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Specific transcriptional
programs differentiate ICOS
from CD28 costimulatory
signaling in human Naïve
CD4+ T cells
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Costimulatory molecules of the CD28 family play a crucial role in the activation of

immune responses in T lymphocytes, complementing and modulating signals

originating from the T-cell receptor (TCR) complex. Although distinct functional

roles have been demonstrated for each family member, the specific signaling

pathways differentiating ICOS- fromCD28-mediated costimulation during early T-

cell activation are poorly characterized. In the present study, we have performed

RNA-Seq-based global transcriptome profiling of anti-CD3-treated naïve CD4+ T

cells upon costimulation through either inducible costimulator (ICOS) or CD28,

revealing a set of signaling pathways specifically associated with each signal. In

particular, we show that CD3/ICOS costimulation plays a major role in pathways

related to STAT3 function and osteoarthritis (OA), whereas the CD3/CD28 axis

mainly regulates p38 MAPK signaling. Furthermore, we report the activation of

distinct immunometabolic pathways, with CD3/ICOS costimulation preferentially

targeting glycosaminoglycans (GAGs) and CD3/CD28 regulating mitochondrial

respiratory chain and cholesterol biosynthesis. These data suggest that ICOS and

CD28 costimulatory signals play distinct roles during the activation of naïve T cells

by modulating distinct sets of immunological and immunometabolic genes.
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Introduction

Activation of naïve T helper (Th) cells and their consequent

differentiation require three signals: the first one is delivered by

the T-cell receptor (TCR) upon recognition of the antigenic

peptide presented by the appropriate major histocompatibility

complex (MHC) molecule; the second one is generated by T-cell

costimulatory receptors engaged by their ligands expressed on

antigen-presenting cells (APCs); and the third one is generated

by cytokines available in the microenvironment. When the first

signal is triggered in the absence of the second one, it initiates a

genetic program resulting in anergy or apoptosis (1, 2).

The best-known T helper (Th) cell costimulatory receptor is

CD28, which is constitutively expressed by all Th cells. CD28

binds to B7.1 (CD80) and B7.2 (CD86) on APCs, and promotes

cell proliferation and cytokine secretion (3–5).

Another Th costimulatory receptor is inducible costimulator

(ICOS, also called CD278), which belongs to the CD28 family.

ICOS is selectively expressed on activated T cells, but it has also

been recently detected on dendritic cells (DCs) (6–9). ICOS

binds to ICOS ligand (ICOSL, also known as CD275, B7h, or

B7H2), which is expressed by both hematopoietic and non-

hematopoietic cells. Indeed, ICOSL is not only constitutively

expressed by B cells, macrophages, and DCs, but it is also present

in vascular endothelial cells (ECs), epithelial cells, fibroblasts,

and different types of tumor cells (10). The cell distribution of

ICOSL suggests that the ICOS/ICOSL complex may play an

important role not just in Th cell activation within lymphoid

organs but also in the regulation of T-cell functions in inflamed

peripheral tissues.

Th costimulation through CD28 induces the secretion of

large amounts of interleukin-2 (IL-2), a cytokine essential for the

clonal expansion of naïve T cells. In contrast, IL-2 expression

levels are weakly increased following ICOS costimulation, which

instead leads to enhanced production of IL-10 (11, 12). The

observation that ICOS expression is induced by CD3/TCR

signaling and further enhanced upon CD28 costimulation and

IL-2 production suggests that some of the effects triggered by

CD28 are required for ICOS activity (11–13). Moreover, the

ICOS-mediated costimulation can work in synergy with those
Abbreviations: APCs, antigen-presenting cells; ATP, Adenosine

triphosphate; CTLA4, Cytotoxic T-Lymphocyte Antigen 4; DCs, Dendritic

cells; DEGs, differentially expressed genes; ECs, vascular endothelial cells;

GAGs, glycosaminoglycans; IFN, Interferon; Ig, immunoglobulin; IL,

Interleukin; IPA, Ingenuity Pathway Analysis; mAb, monoclonal antibody;

MHC, major histocompatibility complex; NK, Natural Killer; OA,

osteoarthritis; OPN, osteopontin; PBMCs, Peripheral blood mononuclear

cells; PCA, Principal component analysis; PI3-K, Phosphoinositide 3-kinase;

ROS, Reactive Oxygen Species; TCR, T-cell receptor complex; TFHs,

follicular helper cells; TGF-b, Transforming Growth Factor-b; Th, T helper

cells; Tregs, regulatory T cells.

Frontiers in Immunology 02
mediated by other costimulatory molecules, such as 4-1BBL, and

CD70 (11, 12).

