

pj(f − fj)(qj−1 + qj) + (qj−1 + qj)(f − fj)pj︸ ︷︷ ︸
New bλ

, (CZD)

where qj is a noncommutative form of the set of points whose dyadic ancestor Q of side-length 2−j satisfies 
Q � Lλ. This eliminates off-diagonal terms in gλ and thereby pseudolocalization. The difficulty —faced in 
the preparation of [37], but never solved— is to prove (WL1) using this new form of the bad part bλ. It 
does not follow from canonical adaptations of classical arguments and requires an unconventional new idea 
which works for an L2-form of Hormander’s condition.

Theorem A. Let Tk be an L2-bounded CZ operator on (Rd, dx) with

sup
Q dyadic

∑
j≥1

sup
y∈Q

(
2jd�(Q)d

∫
2j�(Q)≤|x−cQ|≤2j+1�(Q)

∣∣k(x, y) − k(x, cQ)
∣∣2 dx) 1

2
< ∞.

Then, the inequality (WL1) holds up to a dimensional constant Cd which is independent of m.

Our kernel condition is considerably weaker than Lipschitz regularity and close enough to Hörmander’s 
condition so as to include the class of Hörmander-Mikhlin multipliers. The latter are important examples of 
singular integrals which could not be included in [1,37]. Our proof is also much simpler. A slightly less flexible 
kernel condition has been independently found and announced in [18], but the proof was omitted since their 
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argument is parallel to ours and based on our techniques: (CZD) and the unconventional estimate alluded 
above, both of which we communicated to the authors. (They also used these ideas to obtain interesting 
results for maximal singular integrals.) As we shall discuss, it is very unclear whether one can replace our 
condition by Hörmander’s integral condition.

The nonhomogeneous problem entails additional difficulties. First, the classical arguments for L1 end-
points of nondoubling CZ operators rely either on approximation of measures [34] or on a suitable ‘centered’ 
CZ decomposition [46], as opposed to dyadic. There are relevant obstructions to transfer either of them to 
the noncommutative setting. Second, although the former can be remedied by using the dyadic-like con-
struction given in [8], pseudolocalization arguments are not available for nondoubling measures. And even 
if they were, the approach from [1,37] requires to take centered dilations of cubes which respect the measur-
ability in the dyadic filtration. This cannot work in the nondoubling setting because of the necessary lack 
of regularity of any filtration that one can construct. We solve this with a CZ decomposition for nonregular 
filtrations.

Our decomposition in the nondoubling framework necessarily deviates from (CZD) and will be made 
explicit in the body of the paper. We should recall though some terminology and results from [8], to be 
expanded on later. Let (Ω, μ) be Rd equipped with a measure μ of n-polynomial growth: μ(B(x, r)) ≤ Cμr

n

for μ-almost every x ∈ supp(μ) and every ball B(x, r) centered at x with radius r. A ball B is called (α, β)-
doubling when μ(αB) ≤ βμ(B). The main result in [8] is the construction of a weak-∗ dense two-sided 
(nonregular) martingale filtration (Σk)k∈Z of atomic σ-algebras of supp(μ) enjoying several key properties. 
One of these is the existence of α, β ∈ R+ such that, for every atom Q in 

⋃
k Σk, there exists an (α, β)-

doubling ball BQ which is comparable to the atom: BQ ⊂ Q ⊂ αBQ. Theorem B below solves problem 
ii).

Theorem B. Let Tk be an L2-bounded CZ operator on (Rd, μ) with

– |k(x, y)| � 1
|x− y|n ,

– sup
Q atom

∑
j≥1

sup
y∈BQ

(
μ(CQ,j) 

∫
CQ,j

∣∣k(x, y) − k(x, cBQ
)
∣∣2 dμ(x)

) 1
2
< ∞,

for CQ,j = {2jr(BQ) ≤ |x − cBQ
| ≤ 2j+1r(BQ)}. Then, (WL1) holds with CΩ independent of m.

We now switch to Fourier and Schur multipliers. For simplicity, we always consider a discrete group 
G though the picture described below extends to locally compact groups. This setting will enable us to 
illustrate the novel ideas of the paper without having to deal with too many technical difficulties. Let λ be 
the left-regular representation of G. In other words, λ(g) is the unitary (λ(g)ϕ)(h) = ϕ(g−1h) on �2(G). 
The group von Neumann algebra L(G) is the weak-∗ closure in B(�2(G)) of the linear span {λ(g) : g ∈ G}. 
Any element of L(G) admits a Fourier expansion of the form

f =
∑
g∈G

f̂(g)λ(g) with f̂ ∈ �2(G).

The canonical trace τ on L(G) is defined by τ(f) = f̂(e). This allows one to define the corresponding 
noncommutative Lp and weak Lp spaces on L(G). We refer to [23,42] for precise definitions. If G is abelian, 
recall that Lp(L(G)) is just the natural Lp space on the dual group of G. Given a bounded symbol M :
G → C, the Fourier multiplier associated to it is the linear map which intertwines multiplication via the 
Fourier transform
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TMf =
∑
g∈G

M(g)f̂(g) so that T̂Mf(g) = M(g)f̂(g).

According to Schoenberg’s theorem, a length ψ : G → R+ is conditionally negative exactly when the 
map λ(g) �→ exp(−tψ(g))λ(g) defines a Markov semigroup on L(G). Its infinitesimal generator may be 
understood as a Laplacian Aψ : λ(g) �→ ψ(g)λ(g) on the group algebra of G. Spectral multipliers are 
Fourier multipliers associated to symbols of the form m ◦ψ for a conditionally negative length ψ and some 
m : R+ → C. This class of multipliers is specially relevant since they arise by functional calculus on the 
Laplacian Aψ

Tm◦ψ = m(Aψ).

Hörmander-Mikhlin criteria for spectral multipliers have been deeply investigated in the remarkable work 
of Cowling, Müller, Ricci, Stein and their coauthors on nilpotent groups [29,32,33,45]. Here we take the 
dual approach initiated by Haagerup and investigate analogous criteria on group von Neumann algebras. 
The information carried by conditionally negative lengths is rich enough to link Fourier multipliers in group 
algebras with Euclidean harmonic analysis. The main discovery in [22] was that a Hörmander-Mikhlin theory 
in group algebras can be deduced from Euclidean harmonic analysis, noncommutative Calderón-Zygmund 
theory and basic group cohomology. This line has been further investigated in [15,23,39], but none of these 
works provides any information on weak type L1 estimates for Mikhlin multipliers in group von Neumann 
algebras. On the other hand, let Sp(G) be the Schatten p-class of compact operators on the Hilbert space 
�2(G). Given a Fourier symbol M : G → C, the Herz-Schur multiplier SM is the linear map on S2(G)

SM (A) =
(
M(gh−1)Agh

)
.

Theorem C. Let G be a discrete group equipped with a n-dimensional conditionally negative length ψ : G →
R+. Let m : R+ → C be a Fourier symbol satisfying the Mikhlin condition in dimension n

∣∣∣ dk
dξk

m(ξ)
∣∣∣ ≤ Chm|ξ|−k for all ξ �= 0 and 0 ≤ k ≤

[n
2

]
+ 1.

Then, the following weak type (1, 1) inequalities hold for every i ≥ 1:

i) Sm◦ψ ⊗ IdMi
extends to a bounded map S1(L2(G) ⊗ �2(i)) → S1,∞(L2(G) ⊗ �2(i)).

ii) Tm◦ψ : L1(L(G) ⊗Mi) → L1,∞(L(G) ⊗Mi) is also bounded for G amenable.

Furthermore, the norm of the aforementioned operators depends only on Chm and hence does not depend on 
i. And in particular, the maps Sm◦ψ : S1(G) → S1,∞(G) and Tm◦ψ : L1(L(G)) → L1,∞(L(G)) are bounded.

The dimension of the conditionally negative length ψ is the dimension of the only cocycle β for which 
ψ(g) = |β(g)|2. Precise definitions will be given in the body of the paper. Theorem C establishes a very 
much expected L1 endpoint inequality for spectral multipliers in group von Neumann algebras, with sharp 
regularity order in terms of dimψ as it follows from G = Rn and ψ(ξ) = |ξ|2 [22, Theorem C]. The proof 
presented here requires weak L1 forms of some results of independent interest, which include transference 
between Fourier and Schur multipliers as well as their relation with twisted Fourier multipliers. It also 
involves a generalization of de Leeuw’s approximation method together with our new CZ type results 
described above. Theorem C also yields an L1 endpoint for the Littlewood-Paley theorem in matrix and 
group algebras.
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The rest of the paper is divided into three sections. In Section 1, we shall present the new CZ decompo-
sitions for regular and nonregular martingale filtrations. The proofs of Theorems A and B will be presented 
in Section 2, while Fourier and Schur multipliers will be investigated in Section 3.

1. Calderón-Zygmund decompositions

A noncommutative measure space (M, τ) is a pair formed by a semifinite von Neumann algebra M
equipped with a normal faithful normal trace τ . The reader unfamiliar with noncommutative integration 
may replace M by the matrix algebra B(�2) of bounded linear operators in �2 with its natural trace tr. 
A martingale filtration {Mj}j∈N of M is a nested family of von Neumann subalgebras Mj whose union is 
weak-∗ dense in M. Assume that for every j ≥ 1, there is a normal conditional expectation Ej : M → Mj . 
A noncommutative martingale with respect to the above filtration is a sequence (fj)j≥1 in M such that 
Ej(fk) = fj for all j ≤ k. We refer to [41] for an overview of the theory of noncommutative Lp-martingale 
inequalities. We will just need the so-called Cuculescu construction from [10]. It is a noncommutative form 
of the weak type (1, 1) inequality for the Doob maximal function. Namely, given f ∈ L1(M)+ and λ > 0
there exists a nonincreasing sequence of projections {qj = qj(f, λ)}j∈N with q0 = 1M such that the following 
properties hold:

A. qj ∈ Mj for each j ∈ N.
B. qjEj(f)qj ≤ λqj for each j ∈ N.
C. qj commutes with qj−1Ej(f)qj−1 for each j ∈ N.
D. If q =

∧
j∈N

qj , then qfq ≤ λq and λ τ(1M − q) ≤ ‖f‖1.

The proof of Cuculescu’s theorem was originally formulated over noncommutative probability spaces, but 
the same argument applies for non necessarily finite von Neumann algebras. We refer to [37,38] for a more 
in depth discussion.

1.1. Regular martingales

The martingale filtrations above are called regular when there exists an absolute constant creg > 0
satisfying Ejf ≤ creg Ej−1f for every f ∈ M+. We may now introduce our new decomposition of CZ 
type for a regular filtration {Mj}j∈N . Namely, given f ∈ L1(M)+ and λ > 0, consider the Cuculescu’s
projections qj = qj(f, λ). Define pj = qj−1 − qj ∈ Mj for j ≥ 1, so that∑

j≥1
pj = 1M − q.

Writing fj for Ej(f), this readily gives

f = qfq +
∑
j,k≥1

pjfpk +
∑
j≥1

pjfq +
∑
k≥1

qfpk

= qfq +
∑
j,k≥1

pjfj∧kpk +
∑
j≥1

pjfjq +
∑
k≥1

qfkpk

+
∑
j,k≥1

pj(f − fj∧k)pk +
∑
j≥1

pj(f − fj)q +
∑
k≥1

q(f − fk)pk.

Cuculescu’s commutation relations give
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– pjfjq = pjqj−1fjqj−1q = 0 for all j ≥ 1.
– pjfj∧kpk = pjqj∧k−1fj∧kqj∧k−1pk = 0 for all j �= k.

In particular, the above decomposition of f simplifies as follows

f = qfq +
∑
j≥1

pjfjpj +
∑
j≥1

pj(f − fj)pj (1.1)

+
∑
j≥1

pj(f − fj)
[
q +

∑
k>j

pk

]
+

∑
k≥1

[
q +

∑
j>k

pj

]
(f − fk)pk

= qfq +
∑
j≥1

pjfjpj︸ ︷︷ ︸
g

+
∑
j≥1

pj(f − fj)pj︸ ︷︷ ︸
bd=

∑
j bd,j

+
∑
j≥1

pj(f − fj)qj + qj(f − fj)pj︸ ︷︷ ︸
boff=

∑
j boff,j︸ ︷︷ ︸

b

.

A straightforward reordering gives the decomposition (CZD) alluded in the Introduction. The above decom-
position recovers the standard dyadic CZ decomposition for classical functions, since boff vanishes in that 
case by commutativity. Note as well that boff =

∑
j≥1 pjfqj + qjfpj by Cuculescu’s commutation relations.

Lemma 1.1. The regular decomposition (1.1) satisfies:

– ‖g‖1 ≤ ‖f‖1 and ‖g‖∞ ≤ cregλ,

–
∑
j≥1

‖bd,j‖1 ≤ 2‖f‖1 and Ej(bd,j) = Ej(boff,j) = 0.

Proof. These properties are straightforward and can be found in [1,37], the only novelty here is the mean 0 
of boff,j which is trivial. Let us point out where the regularity of the filtration intervenes: since Cuculescu’s 
construction provides an estimate for pjfj−1pj and not pjfjpj , the estimate for ‖g‖∞ follows from:

pjfjpj ≤ cregpjfj−1pj ≤ cregpjλ. �
1.2. Nonregular martingales

We now turn our attention to nonregular martingales. The main difficulty here is the lack of an L∞
estimate for the good part of the function, which requires regularity. The solution, as first introduced in 
[28] and then adapted to the study of CZ operators in [8], is to modify the regular CZ decomposition by 
adding and subtracting Ej−1(pjfpj) instead of pjfjqj . The resulting decomposition is

f = qfq +
∑
j≥1

Ej−1(pjfpj)︸ ︷︷ ︸
g

+
∑
j≥1

pjfpj − Ej−1(pjfpj)︸ ︷︷ ︸
bd=

∑
j bd,j

+
∑
j≥1

pjfqj + qjfpj︸ ︷︷ ︸
boff=

∑
j boff,j︸ ︷︷ ︸

b

. (1.2)

This does not yield a uniform estimate, but an L2 substitute is enough for most purposes.