It is well established that ICOS plays a key role in the

differentiation of regulatory T cells (Tregs), Th17, and T

follicular helper cells (TFHs) (14–16). In addition, ICOS

induces CD40L (CD154) expression in T cells and regulates T

cell/B cell interactions by increasing the production of

immunoglobulin (Ig) M and IgG in B cells, favoring the

formation of germinal centers. Fittingly, ICOS deficiency

causes common variable immunodeficiency (17–21).

Substantial differences in the downstream effects of ICOS

costimulation have been reported in humans vs mice. In

particular, ICOS triggering induces the secretion of large

amounts of IL-4 in mice, whereas it mainly leads to the

production of interferon-g (IFN-g) in humans. These two

distinct effects appear to involve Th2 and Th1 cells,

respectively (22–25). These differences might be partly due to

the ability of human but not murine ICOSL to weakly interact

with CD28 and cytotoxic T-lymphocyte antigen 4 (CTLA4),

which inhibits T cell functions through a binding site different

from that used by ICOS (26).

We have previously shown that CD3/ICOS costimulation of

human naïve Th cells elicits different responses depending on

the cytokine milieu: i) in the presence of IL-2, it mainly promotes

IFN-g secretion; ii) in the absence of IL-2, it stimulates

production of IL-10 and transforming growth factor-b (TGF-

b); and iii) in the presence of TGF-b+IL-1b, it induces the

secretion of IL-17A. Under the latter condition, we also found

that ICOS costimulation primarily induces the secretion of IL-

17A and IL-10, whereas CD28 costimulation leads to secretion

of IL-17F and IL-9 (11, 27).

ICOS/ICOSL interaction triggers bidirectional signals

through either receptor, also modulating the response of

ICOSL-expressing cell via a mechanism known as reverse

signaling (28). In mice, reverse signaling through ICOSL leads

to the production of IL-6 by DCs, thereby causing their

activation (29). In human DCs, endothelial cells (ECs), and

tumor cell lines, ICOSL signaling inhibits adhesiveness and

migration; in human DCs, it also modulates cytokine secretion

and promotes antigen cross-presentation, whereas in osteoclasts

it hampers bone homeostasis. Moreover, it inhibits tumor

growth and metastatization (30–35).

A previous micro-array analysis comparing the signature

pathways in total CD4+ T cells following costimulation with

ICOS, CD28, or CTLA-4 (36) has shown a strong similarity in

gene expression changes induced by CD28 and ICOS,

suggesting that their unique functional properties may result

from differential expression of only a few genes (i.e., IL-2 and

IL-9). Additionally, data from the literature and bioinformatics

databases obtained by RNA-Seq have characterized the

expression profile of resting naïve CD4+ T helper cells vs

resting memory CD4+ T cells or naïve CD4+ T cells after

being induced to differentiate to different Th effector
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phenotypes in the presence of polarizing cytokines (37–39).

However, no data are available regarding the early phases of

naïve CD4+ T cells activation mediated by the first signal alone

(CD3) or following ICOS or CD28 costimulation in the

absence of polarizing cytokines. Thus, taking advantage of

RNA-Seq-based global transcriptome profiling, here we have

characterized the transcriptome profile of human naïve CD4+ T

cells during the initial phases of activation with anti-CD3 mAb

alone (first signal) or in combination with soluble recombinant

forms of the physiological ligands of CD28 or ICOS (second signal)

(i.e., B7.1-Fc and B7h-Fc, respectively) in the absence of

polarizing cytokines.

Altogether, our findings indicate that CD28- and ICOS-

mediated costimulatory signals elicit distinct sets of immunological

and immunometabolic genes. The implications of our findings in T

cell homeostasis is discussed in the context of past and

present literature.
Material and methods

Cells

Peripheral blood mononuclear cells (PBMCs) were isolated

from buffy coats, kindly provided by the local blood transfusion

service (Novara, Italy) upon informed consent, through Ficoll-

Hypaque (Lympholyte-H; Cedarlane Laboratories Ltd.,

Bu r l i ng t on , ON , Canada ; c od . CL5020 ) dens i t y

centrifugation. Naïve CD4+ T cells were purified with

EasySep™ Human naïve CD4+ T cells Negative Selection Kit

(STEMCELL Technologies, Vancouver, BC, Canada; cod.