Lemma 1.2. The nonregular decomposition (1.2) satisfies:

– ‖g‖1 ≤ ‖f‖1 and ‖g‖2
2 ≤ 6λ‖f‖1,
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–
∑
j≥1

‖bd,j‖1 ≤ 2‖f‖1 and Ej(bd,j) = Ej(boff,j) = 0.

Proof. The results for bd and boff are identical to the ones in the regular case, because regularity plays no 
role in their proof. Since the L1-estimate for g is trivial, we are left with the L2 estimate. Since qj commutes 
with qj−1fjqj−1,

Ej−1(pjfpj) = Ej−1(pjfjpj) = qj−1fj−1qj−1 − Ej−1(qjfjqj).

In particular, we get

∥∥∥∑
j≥1

Ej−1(pjfjpj)
∥∥∥2

2
≤ 2

(∥∥∥∑
j≥1

qjfjqj − Ej−1(qjfjqj)
∥∥∥2

2︸ ︷︷ ︸
A

+
∥∥∥∑

j≥1
qjfjqj − qj−1fj−1qj−1

∥∥∥2

2︸ ︷︷ ︸
B

)
.

As it was proved in [44, Lemma 3.4], we have that∥∥qjfjqj − Ej−1(qjfjqj)
∥∥2

2 ≤ 2
(∥∥qjfjqj∥∥2

2 −
∥∥qj−1fj−1qj−1‖2

2

)
+ 6λτ(qj−1fj−1qj−1 − qjfjqj).

Therefore, by orthogonality of martingale differences, summation over j gives

A =
∑
j≥1

∥∥qjfjqj − Ej−1(qjfjqj)
∥∥2

2 ≤ 2
∥∥qfq∥∥2

2 − 6λτ(qfq) ≤ 2λ‖f‖1

since qfq ≤ λq from [37, Section 4.1]. The telescopic sum in B easily yields that B ≤ λ‖f‖1. �
Remark 1.3. In the next sections we will derive consequences of the decompositions introduced above that 
will require some work. There is however an immediate application of Lemma 1.2 which is worth mentioning. 
Operators adapted to the underlying martingale structure such as the dyadic Hilbert transform and other 
Haar shifts can be shown to be of weak type (1, 1) —when acting on matrix-valued functions, with constants 
independent of the matrix size— under the natural assumptions on their symbols, as considered in [7]. The 
new decomposition makes the proof of the weak type estimates almost trivial for these operators. We omit 
the details.

2. Noncommutative Calderón-Zygmund operators

Let μ be a locally finite Radon measure on Ω = Rd and consider a noncommutative measure space 
(M, τ). Let us construct the tensor product von Neumann algebra A = L∞(Ω, μ)⊗̄M with its natural trace

ϕ(f) =
∫
Ω

τ(f(ω)) dμ(ω).

Elements in A may be identified with functions f : Ω → M such that ω �→ ‖f(ω)‖M is essentially bounded. 
Similarly, the space Lp(A) becomes the space of p-integrable vector-valued functions f : Ω → Lp(M)
with values in the noncommutative Lp space associated to M. As we did in the Introduction, we shall fix 
M = Mm with its canonical trace for concreteness, though all of our new results apply equally well to any 
noncommutative measure space (M, τ).

In this section, we shall consider kernels k : R2d \ {(x, y) : x = y} → C satisfying the regularity 
conditions imposed in Theorems A or B. Accordingly, we consider linear maps which admit the following 
integral representation for matrix-valued functions f : Ω → Mm
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Tkf(x) =
∫
Ω

k(x, y)f(y) dμ(y) for every x /∈ suppRd(f).

Here we write suppRd(f) = supp‖f‖Mm
to denote the Euclidean support of the function f , as opposed to 

its support as an operator affiliated to A. We shall also consider two-sided martingale filtrations {Aj}j∈Z
of the form

Aj = L∞(Ω,Σj , μ) ⊗ (Mm, tr),

where {Σj} is a nested family of atomic σ-algebras on Ω = Rd. We shall write Π(Σj) and Π(Σ) to denote the 
set of atoms in Σj and 

⋃
j Σj respectively. Eventually, we shall apply CZ decompositions at a fixed height λ

to elements f ∈ L1(A)+ with respect to the above filtration. By density considerations as in [37, Section 3], 
we may assume that suppRd(f) is compact and Cuculescu’s projections qj = 1A for all j ≤ mf,λ and some 
mf,λ ∈ Z. In other words, for fixed (f, λ) we will not use the full two-sided filtration, but a truncation from 
mf,λ. In fact, we may assume for simplicity that mf,λ = 0. This allows us to use Cuculescu’s construction in 
what follows as a black box. Due to the atomic nature of our filtrations, Cuculescu’s projection qj = qj(f, λ)
must be constant on each atom Q ∈ Π(Σj) and there must exist projections πQ, ξQ in Mm such that

qj =
∑

Q∈Π(Σj)

qQ =
∑

Q∈Π(Σj)

1Q ⊗ ξQ,

pj =
∑

Q∈Π(Σj)

pQ =
∑

Q∈Π(Σj)

1Q ⊗ πQ.

2.1. Doubling measures

Let μ be the d-dimensional Lebesgue measure. As will be evident from the proof, all our estimates hold 
whenever μ is any doubling measure. Let Tk be a CZ operator with kernel k as above. The filtration {Aj}j∈Z
that we use is the same that is used in the scalar valued case: the one generated by the dyadic system D . 
This can be defined as

D =
⋃
j∈Z

Dj =
⋃
j∈Z

{
2−j · [k1, k1 + 1) × [k2, k2 + 1) × . . . [kd, kd + 1) : (k1, . . . , kd) ∈ Zd

}
.

Let Σj = σ(Dj) so that Π(Σj) = Dj . By the translation invariance of the Lebesgue measure, the dyadic 
filtration is regular with constant 2d. Given f ∈ L1(A)+ compactly supported and λ > 0, we consider 
Cuculescu’s projections qj , pj and ξQ, πQ for Q ∈ Π(Σj). Define

ζ := 1A −
∨
j≥1

∨
Q∈Dj

15QπQ.

As explained in [1,37], the projection 1A − ζ represents an Euclidean dilation of the CZ maximal cubes of 
f at height λ, as will become clear from its role in the proof of the weak boundedness of Tk. We will need 
the following properties, whose proof can be found in [1, Lemma 3.4].

Lemma 2.1. The projection ζ satisfies

ϕ(1A − ζ) �
‖f‖L1(A)

λ
.

Moreover, we have ζ(x)pj(y) = pj(y)ζ(x) = 0 whenever y ∈ Q ∈ Dj and x ∈ 5Q.
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Proof of Theorem A. It suffices to show that

ϕ
{
|Tkf | > 7λ

}
�

‖f‖L1(A)

λ
, (2.1)

for f ∈ L1(A)+ with suppRd(f) compact. We write

Tkf = Tkg

+ (1 − ζ)Tkbd + ζTkbd(1 − ζ) + ζTkbdζ

+ (1 − ζ)Tkboff + ζTkboff(1 − ζ) + ζTkboffζ,

where f = g + bd + boff using Lemma 1.1 at height λ. Therefore, we can estimate

ϕ({|Tkf | > 7λ}) ≤ ϕ
{
|Tkg| > λ

}
+ ϕ

{
|(1 − ζ)Tkbd| > λ

}
+ ϕ

{
|ζTkbd(1 − ζ)| > λ

}
+ ϕ

{
|ζTkbdζ| > λ

}
+ ϕ

{
|(1 − ζ)Tkboff | > λ

}
+ ϕ

{
|ζTkboff(1 − ζ)| > λ

}
+ ϕ

{
|ζTkboffζ| > λ

}
� ϕ

{
|Tkg| > λ

}
+ ϕ

{
|ζTkbdζ| > λ

}
+ ϕ

{
|ζTkboffζ| > λ

}
+ λ−1‖f‖1

by Lemma 2.1 and Murray–von Neumann equivalence. The terms g and bd can be dealt with in a very 
similar way as in [1,37], just being careful enough to use Hörmander’s kernel condition instead of Lipschitz 
regularity for bd. We include the details for the sake of completeness.
A. Standard estimates. We clearly have

ϕ
{
|Tkg| > λ

}
≤ 1

λ2 ‖Tkg‖2
2 � 1

λ2 ‖g‖
2
2 � ‖g‖1

λ
≤ ‖f‖1

λ
,

as a consequence of Chebychev inequality, the L2 boundedness of Tk and the estimate ‖g‖∞ ≤ 2dλ from 
Lemma 1.1. To estimate the bd-term, we first rewrite the j-th diagonal term as a sum of its restrictions to 
dyadic cubes in Dj

bd =
∑
j≥1

pj(f − fj)pj =
∑
j≥1

∑
Q∈Dj

1Q ⊗ πQ(f − fQ)πQ =:
∑
j≥1

∑
Q∈Dj

bd,Q,

where

fQ = 1
|Q|

∫
Q

f(x) dx.

Observe that the above means that bd,Q = 1Qbd,j for Q ∈ Dj . Assume that we have fixed a cube Q ∈ Dj . 
Since suppRd(bd,Q) ⊂ Q, if x /∈ 5Q and cQ denotes the center of Q, then we can use the kernel representation 
and Ej(bd,Q) =

∫
bd,Q = 0 to get

ζ(x)Tkbd,Q(x)ζ(x) = ζ(x)
( ∫
Rd

k(x, y)bd,Q(y) dy
)
ζ(x)

= ζ(x)
(∫

Q

[k(x, y) − k(x, cQ)]bd,Q(y) dy
)
ζ(x).

On the other hand, if x ∈ 5Q we have ζ(x)Tkbd,Q(x)ζ(x) = 0 by Lemma 2.1. This gives
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ϕ
(
|ζTkbd,Qζ|

)
= ϕ

(
1(5Q)c |ζT (bd,Q)ζ|

)
≤

∫
(5Q)c

∫
Q

tr
∣∣[k(x, y) − k(x, cQ)]bd,Q(y)

∣∣ dydx
≤

∫
Q

tr |bd,Q(y)|
∫

(5Q)c

∣∣k(x, y) − k(x, cQ)
∣∣ dxdy � ‖bd,Q‖1 = ‖1Qbd,j‖1,

using Hörmander’s kernel condition (weaker than our hypothesis). Finally, Lemma 1.1 yields

ϕ
{
|ζTkbdζ| > λ

}
≤ 1

λ

∥∥ζTkbdζ
∥∥

1

≤ 1
λ

∑
j≥1

∑
Q∈Dj

∥∥ζTkbd,Qζ
∥∥

1

� 1
λ

∑
j≥1

∑
Q∈Dj

‖1Qbd,j‖1 = 1
λ

∑
j≥1

‖bd,j‖1 ≤ 2
λ
‖f‖1.

B. Nonstandard estimates. Recall the j-th term of boff

boff,j = pjfqj + qjfpj =: baoff,j + bboff,j .

By symmetry, we only deal with the first term in the right hand side. As before, for each Q ∈ Dj we define 
the operator baoff,Q = 1Qbaoff,j = πQfξQ and notice that suppRd(baoff,Q) ⊂ Q and 

∫
baoff,Q = 0. If x ∈ 5Q, then 

Lemma 2.1 gives once more that ζ(x)Tkb
a
off,Q(x)ζ(x) = 0, while for x /∈ 5Q we have

ζ(x)Tkb
a
off,Q(x)ζ(x) = ζ(x)

( ∫
Rd

k(x, y)baoff,Q(y) dy
)
ζ(x)

= ζ(x)
(∫

Q

[k(x, y) − k(x, cQ)]πQf(y)ξQ dy

︸ ︷︷ ︸
BQ(x)

)
ζ(x).

If we set KQ(x, y) = k(x, y) − k(x, cQ), this proves that

‖ζTkb
a
off,Qζ‖1 ≤ ‖1(5Q)cBQ‖1 (2.2)

≤
∫

(5Q)c

∥∥∥(∫
Q

|KQ(x, y)|2πQf(y)πQ dy
) 1

2
∥∥∥

1
dx

∥∥∥∫
Q

ξQf(y)ξQ dy
∥∥∥ 1

2

∞

≤
∫

(5Q)c

∥∥∥(∫
Q

|KQ(x, y)|2πQf(y)πQ dy
) 1

2
∥∥∥

2
dx tr(πQ) 1

2

∥∥∥∫
Q

ξQf(y)ξQ dy
∥∥∥ 1

2

∞
.

Letting CQ,� = {x : 2��(Q) ≤ |x − cQ| ≤ 2�+1�(Q)}, we may estimate∫
(5Q)c

∥∥∥(∫
Q

|KQ(x, y)|2πQf(y)πQ dy
) 1

2
∥∥∥

2
dx (2.3)

≤
∑
�≥1

∫ (∫
|KQ(x, y)|2 tr

(
πQf(y)πQ

)
dy

) 1
2
dx
CQ,� Q
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≤
∑
�≥1

|CQ,�|
1
2

( ∫
CQ,�×Q

|KQ(x, y)|2 tr
(
πQf(y)πQ

)
dxdy

) 1
2

≤
∑
�≥1

(
sup
y∈Q

|CQ,�|
∫

CQ,�

|KQ(x, y)|2 dx
) 1

2 tr
(∫

Q

πQf(y)πQ dy
) 1

2 � ϕ(1Qpjf) 1
2 ,

where the last inequality follows from the L2-Hörmander condition for the kernel given in the statement of 
Theorem A. Combining (2.2) and (2.3), we get the following estimate for the λ-level set of the off-diagonal 
terms