19155). This approach provided > 97% CD4+/CD45RA+/

CD45RO- (eBioscience, San Diego, CA, USA; cod. 17-0048-

42; 12-0458-42; 11-0457-42) cells, as judged by direct

immunofluorescence and flow cytometry (BD Biosciences,

San Diego, CA). Cells derived from separate donors and were

not pooled. From each donor, cells were divided into 10 wells

of a 96 well plate, using 10 wells for each experimental

condition (CD3, CD3+ICOS, CD3+CD28). After 3 days, cells

were pooled by condition, to perform the RNA extraction. The

use of buffy coats was approved by the local Ethics Committee

(No. CE 88/17), and the study was conducted in accordance

with the Declaration of Helsinki.
Naïve CD4+ T cell activation

Round-bottom 96-well plates were coated with 100 ml of
anti-CD3 mAb (OKT3, 10 mg/ml) overnight at 4°C. To stimulate

ICOS or CD28, plates were washed with PBS and further coated

with B7h-Fc (5 mg/ml; Bio-Techne, Minneapolis, MN, US; cod.

165-B7) or B7.1-Fc (5 mg/ml; Bio-Techne; cod. 140-B1) for 2 h at

room temperature. Plates were then washed with PBS, and
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purified naïve CD4+ T cells were seeded in ten wells for each

condition at 105 cells/well in 200 ml of RPMI 1640 (Invitrogen,

Burlington, ON, Canada; cod. 61870010) plus 10% FBS

(Invitrogen; cod. 10270106) for 3 days.
ELISA assay

To analyze IL-2 secretion upon cell activation, supernatants

were collected at day 3 of culture and standard enzyme-linked

immunosorbent assays (ELISA) was used to evaluate secretion

of IL-2 (Biolegend, San Diego, CA, USA; cod. 431804) following

the manufacturer’s instructions
RNA-Seq sample preparation

Total RNA was isolated using TRIzol reagent (Invitrogen),

following the manufacturer’s instructions. RNA quality was

assessed using an Agilent 2100 Bioanalyzer. All samples had

an RNA integrity number (RIN) ≥ 9. For RNA-Seq single-end

library preparation, approximately 2 mg of total RNA were

subjected to poly(A) selection, and libraries were prepared

using the TruSeq RNA Sample Prep Kit (Illumina), following

the manufacturer’s instructions. Sequencing was performed on

Illumina platforms. All experiments were performed in

biological triplicates.
RNA-Seq and bioinformatics
data analyses

Reads were mapped to the Homo sapiens hg19 reference

genome using TopHat v2.0.10 (40). For data analysis, gene counts

were computed using htseq-count and the GENCODE v24 gene

annotation. Differential expression analysis was performed using

DESeq2 R Package (41). Only genes with |log2FoldChange| ≥ 1,

FDR < 0.05 and RPKM ≥ 1 in at least one of the analyzed conditions

were considered for downstream analysis.

The R statistical environment was used for further statistical

analysis (42). Principal Component Analysis (PCA) plot was

performed using the prcomp package on the matrix of

expression data. Heatmaps were computed using the

pheatmap package. Volcano plots were computed using scatter

plot function.

The characterization of activated pathways in modulated

genes was computed using Ingenuity Pathway Analysis (IPA)

(QIAGEN Inc., https://www.qiagen.com/us/products/discovery-

and-translational-research/next-generation-sequencing/

informatics-and-data/interpretation-content-databases/

ingenuity-pathway-analysis/).

RNA-Seq data have been deposited in the Gene Expression

Omnibus database with the dataset identifier GSE191040.
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Real-time RT-PCR

Total RNA was isolated from purified naïve CD4+ T cells

activated with anti-CD3 mAb alone, plus B7h-Fc or B7.1-Fc at

day 3 using TRIzol reagent (Invitrogen; cod. 15596018). RNA (1

mg) was retrotranscribed using a QuantiTect Reverse

Transcription Kit (Qiagen, Hilden, Germany; cod. 205313).

NEBL (Hs01067284_m1), SHC4 (Hs00736166_m1), IL1RL1

(Hs00249384_m1), TMCC2 (Hs01099575_m1), FBXO15

(Hs00380856_m1), PALLD (Hs00363101_m1), HOPX

(Hs04188695_m1), CDO1 (Hs01039954_m1), NEAT1

(Hs01008264_s1) , IL23R (Hs00332759_m1) , IL26

(Hs00218189_m1), SOCS3 (Hs02330328_s1), and ICOS

(Hs00359999_m1) mRNA expression levels were assessed

through Assay-on Demand (Applied Biosystems, Foster City,

CA). GAPDH (Hs99999905_m1) was used to normalize the

cDNA amounts. Real-time PCR was performed using the CFX96

System (Bio-Rad Laboratories, Hercules, CA, USA) in duplicate

for each sample in a 10 ml final volume containing 0.5 ml of
diluted cDNA, 5 ml of TaqMan Universal PCR Master Mix

(Applied Biosystems; cod. 4369016), and 0.5 ml of Assay-on

Demand mix. The thermocycler parameters were 95°C for

10 min, followed by 45 cycles of 95°C for 15 s and 60°C for

1 min. The results were analyzed with a DD threshold cycle

method, and the relative gene expression was expressed as fold

increase/decrease over anti-CD3 mAb alone samples. Samples

used for PCR validations were different than those used for the

RNA-Seq analysis.
Statistical analysis

The paired T-test was used to compare differences in real-

time PCR experiments using GraphPad Instat Software

(GraphPad Software, San Diego, CA). P-values < 0.05 were

considered statistically significant.
Results

Purified T CD4+ naïve cells were stimulated in vivo with

anti-CD3 mAb in the absence (CD3 group) or presence of the

B7.1-Fc fusion protein, which triggers CD28, (CD3+CD28

group) or the ICOS ligand B7h-Fc (CD3+ICOS group)

(Figures 1A, C). RNA-Seq was performed after 3 days of

culture. Figure 1B shows the result of the PCA plot analysis

performed on the RNA-Seq data. Only results of the principal

components 1 and 2 are reported. The three replicates of each

group cluster with relative low distance and do not overlap,

indicating a significant structural similarity between their gene

markers and comparable results among samples belonging to the

same experimental group. Figure 1D (left panel) shows the real-

time PCR validation of ICOS gene expression under the three
Frontiers in Immunology 04
different experimental conditions and Figure 1D (right panel)

shows the secretion of IL-2, measured by ELISA, marking T cell

activation. Both report effective costimulation by ICOS and

CD28 but with CD28 exerting stronger effects, as expected.
Different costimulatory patterns drive
specific transcriptional responses

To identify the transcriptional responses associated with

each costimulation, we performed comparative transcriptome

analysis of the fol lowing experimental condit ions:

C D 3 + C D 2 8 v s C D 3 , C D 3 + I C O S v s C D 3 , a n d

CD3+ICOSvsCD3+CD28. We found 4935 differentially

expressed genes (DEGs, Supplementary Table 1) in at least

one comparison (|log2FoldChange| ≥ 1, FDR < 0.05;

Figure 2A). The log2 fold changes and the -log10(adj.pvalue)

of all upregulated and downregulated DEGs (195 and 200,

respectively) in CD3+ICOSvsCD3+CD28 are depicted in

Figure 2B. The proportion of genes either up- or downregulated

in the CD3+CD28vsCD3 and CD3+ICOSvsCD3 comparison

groups are represented in Figure 2C. The Venn diagram

indicates that, among the upregulated genes, 900 genes are

shared by the two groups, while 856 and 420 are specific for the

CD3+CD28 and CD3+ICOS group, respectively. Among the

downregulated genes, 1492 are in common, whereas 749 and

462 are unique to the CD3+CD28 and CD3+ICOS group,

respectively. Figure 2D shows the numbers of upregulated and

downregulated genes for each comparison group.

Thus, human CD4+ Th cells display specific transcriptional

activities in response to different costimulatory signals.
Validation of high-throughput
RNA-Seq results

We next sought to validate our mRNA-seq results at the

single gene level. Since ICOS and IL-2 are DEGs detected by the

RNA-seq analysis, a first validation was obtained by assessment

of ICOS expression by real time PCR and IL-2 secretion by

ELISA, confirming the expression pattern obtained by RNA-

seq (Figure 1D).

To extend this validation, we repeated the activation

experiment on T CD4+ naïve cells purified from 3 new donors

and analyzed the expression of 12 randomly selected DEGs

(SHC4, TMCC2, IL1RL1, NEBL, FBXO15, NEAT1, HOPX,

PALLD, CDO1, IL-23R, IL-26, and SOCS3). The heatmap

showing the unsupervised hierarchical clustering of mRNA-

seq expression levels for this selection of DEGs is represented

in Figure 3A. The real time PCR analyses on the new samples

confirmed the expression patterns obtained by RNA-Seq

(Figures 3B). Therefore, validation was obtained for all 14

genes analyzed in the two experiments (i.e ICOS and IL-2 in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.915963
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gigliotti et al. 10.3389/fimmu.2022.915963
A B