ϕ
{
|ζTkboffζ| > λ

}
≤ 1

λ

∥∥ζTkboffζ
∥∥

1

≤ 1
λ

∑
j≥1

∑
Q∈Dj

∥∥ζTk(baoff,Q + bboff,Q)ζ
∥∥

1

� 1
λ

∑
j≥1

∑
Q∈Dj

ϕ(1Qpjf) 1
2 tr(πQ) 1

2 |Q| 12λ 1
2

≤ 1
λ

(∑
j≥1

∑
Q∈Dj

ϕ(1Qpjf)
) 1

2
(
λ
∑
j≥1

∑
Q∈Dj

ϕ(1Qpj)
) 1

2

= 1
λ
ϕ
(
(1 − q)f

) 1
2
(
λϕ(1 − q)

) 1
2 ≤ 1

λ

√
‖f‖1

√
‖f‖1 = 1

λ
‖f‖1. �

Remark 2.2. Theorem A still holds true if we replace the Euclidean-Lebesguean space by any other metric 
measure space of homogeneous type. That is, the measure is doubling with respect to the given metric. To 
do that, it is enough to replace the dyadic filtration by the one generated by the so called Christ cubes [6], an 
alternative detailed construction can also be found in [21]. It is easy to see that all our estimates above can 
be adapted to this situation just as in the scalar-valued case. Similarly, we may replace the matrix-algebra 
(Mm, tr) by any other noncommutative measure space (M, τ) or scalar-valued kernels by kernels taking 
values in the center of M. Both of these generalizations are completely straightforward.

Remark 2.3. Note that

boff =
∑
j 	=k

pj(f − fj∨k)pk︸ ︷︷ ︸
Easy term

+ (1 − q)fq + qf(1 − q) +
∑
j 	=k

pjfj∨kpk︸ ︷︷ ︸
Former goff

.

Namely, the first term above can be easily bounded for Lipschitz kernels just following the argument in [1]. 
On the other hand, as it is known from [37], the second term is much harder to deal with and required 
pseudolocalization so far. The crucial novelty in our approach is to find a way to bound both terms together 
with less regularity for the kernel and a much simpler argument. The argument is quite unconventional in 
view of the classical CZ theory. After communicating it to Hong, it was also used in [18] to produce weak 
L1 endpoints for maximal truncations.

Remark 2.4. Recall that the Hörmander integral condition on k states that

sup
Q,y∈Q

∫
c

|KQ(x, y)| dx < ∞

(5Q)
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in the terminology used so far. It is the optimal condition that naturally appears in the classical scalar-
valued version of Theorem A and it is still open to decide whether or not it is sufficient in our operator-
valued setting. The L2-condition we assume in Theorem A is stronger and becomes crucial when estimating 
‖ζTkb

a
off,Qζ‖1 in (2.3). We found that adaptations of (2.2) and (2.3) assuming only L1 integrability of 

KQ fail due to subtle noncommutative pathologies. In fact, the general strategy which consists in proving 
that 

∑
Q ‖ζTkb

a
off,Qζ‖1 � ‖f‖1, using separately the integrability of each KQ would work (assuming the 

Hörmander condition) only if 
∑

Q ‖baoff,Q‖1 � ‖f‖1, which cannot be expected. Hence, this question remains 
fully open.

Remark 2.5. Another open problem related to our work above is to provide Calderón-Zygmund decompo-
sitions in fully noncommutative geometric settings and subsequently to establish weak type (1, 1) bounds 
for some version of singular integrals. Two possible candidates are quantum Euclidean spaces —for which 
good notions of distance and CZ operators were established in [14]— and the hyperfinite II1 factor, which 
is naturally equipped with a dyadic filtration.

2.2. Nondoubling measures

Let μ be a measure on Rd of n-polynomial growth. In other words, if B(x, r) denotes the ball centered at 
x with radius r in the Euclidean metric, then μ is a Radon measure and 0 < n ≤ d is an integer such that

μ(B(x, r)) ≤ Cμr
n

for all radii r > 0, μ-almost every x ∈ supp(μ) and some absolute constant Cμ. On the other hand, a fixed 
ball B is said to be (α, β)-doubling if μ(αB) ≤ βμ(B). Abundance of (α, β)-doubling balls is guaranteed 
for appropriate values of α and β under the growth condition above. In [8], the following construction of a 
filtration on Rd was introduced.

Theorem 2.6. Let μ be a measure of n-polynomial growth on Rd. Then, there are positive constants α, β > 100
and a two-sided filtration {Σk}k∈Z of atomic σ-algebras of supp(μ) that satisfy the following properties:

i) The σ-algebras Σk are increasingly nested.
ii)

⋃
k L∞(Rd, Σk, μ) is weak-∗ dense in L∞(μ).

iii) If Q ∈ Π(Σ), there exists an (α, β)-doubling ball BQ with BQ ⊂ Q ⊂ 28BQ.
iv) If x ∈ Q ∈ Π(Σ), then

R =
⋂

S∈Π(Σ)
S�Q

S ⇒
∫

αBR\56BQ

dμ(y)
|x− y|n �n,d,α,β 1.

Above, we have used the notation Π(Σ) to denote the set 
⋃

k∈Z Π(Σk) of all the atoms of the filtration 
{Σk}k∈Z.

Fix the measure μ, and the values α and β guaranteed by Theorem 2.6. On A = L∞(μ) ⊗ Mm, we 
consider the filtration {Aj}j∈Z generated by the filtration {Σj}j∈Z, as explained at the beginning of this 
section. Consider a CZ operator Tk with representation

Tkf(x) =
∫

k(x, y)f(y)dμ(y) for x /∈ suppRdf.
Rd
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As usual, we fix a compactly supported f ∈ L1(A)+ and fix λ > 0. Using Cuculescu’s projections for (f, λ)
we need once more an auxiliary projection, similar to the one that we used in the doubling case. We define

ζ := 1A −
∨
j≥1

∨
Q∈Π(Σj)

1αBQ
πQ.

Since BQ is (α, β)-doubling for all Q ∈ Π(Σ), we have a result similar to Lemma 2.1 and whose proof follows 
once again as in [1, Lemma 3.4]. More precisely, the above defined projection ζ satisfies the inequality

ϕ(1A − ζ) �
‖f‖L1(A)

λ
.

Moreover, we have ζ(x)pj(y) = pj(y)ζ(x) = 0 whenever y ∈ Q ∈ Π(Σj) and x ∈ αBQ.

Proof of Theorem B. Given (f, λ) as above and according to the properties of the projection ζ, we are 
reduced as in Theorem A to prove the following inequality for the different parts of the nondoubling CZ 
decomposition of f = g + bd + boff at level λ

ϕ
{
|Tkg| > λ

}
+ ϕ

{
|ζTkbdζ| > λ

}
+ ϕ

{
|ζTkboffζ| > λ

}
�

‖f‖L1(A)

λ
.

According to the inequality ‖g‖2
2 � λ‖f‖1 from Lemma 1.2, the first term above is estimated just as we did 

in Theorem A. The term ϕ({|ζTboffζ| > λ}) is also estimated as in the proof of Theorem A just replacing 
5Q by αBQ and using the coronas CQ,� = {x : 2�r(BQ) ≤ |x − cQ| ≤ 2�+1r(BQ)} defined in the statement 
of Theorem B. To estimate ϕ (|ζTbdζ| > λ), we write

bd =
∑
j≥1

pjfpj − Ej−1(pjfpj) =
∑
j≥1

∑
Q∈Π(Σj)

(
πQfπQ1Q − μ(Q)

μ(Q̂)
πQfQπQ1Q̂

)
=:

∑
j≥1

∑
Q∈Π(Σj)

bQ.