D

C

FIGURE 1

CD3+ICOS and CD3+CD28 costimulation experimental design. (A) Schematic representation of the experimental design. (B) Principal
component analysis (PCA) plot of the mRNA-seq samples. (C) Cytofluorimetric analysis of CD4, CD45RA, and CD45RO expression on CD4 naïve
T cells immediately after the purification. Data are from one representative experiment. The percentage of the purity is indicated within the
quadrants (D) Left Panel shows ICOS mRNA validation by real-time PCR while right panel shows IL-2 production by ELISA. Data are normalized
for the expression of each gene under anti-CD3 treatment condition *P < 0.05, **P < 0.01 vs anti-CD3; #P < 0.05, vs anti-CD3+CD28.
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the first experiment and the 12 randomly selected genes in the

second experiment).
ICOS-mediated costimulation
highlights differentially modulated
functional pathways

We next sought to determine DEG functions and identify

possible biological networks in which they may be involved,

with a particular focus on the effects mediated by CD3+ICOS

stimulation. To this end, DEGs modulated by each

costimulation were imported into the IPA software. Figure 4

shows the selected activated pathways of genes identified by
Frontiers in Immunology 06
IPA for both CD3+ICOS and CD3+CD28 costimulation.

Figure 4A shows the functional annotation of DEGs in the

CD3+ICOSvsCD3+CD28 group, while Figure 4B illustrates

the unsupervised hierarchical clustering of these genes. The

pattern suggests that ICOS and CD28 play distinct roles in the

regulation of several key immunological pathways, such as

pathways involved in cytokine production and signaling,

immune receptor signaling, and Th polarization (Figures

S1A, B). In particular, ICOS-mediated costimulation activates

several pathways involved in known aspects of ICOS function.

A pivotal role is played by pathways related to IL-10 activity, as

judged by a significant enrichment of the biological processes

“STAT3”, “T cell exhaustion signaling”, and “Nur77 signaling

in T cells”. Indeed, STAT3 plays a crucial role in IL-10R-
A B

DC

FIGURE 2

CD3+ICOS and CD3+CD28 costimulations drive global transcriptional changes. (A) Heatmap showing the unsupervised hierarchical clustering
of differentially expressed genes (DEGs) from the three conditions described in the legend to Figure 1A. (B) Volcano plot displaying identified
DEGs in the CD3+ICOSvsCD3+CD28 group. Red dots represent upregulated genes, while violet dots represent downregulated genes. (C) Venn
diagram reporting the portion of DEGs found modulated in the CD3+ICOSvsCD3 and CD3+CD28vsCD3 comparison groups. UP = upregulated
genes; DOWN = downregulated genes. (D) Table reporting the total number of DEGs according to each comparison group.
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A

B

FIGURE 3

Validation of selected DEGs by real-time PCR. (A) Heatmap showing unsupervised hierarchical clustering of the ICOS gene and a panel of 12
DEGs randomly selected for gene expression validation by real-time PCR. (B) Results of real-time PCR validation of the 12 randomly selected
genes analyzed in T CD4+ naïve cells from 3 new donors. Data are normalized for the expression of each gene under the anti-CD3 treatment
condition; *P < 0.05, **P < 0.01, *** P < 0.0001 versus anti-CD3; #P < 0.05, ##P < 0.01 vs anti-CD3+CD28.
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mediated signaling, T cell exhaustion involves IL-10

production, and Nur77 is involved in T cell exhaustion and

tolerance as well as Treg function (43–45). Other noteworthy

ICOS-related pathways are “IL-6 signaling” and “IL-15

production” pathways. IL-6 plays a role in differentiation of

Th17 cells and function of TFH cells, which are Th cell subsets

involving ICOS function, and triggers the STAT3 pathway

through IL-6R (46). IL-15 shares many activities with IL-2,

and may partly overcome the poor ability of ICOS to induce IL-

2 secretion compared to CD28 (47). Notably, the signature

“Regulation of the EMT by growth factors pathway” is in good

agreement with the observation that activation of ICOS/ICOSL

signaling inhibits EMT in tumor cells lines (31). However, the

highest scores were reached by the osteoarthritis (OA) pathway

for ICOS and by the p38 MAPK pathway for CD28.
Frontiers in Immunology 08
We next sought to identify a set of DEGs that would only be

specific for CD3+ICOS costimulation. For this purpose, we

selected only those genes that were modulated in the

CD3+ICOSvsCD3 group but remained unchanged in the

CD3+CD28vsCD3 group. This approach allowed us to define

a set of 880 genes, termed “ICOS-specific”, which were subjected

to functional analysis by IPA (Figure 5A). The relative heatmap

is reported in Figure 5B.

We also defined a group of DEGs comprising only those

genes modulated in the CD3+CD28vsCD3 group but unaltered

in the CD3+ICOSvsCD3 group. We identified a set of 1603

DEGs, termed “CD28-specific”, which were subjected to a

functional analysis by IPA as described above (Figure 5C). The

heatmap of the genes modulated in this comparison group is

depicted in Figure 5D.
A

B

FIGURE 4

Modulated genes and enriched pathways in the CD3+ICOSvsCD3+CD28 group. (A) Selected enriched pathways in the CD3+ICOSvsCD3+CD28
group as predicted by Ingenuity Pathway Analysis (IPA). Blue bars: enriched in CD3+ICOS; Orange bars: enriched in CD3+CD28. (B) Heatmap of
differentially expressed genes in CD3+ICOSvsCD3+CD28 comparison.
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Overall, the functional annotations of ICOS- and CD28-

specific DEGs reveal distinct signaling pathways activated by

CD3+ICOS and CD3+CD28, highlighting a divergent regulation

of immunometabolism. Although both ICOS and CD28 appear to

alter T cell glycosaminoglycan metabolism with a similar trend,

ICOS seems to exert a stronger effect. Indeed, ICOS promotes the

expression of isoform 3 and 10 of carbohydrate sulfotransferase

(CHST), while downmodulates isoform 15. It also promotes the

expression of heparan sulfate glucosamine 3-O-sulfotransferase 1

(HS3ST1), N-deacetylase and N-sulfotransferase 1 (NDST1) and

Notum (cleavage of GPI anchored heparan sulfate proteoglycans),
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while it decreases dermatan sulfate epimerase (DSE) and

chondroitin sulfate N-acetylgalactosaminyltransferase

2 (CSGALNACT2).

Altogether, these changes suggest an active remodeling of

surface proteoglycans induced selectively by ICOS (Figure S1C).

With regard to CD28-specific metabolic pathways, the

difference with ICOS is mainly quantitative. Indeed, both

CD28 and, to a lesser extent, ICOS promotes transcription of

mitochondrial respiratory chain components, such as several

complex I subunits (NDUFB4, NDUFA8, NDUFA6, NDUFS4,

NDUFB8, NDUFV2, NDUFA1, NDUFB6, and NUDUFB3),
A

B

D

C

FIGURE 5

Modulated genes and enriched pathways in CD28 and ICOS specific gene signatures. (A) Selected enriched pathways in CD3+ICOSvsCD3;
“ICOS-specific” comparison as predicted by Ingenuity Pathway Analysis (IPA). Only the pathways activated by ICOS-modulated genes are shown
(blue bars). (B) Heatmap of DEGs in CD3+ICOSvsCD3; “ICOS-specific” comparison. (C) Selected enriched pathways in CD3+CD28vsCD3;
“CD28-specific” comparison as predicted by IPA Ingenuity. Only pathways activated by CD28-modulated genes are shown (orange bars).
(D) Heatmap of differentially expressed genes CD28vsCD3; “CD28-specific” comparison.
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complex II (SDHB), complex III (UQCRH), cytochrome c

isoform 1 (CYC1), and both central and accessory complex

IV subunits (COX5B; COX6C; COX7B and COX7A2).

Interestingly many of these proteins are involved in the

formation of respiratory supercomplexes, suggesting a global

reorganization of the respiratory chain (48, 49) (Figure S1D).

Likewise, the cholesterol metabolism pathway appears to be

induced by both ICOS and, to a greater extent, CD28, but only

the CD28 effect is strong enough to reach significance. Finally,

our results show the induction of enzymes related to fatty acid

metabol ism (ACAT2 and ACAA2) and cholesterol

biosynthesis (MSMO1, MVD, MVK, HMGCS1, IDI1 and

FDPS), suggesting an increased utilization of fatty acid and a

parallel activation of the mevalonate/cholesterol biosynthetic

pathway (Figure S1E).
Discussion

By taking advantage of the higher sensitivity of RNA-Seq

over microarray technology, here we have compared the

transcriptome profiles of human naïve CD4+ T cells following

costimulation of either CD3+ICOS or CD3+CD28. Our results

derived from two different comparisons show that distinct sets of

immunological and immunometabolic genes are differentially

regulated by ICOS- and CD28-mediated costimulatory signals,

suggesting that the concerted modulation of multiple

downstream pathways by costimulatory molecules of the

CD28 family plays a crucial role in T cell homeostasis.

We initially looked for DEGs by directly comparing the

effects of two costimulations (i.e., CD3+ICOS vs CD3+CD28),

which detected 395 differentially modulated genes. Functional

annotation by IPA shows that ICOS-mediated costimulation

activates several pathways involved in known aspects of ICOS

function, such as those related to IL-10, IL-6, and IL-5 function.