Above, Q̂ denotes the unique atom R ∈ Π(Σj−1) containing Q. If the filtration were the dyadic one, it 
would be that dyadic parent of Q. Let us work with one fixed Q ∈ Π(Σj). Notice that supp(bQ) ≤ 1Q̂πQ. 
We consider different situations:

– If x /∈ αBQ̂ we use the mean 0 of bQ to get

ζ(x)TkbQ(x)ζ(x) = ζ(x)
∫
Ω

k(x, y)bQ(y) dμ(y)ζ(x).

= ζ(x)
∫
Q̂

[k(x, y) − k(x, xQ)︸ ︷︷ ︸
KQ(x,y)

]bQ(y) dμ(y)ζ(x).

By Fubini’s theorem and Hörmander’s regularity (weaker than L2-Hörmander), we obtain

∫
(αB

Q̂
)c

tr|ζTkbQζ| dμ �
∫

(αB
Q̂

)c

tr

∣∣∣∣∣∣∣
∫
Q̂

KQ(x, y)bQ(y)dμ(y)

∣∣∣∣∣∣∣ dμ(x)

≤ sup
y∈Q̂

∫
(αB )c

∣∣k(x, y) − k(x, cQ)
∣∣ dx ∫

̂
tr|bQ(y)| dy � ‖bQ‖L1(A).
Q̂ Q
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– If x ∈ αBQ̂ \ αBQ we use the size kernel condition in the statement to compute

∫
αB

Q̂
\αBQ

tr|ζTk(bQ)ζ| dμ ≤
∫

αB
Q̂
\αBQ

∫
Q

1
|x− y|n tr

(
πQf(y)πQ

)
dμ(y)dμ(x)

+
∫

αB
Q̂

tr
∣∣∣Tk

( 1Q̂
μ(Q̂)

πQ

∫
Q

fdμ πQ

)
(x)

∣∣∣ dμ(x) =: AQ + BQ.

Theorem 2.6 iv) gives AQ � ϕ(1QπQf). On the other hand

BQ = 1
μ(Q̂)

∫
αB

Q̂

∣∣Tk(1Q̂)
∣∣ dμ tr

(
πQ

∫
Q

fdμ πQ

)

≤ 1
μ(Q̂)

μ(αBQ̂) 1
2

( ∫
αB

Q̂

∣∣Tk(1Q̂)
∣∣2 dμ) 1

2
ϕ(1Qpjf)

� 1
μ(Q̂)

μ(αBQ̂) 1
2μ(Q̂) 1

2ϕ(1Qpjf) ≤ βϕ(1Qpjf).

– Finally, if x ∈ αBQ, we know from the properties of ζ that ζ(x)T (bQ)(x)ζ(x) = 0.

Finally, we add everything up and use the L1 estimate of bd:

ϕ
{
|ζTkbdζ| > λ

}
≤ 1

λ
‖ζTkbdζ‖L1(A)

≤ 1
λ

∑
j≥1

∑
Q∈Π(Σj)

∥∥ζTkbQζ
∥∥
L1(A)

� 1
λ

∑
j≥1

∑
Q∈Π(Σj)

[
‖1Qbd,j‖L1(A) + ϕ(1Qpjf)

]
� ‖f‖L1(A). �

Remark 2.7. Using the n-polynomial growth of μ, it is easily checked that our kernel regularity assumption 
is weaker than Lipschitz regularity, which for this class of measures is formulated as

∣∣k(x, y) − k(x, z)
∣∣ ≤ |y − z|γ

|x− y|n+γ
for some γ > 0.

Remark 2.8. The generalizations of Theorem A concerning other noncommutative measure spaces (M, τ) or 
kernels taking values in the center Z(M) still apply for Theorem B. In the latter case, we need to use from 
[22, Remark 2.4] that the L2 boundedness of Tk implies for this class of kernels that it maps L∞(M; Lc

2(μ))
onto itself. In other words

∥∥∥ ∫
Rd

|Tkf |2 dμ
∥∥∥ 1

2

M
�

∥∥∥ ∫
Rd

|f |2 dμ
∥∥∥ 1

2

M
.

It is unknown whether Theorem B holds for noneuclidean measure spaces of n-polynomial growth.
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3. Fourier and Schur multipliers

Let G be a locally compact group. A length ψ : G → R+ is any continuous function satisfying ψ(e) = 0
and ψ(g) = ψ(g−1), where e denotes the unit in G and g is a generic element. It is called conditionally 
negative when 

∑
agahψ(gh−1) ≤ 0 for finite families of coefficients ag satisfying 

∑
ag = 0. An orthogonal 

cocycle is given by a real Hilbert space H, an orthogonal representation α : G → O(H) and a map β : G → H
satisfying αg(β(h)) = β(gh) − β(g). Conditionally negative lengths are in one-to-one correspondence with 
orthogonal cocycles by ψ(g) = |β(g)|2. The dimension of ψ is thus defined as dimH for the only cocycle 
related to ψ. A more detailed presentation and references to all these concepts and relations may be found 
in [22] and [23].

A crucial advantage of Theorem A in comparison with its ancestors in [1,37] is that the kernel regularity 
condition now includes Hörmander-Mikhlin multipliers. This assertion is readily implied by [26, Lemma 1]. 
We give a precise statement for future reference.

Lemma 3.1. If M : Rn → C satisfies the Hörmander-Mikhlin condition∣∣∂γ
ξM(ξ)

∣∣ � |ξ|−|γ| for all 0 ≤ |γ| ≤
[n
2

]
+ 1,

then the kernel k(x, y) = M̂(x − y) satisfies the L2-Hörmander condition in Theorem A for d = n.
In particular, for any noncommutative measure space M

‖TM ⊗ Id‖L1(L∞(Rn)⊗M)→L1,∞(L∞(Rn)⊗M) � sup
ξ 	=0

∑
|γ|≤[n/2]+1

|ξ||γ|
∣∣∂γ

ξM(ξ)
∣∣ =: ‖M‖HM .

3.1. Proof of Theorem C i)

In this paragraph, we will prove our statement for Schur multipliers of Mikhlin type. More precisely, we 
shall establish weak L1 bounds for Schur multipliers SM with symbol (g, h) �→ M(gh−1) = m ◦ ψ(gh−1)
for some conditionally negative length ψ : G → R+ and a spectral multiplier m : R+ → C satisfying the 
Mikhlin condition for dimψ = n. In the line of [2,39] we define π : Sp(G) → L∞(Rn; Sp(G)) by

π(A) =
(

expαg−1 (β(gh−1)) Agh

)
g,h

=
(

exp−β(g−1) Agh expβ(h−1)

)
g,h

= u∗(1 ⊗A)u

with expξ(x) = e2πi〈x,ξ〉 and u = diag(expβ(g−1)). Next, we claim that

‖SM (A)‖S1,∞(G) � lim
ε→0

∥∥Tm̃(γεπ(A))
∥∥
L1,∞(A) (3.1)

� lim
ε→0

∥∥γεπ(A)
∥∥
L1(A) = ‖A‖S1(G),

for the Fourier multiplier associated to the lifted symbol m̃ : Rn → C determined by m̃(ξ) = m(|ξ|2) and the 
family of L1-normalized gaussians γε(x) = (ε/π)n

2 exp(−ε|x|2). This implies the statement in the Banach 
space setting, but the same argument applies after matrix amplification. Therefore it suffices to justify claim 
(3.1) to complete the proof of Theorem C i).