However, the highest IPA score was obtained by the

“osteoarthritis pathway”—i.e., genes involved in the OA

microenvironment (Figure S1A). This finding is quite

interesting in light of the recent view that OA, normally

regarded as a non-inflammatory disease of the joints caused by

mechanical stress resulting in joint cartilage destruction, may

indeed exhibit infiltration of synovial membranes by

inflammatory cells—even T cells—, suggesting that T cell-

mediated immune responses may play a role in this disease. In

particular, a key role may be played by CD4+ T cells and

especially Th1, Th17, which accumulate in the synovial fluid

and/or membranes of OA patients. Moreover, a role in OA

development has been suggested for TFH cells whose number,

together with IL-21 production, is increased in the blood of OA

patients and positively correlates with disease activity (50, 51).

Overall, our data are consistent with the notion that Th1, Th17,

and TFH cells are particularly related to ICOS function

in humans.
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With regard to the pathways activated by CD28

costimulation, the highest IPA score was recorded for the p38

MAPK signaling pathway (Figure S1B), which is in line with the

well-established involvement of this pathway in CD28-

dependent T cell activation. A modulation of the p38 pathway

also emerges upon ICOS treatment, but the list of modulated

genes differs from that modulated by CD28 confirming the

notion of differential signaling between the two. Importantly,

the detection of the “Th2 pathway” is in keeping with the ability

of CD28, but not ICOS, to support differentiation of Th2 cells in

humans. By contrast, the detection of the “Th17 activation

pathway” may highlight a stronger effect of CD28 compared to

ICOS in supporting Th17 cells, since both CD28 and ICOS

support Th17 differentiation, albeit with some differences (27).

Along the same lines, the hypoxia-inducible factor-a
(HIF-a) pathway is differentially enhanced in the CD3+

CD28vsCD3+ICOS group. HIF induction during naive T cell

activation is strongly dependent on Phosphoinositide 3-kinase

(PI3-K)/mTOR and CD28 signaling (52). Since both CD28 and

ICOS activate PI3K, enhanced induction by CD28 might stem

from the different activation of PI3K due to distinct expression

levels of CD28 and ICOS.

In the second phase of our study, we assessed possible

differences in gene expression between ICOS- and CD28-

mediated costimulation by indirectly comparing the genes

modulated by each pathway with those regulated by CD3

signaling (CD3 alone vs CD3+ICOS or CD3+CD28). We show

that 880 genes are specifically modulated by ICOS and 1603

genes by CD28. Functional annotation of these DEGs pinpoints

to differences mostly related to metabolic pathways, a quite

intriguing finding given the emerging data pointing to cellular

metabolism as a key player in T cell activation and function, a

process defined as immunometabolism. In particular, the

functional analysis of the 880 genes specifically modulated by

ICOS mainly detected genes involved in glycosaminoglycan

biosynthesis (Figure S1C), including biosynthesis of dermatan

sulphate, chondroitin sulphate, and heparan sulphate. Since

glycosaminoglycan biosynthesis is involved in tissue repair,

this observation is in good agreement with the data of our first

analysis assessing the effects of ICOS- vs CD28-mediated

costimulation, highlighting pathways involved in late phases of

the immune response (53, 54). Fittingly, studies in mice have

shown that ICOS signaling is involved in wound healing (55, 56).

Surface proteoglycans act at as concentrators of chemokines

and cytokines, such as SDF-1 and IL-12, and modulate their

presentation to receptors (57, 58). Interestingly, heparan sulphate

mimetics perturbs T cell activation and differentiation, and

blocking heparan sulphate biosynthesis by NDST1/2 silencing in

T cells increases the proliferative response to weak activation

stimuli (59, 60). These data suggest that increased NDST1

expression and modulation of heparan sulphate metabolizing

enzymes may contribute to the weaker proliferative response of

T cells following ICOS-mediated costimulation in comparison
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with what observed following CD28-mediated costimulation. This

would also be in agreement with the notion that ICOS-mediated

costimulation supports effector T cell responses, whereas CD28

signaling is mainly involved in clonal expansion of T cells (10).

Among other glycosaminoglycans receptors, one cannot fail

to mention CD44, which modulates T cell activation and

function and enhances Treg activity by interacting with several

ligands including hyaluronan and chondroitin sulphate (53, 61).

Moreover, CD44 is subjected to a wide array of post-

translational carbohydrate modifications, including

glycosaminoglycan side chain additions, which can have

profound effects on CD44 binding function (62). It is also

worth mentioning that another ligand of CD44 is osteopontin

(OPN), which is an ICOSL ligand as well. ICOS and OPN bind

to ICOSL through a different binding site and elicit different,

often opposite, functional effects (35). Therefore, by activating

glycosaminoglycan synthesis, ICOS might also influence the

balance within the CD44/OPN/ICOSL/ICOS network.