It is clear that ‖γεπ(A)‖L1(A) = ‖γε ⊗ A‖L1(A) = ‖A‖S1(G) for all ε > 0. This justifies the last identity 
in (3.1). On the other hand, it is straightforward to show that the hypotheses in Theorem C imply that the 
lifted symbol m̃ satisfies as well the Mikhlin condition in n variables. More precisely∣∣∂γ

ξ m̃(ξ)
∣∣ � |ξ|−|γ| for all 0 ≤ |γ| ≤

[n]
+ 1.
2
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In addition, it follows from Lemma 3.1 that the Fourier multiplier Tm̃ is a CZ operator associated to a kernel 
k satisfying the L2-Hörmander condition from Theorem A. Thus, the second inequality in claim (3.1) is a 
direct consequence of Theorem A. Note that Lipschitz regularity from [1,37] is not enough at this point. 
It remains to justify the first inequality in claim (3.1). To that end we consider the gaussian probability 
measures dσε(x) = γε(x)dx and the algebra of matrix-valued functions Aε = L∞(Rn, σε)⊗̄B(�2(G)). We 
shall prove the remaining inequality in several steps as follows

‖SM (A)‖S1,∞(G) =a lim
ε→0

∥∥π(SM (A))
∥∥
L1,∞(Aε)

(3.2)

=b lim
ε→0

∥∥Tm̃(π(A))
∥∥
L1,∞(Aε)

�c lim
ε→0

∥∥γεTm̃(π(A))
∥∥
L1,∞(A)

�d lim
ε→0

∥∥Tm̃(γεπ(A))
∥∥
L1,∞(A).

Proof of (3.2)a. Just note that

‖SM (A)‖S1,∞(G) = sup
λ>0

λ

∫
Rn

tr
{
|1 ⊗ SM (A)| > λ

}
dσε

= sup
λ>0

λ

∫
Rn

tr
{
|u∗(1⊗ SM (A))u| > λ

}
dσε =

∥∥π(SM (A))
∥∥
L1,∞(Aε)

.

Proof of (3.2)b. Just note that

Tm̃(π(A)) =
(
Tm̃(expαg−1 (β(gh−1)) Agh)

)
g,h

=
(
m̃(αg−1(β(gh−1))) expαg−1 (β(gh−1)) Agh

)
g,h

=
(
m ◦ ψ(gh−1) expαg−1 (β(gh−1)) Agh

)
g,h

= π(SM (A)).

Proof of (3.2)c. By the above identity, it suffices to prove

‖π(B)‖L1,∞(Aε) � ‖γεπ(B)‖L1,∞(A) for all ε > 0.

To that end, let us introduce two parameters defined as follows:

– Pick λB > 0 such that ‖B‖S1,∞(G) ≤ 2λBtr
{
|B| > λB

}
.

– Pick Rε =
√

log 2
ε , so that γε(x) = 1

2γε(0) for all x with |x| = Rε. We will use in particular that for 
x ∈ B(0, Rε), 1 ≤ γε(0)/γε(x) ≤ 2.

Then, we are in position to estimate the weak L1 norm of γεπ(B) from below

∥∥γεπ(B)
∥∥
L1,∞(A) = sup

λ>0
λ

∫
Rn

tr
{
|γεu∗(1 ⊗B)u| > λ

}
dx

≥
∫

B(0,Rε)

λBγε(0)
2γε(x) tr

{
|B| > λBγε(0)

2γε(x)

}
dσε(x)

≥
∫

λB

2 tr
{
|B| > λB

}
dσε(x) ≥ 1

4σε(B(0, Rε))‖B‖S1,∞(G).
B(0,Rε)
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However, it is not difficult to calculate that

σε(B(0, Rε)) = |Sn−1|
(4π)n/2

for all ε > 0.

Therefore, the desired inequality follows since ‖π(B)‖L1,∞(Aε) = ‖B‖S1,∞(G) for all ε > 0.

Proof of (3.2)d. We will prove the identity

lim
ε→0

∥∥Tm̃(γεπ(A)) − γεTm̃(π(A))
∥∥
L1,∞(A) = 0. (3.3)

This readily implies claim (3.2) by the quasi-triangular inequality in weak L1 spaces. By density in S1(G), 
we may assume from the beginning that Agh �= 0 for finitely many entries (g, h). Again by the quasi-triangle 
inequality, it suffices to prove (3.3) entrywise. In other words, if we set ξgh = β(h−1) − β(g−1), then we 
must prove that

lim
ε→0

∥∥(Tm̃(γε expξgh
) −m ◦ ψ(gh−1)γε expξgh︸ ︷︷ ︸

Σε
gh

)
⊗ egh

∥∥
1,∞ = lim

ε→0
‖Σε

gh‖1,∞ = 0 for all g, h ∈ G.

If we set Φ(ξ) = m̃(ξ + ξgh), we may easily construct Ψε : Rn → R+ with:

– Ψε smooth,
– Ψε(ξ) = 1 when |ξ| < ε

1
4 and Ψε(ξ) = 0 when |ξ| > 2ε 1

4 ,
– lim

ε→0
sup
ξ 	=0

∑
|γ|≤[n/2]+1

|ξ||γ|
∣∣∂γ

ξ

[
Ψε(ξ)(Φ(ξ) − Φ(0))

]∣∣ = lim
ε→0

∥∥Ψε(Φ − Φ(0))
∥∥

HM = 0.

Then, using the identity TM (f expξ0) = TM(·+ξ0)(f) expξ0 , we may continue our estimate as follows

lim
ε→0

‖Σε
gh‖1,∞ = lim

ε→0

∥∥TΦ(γε) − Φ(0)γε
∥∥

1,∞

= lim
ε→0

∥∥TΦ
(
γε − TΨε

(γε)
)

+ TΨε(Φ−Φ(0))(γε) + Φ(0)
(
TΨε

(γε) − γε
)∥∥

1,∞

� lim
ε→0

‖Φ‖HM
∥∥γε − TΨε

(γε)
∥∥

1 + lim
ε→0

∥∥Ψε(Φ − Φ(0))
∥∥

HM‖γε‖1.