Incidentally, molecules involved in the crosstalk between DC

and Natural Killer (NK) cells are differentially expressed by

CD3+ICOS-activated cells. Interestingly, our recent results show

expression of both ICOS/ICOSL in either population, with clear

consequences for NK function (63).

Functional analysis of the 1603 genes specifically modulated

by CD28 mainly detected genes involved in the oxidative

phosphorylation pathway, in particular components of the

mitochondrial respiratory chain. CD28 also induces genes

involved in fatty acid utilization and the mevalonate/

cholesterol biosynthetic pathway (Figures S1 D, E). This

finding fits with the notion that T cell activation is not only

supported by aerobic glycolysis and oxidative phosphorylation,

but it is also accompanied by a switch to anaerobic glycolysis,

allowing fast production of Adenosine triphosphate (ATP) and

availability of a carbon source for the macromolecular synthesis

required for clonal expansion and differentiation (64, 65).

Interestingly, a recent work has proposed that ICOS signaling

may play a role in the maintenance of a constitutive glycolytic

phenotype in long-lived TFH cells (66).

The modulation of respiratory chain supercomplexes by

both CD28 and, to a lesser extent, ICOS is, presumably, a

strategy to optimize electron flux to provide ATP for cell

proliferation and effector functions (67). Indeed, it is well

known that resting T helper cells are characterized by

oxidative metabolism, while their activation via CD3+CD28

costimulation increases glucose uptake and mitochondrial

Reactive Oxygen Species (ROS) production. In these cells,

available data indicate a role of complex III-dependent

mitochondrial ROS in NFAT activation (68). Furthermore,

increased mitochondrial activity is necessary for proliferation,

while cytokine production is less sensitive to mitochondrial

inhibitors (69). Accordingly, we show that ICOS costimulation

results in a weaker induction of the expression levels of
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mitochondrial respiratory chain components compared to

those seen upon CD28 costimulation.

A differential balance between the aforementioned metabolic

pathways also appears to be crucial for the differentiation of

different types of Th and Treg cells. In particular, mevalonate

seems to enhance the differentiation and suppressive activity of

Treg cells through the TGF-b signaling pathway. The

mevalonate pathway is also important in the synthesis of

cholesterol and nonsterol isoprenoids. Cholesterol plays a role

in ferroptosis, also highlighted by our analysis. Non-sterol

isoprenoids include geranylgeranyl pyrophosphate (GGPP)—

evidenced by our analysis—, which is required for T cell

survival and function. Moreover, GGPP enhances IL-2

production and Foxp3 Treg cell development and function

(70, 71).

Interestingly, several genes emerging as being regulated by

CD28 during lipid metabolism, such as ACAA2, HMGCS1, and

IDI1, are targets of PPARa (72, 73). Thus, their increased

expression may depend on activation of the PPARa pathway,

directly or indirectly, through the induction of SREBP. Among

the CD28 induced genes, farnesyl diphosphate synthase (FDPS)

is of particular interest, being a key regulator of Vg2Vd2 T cells

activation (74).

In conclusion, these data suggest that ICOS- and CD28-

mediated costimulations play distinct roles during the activation

of naïve T cells by modulating distinct sets of immunological and

immunometabolic genes. Given the different effects of ICOS and

CD28 on Th cell costimulation, the modulation of distinct sets of

immunological genes was expected, albeit not detected by

previous microarray analyses. Modulation of immunometabolic

genes by CD28-mediated costimulation was also expected given

the literature describing the immunometabolic effect of T cell

activation. In this regard, the activation of mevalonate pathways

underscores the role of CD28 in Treg activity. However, the effect

of ICOS-mediated costimulation on several glycosaminoglycan

biosynthesis pathways was unexpected and paves the way to a

novel research field on ICOS-mediated costimulation.
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modu l a t e d i n t h e o s t e o a r t h r i t i s (OA ) p a t hwa y i n t h e
CD3+ICOSvsCD3+CD28 group. (B) Heatmap showing unsupervised

hierarchical clustering of genes modulated in the p38 pathway in the

CD3+ICOSvsCD3+CD28 group. (C) Heatmap showing unsupervised
hierarchical clustering of glycosaminoglycans in the CD3+ICOSvsCD3

group, “ICOS_specific”. (D) Heatmap showing unsupervised hierarchical
clustering of CD28-specific genes modulated in the oxidative

phosphorylation pathway. (E) Heatmap showing unsupervised
hierarchical clustering of CD28-specific genes modulated in the

mevalonate/cholesterol pathway.
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