Since ‖γε‖1 = 1, the last limit on the right hand side vanishes by construction of Ψε. On the other hand, we 
have ‖Φ‖HM � ‖m̃‖HM � ‖m‖HM < ∞ by hypothesis. Therefore, it remains to prove that ‖γε − TΨε

(γε)‖1
gets arbitrarily small as ε → 0. Since γ̂ε(ξ) = exp(−π|ξ|2/ε), we may write this L1-norm as follows

∥∥γε − TΨε
(γε)

∥∥
1 =

∫
Rn

∣∣∣ ∫
Rn

(1 − Ψε(ξ))e−π|ξ|2/εe2πi〈x,ξ〉 dξ
∣∣∣ dx

=
∫
Rn

∣∣∣ ∫
Rn

(1 − Ψε(ε
1
2 η))e−π|η|2︸ ︷︷ ︸

Λε(η)

e2πi〈y,η〉 dη
∣∣∣ dy = ‖Λ̂ε‖1.

We know that Λε → 0 pointwise as ε → 0. By the dominated convergence theorem, this also holds in 
L1-norm. According to Hausdorff-Young inequality, this implies that its Fourier transform converges to 0
in the L∞-norm. We also get ∥∥|x||γ|Λ̂ε

∥∥
∞ �

∥∥∂̂γ
ξ Λ

ε

∥∥
∞ ≤

∥∥∂γ
ξ Λε

∥∥
1

which converges to 0 once again by dominated convergence. Taking |γ| = n + 1, we conclude. �
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Remark 3.2. We anticipate that the above argument can be modified to hold for arbitrary locally compact 
groups. Indeed, the argument should follow verbatim up to inequality (3.2)d. At this point, we may assume 
by density that A has a kernel in Cc(G × G) and argue as in [27, Theorem 1.19] to approximate π(A) in 
L1(B(L2(G, μ)) by ∑

j,k

expξgjhk
Agjgkegjgk

in the space L1(B(L2(G, μ′)), where μ′ is certain finitely supported measure on G. Then, the argument 
follows by estimating the weak L1 norm of the functions Σε

gjhk
as done above.

Remark 3.3. The above argument should also yield a weak L1 form of de Leeuw’s compactification theorem 
[13]. More precisely, let Rbohr denote Bohr’s compactification of the real line R and consider a symbol 
M : R → C giving rise to a weak-L1-bounded Fourier multiplier TM : L1(R) → L1,∞(R). We may also 
regard M as a symbol on the discrete real line Rdisc, the Pontryagin predual of Rbohr. Then, we can use the 
above ideas to prove ∥∥TM : L1(Rbohr) → L1,∞(Rbohr)

∥∥ ≤
∥∥TM : L1(R) → L1,∞(R)

∥∥.
In fact, arguing as in [40, Section 2.5] the same may also hold for group algebras over unimodular groups.

3.2. Proof of Theorem C ii)

The discreteness assumption in Theorem C ii) is to avoid further considerations that would lead us too 
far from our central topic. On the other hand, amenability is strongly linked to the transference methods 
that we need. Almost every form of transference since the pioneer work of Cotlar or Calderón involves 
some kind of amenability. In this line, we shall generalize the tight connection between Fourier and Schur 
Lp-multipliers [2,36] through the key inequality for G amenable

‖TM‖cb(Lp(L(G))) ≤ ‖SM‖cb(Sp(G)) when 1 ≤ p ≤ ∞.

In conjunction with Theorem C i), the result below (of independent interest) yields Theorem C ii).

Theorem 3.4. Let G be a discrete group, then∥∥∥id ⊗ TM : L1(Mm ⊗ L(G)) → L1,∞(Mm ⊗ L(G))
∥∥∥

≤
∥∥∥id ⊗ SM : S1(�2(m) ⊗ �2(G)) → S1,∞(�2(m) ⊗ �2(G))

∥∥∥.
Proof. The argument follows very much the ideas in [2,36,39]. By amenability, we may consider a Følner 
net (Λα)α. In other words, a family of finite non empty sets satisfying that limα |Λα ∩ gΛα| / |Λα| = 1 for 
all g ∈ G. Consider the canonical inclusion map j : L(G) → B(�2(G)) given by

j(f) =
∑

g,h∈G

f̂(gh−1)egh.

The map j is a ∗-homomorphism. It fails to be Lp-bounded, but

‖f‖Lp(L(G)) = lim
α

‖jα(f)‖Sp(Λα)

where jα : L(G) � f �→ πα j(f)πα ∈ S∞(Λα),
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S∞(Λα) is equipped with its normalized trace tr/ |Λα| and πα denotes the orthogonal projection onto the 
subspace �2(Λα). Consider a tracial ultraproduct 

(∏
U S∞(Λα), τU

)
of the Schatten classes S∞(Λα). The 

map

J : L(G) � f �→ (jα(f))α ∈
∏
U

S∞(Λα),

is a trace preserving completely isometric embedding. It is clearly completely positive and unital so we should 
only check that it is multiplicative, which essentially comes down to proving that for any f1, f2 ∈ L(G), 
we have τ(f1f2) = τU (J(f1)J(f2)). It suffices to check this equality for elements f1 = λ(g1), f2 = λ(g2), 
g1, g2 ∈ G. If g1 �= g−1

2 , both terms are 0 and otherwise, for any g ∈ G

τU
(
J(λ(g))J(λ(g−1))

)
= lim

α

1
|Λα|

tr
(
παj(λ(g))παj(λ(g−1))πα

)
= lim

α

1
|Λα|

∑
h,h′∈Λα

δh′,gh = lim
α

|Λα ∩ gΛα|
|Λα|

= 1.

To conclude, observe that J intertwines TM and S̃M := ΠUSM . Hence for any f ∈ L1(L(G))

‖TM (f)‖1,∞ =
∥∥J(TM (f))

∥∥
1,∞ =

∥∥S̃M (J(f))
∥∥

1,∞

≤
∥∥S̃M : L1 → L1,∞

∥∥ ‖J(f)‖1 ≤
∥∥SM : L1 → L1,∞

∥∥ ‖f‖1. �
Remark 3.5. We expect Theorem 3.4 above to hold for any locally compact unimodular amenable group. 
However, to the best of our knowledge, this cannot be easily inferred from the literature and only the 
discrete case lies within the scope of this paper. Note also that alternative arguments in the spirit of [36, 
Theorem 2.1] could have been provided.

Remark 3.6. It is quite standard to use our results so far to establish a L1 endpoint for the Littlewood-Paley 
theorem in group von Neumann algebras [22]. More precisely, if (mj)j∈Z is a Littlewood-Paley partition of 
unity in R+ and ψ : G → R+ is a conditionally negative length, then we set Mj = mj ◦ ψ and obtain

– LP for Schur multipliers

inf
SMj

A=RjA+LjA

∥∥∥(∑
j∈Z

RjARjA
∗ + LjA

∗LjA
) 1

2
∥∥∥
S1,∞(G)

≤
(∑

j∈Z
‖mj‖2

HM

) 1
2 ‖A‖S1(G).

– LP for Fourier multipliers

inf
TMj

f=Ajf+Bjf

∥∥∥(∑
j∈Z

AjfAjf
∗ + Bjf

∗Bjf
) 1

2
∥∥∥
L1,∞(L(G))

≤
(∑

j∈Z
‖mj‖2

HM

) 1
2 ‖f‖L1(L(G)).

As usual, these results admit matrix amplifications and hold for l.c. (respectively amenable) groups.
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