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Intrinsic spin-orbit interactions in flat and curved graphene nanoribbons
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Recent theoretical and experimental works on carbon nanotubes and graphene samples have revealed that
spin-orbit interactions, though customarily ignored in carbon-based materials, are more important and complex
than it was thought. We study the intrinsic spin-orbit coupling effects on graphene nanoribbons, both flat and
bent. Calculations are performed within the tight-binding model with the inclusion of a four-orbital basis set;
thereby the full symmetry of the honeycomb lattice and the hybridization of σ and π bands are considered.
In addition to the zero-energy π -edge states, σ -derived edge states are found for the three investigated ribbon
geometries. The σ states are also spin filtered and localized at the boundaries of the ribbons. The calculated
spin-orbit splittings are larger for the σ - than for the π -derived edge states. Due to this enhancement, spin-orbit
splittings of the σ states reach values of the order of a few Kelvin. These spin-filtered edge states are robust under
σ -π hybridization and curvature effects.
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I. INTRODUCTION

The influence that geometry and size have on the electronic
properties of carbon-based materials has been already proved.
Two-dimensional graphene sheets, graphene stripes known as
graphene nanoribbons (GNRs), or carbon nanotubes (CNTs)
formed by rolling a graphene sheet onto a cylinder, attribute
their unique electronic properties mainly to their geometries.
Chirality and diameter determine the properties of CNTs,
while the GNR physics depends on its width and the shape of
its edges.1 This strong dependence of the electronic properties
on the geometry arises from the peculiar structure of graphene
with carbon atoms ordered in a honeycomb lattice, divided into
two nonequivalent triangular sublattices, and confers to these
materials promising potential applications in electronics and
spintronics. The low-energy physics of carbon-based materials
is governed by the states close to the Fermi energy in graphene.
They correspond to the π states near the nonequivalent K and
K ′ points at opposite corners of the hexagonal Brillouin zone
(BZ), the Dirac points, at which the valence and conduction
bands touch and present a conical energy spectrum.

Due to the low atomic number of carbon, spin-orbit inter-
action (SOI) was expected to be small. Nevertheless, several
theoretical studies were devoted to investigate SOI effects in
graphite2 and more recently in CNTs and graphene.3–8 In a k.p
scheme and using a perturbation approach, it was shown that
the SOI opens a gap in the energy bands crossing at the Fermi
level and lifts the spin degeneracy for higher energy subbands.3

In a previous work,6 within a four-orbital tight-binding (TB)
framework, we have demonstrated the chiral dependence of
the intrinsic SOI effects, which cannot be described by a
continuum model. Spin splitting is only possible for chiral
CNTs due to the lack of inversion symmetry, while the spin
degeneracy remains for achiral CNTs. Furthermore, the re-
cently measured asymmetric splittings of valence and conduc-
tion bands in a CNT quantum dot9 are also explained within
the same model10–12 pointing out that curvature enhances the
SOI strength. In fact, recent experimental measurements of
the energy shifts caused by the SOI, have proved that the
SOI effects in CNT quantum dots and graphene samples are
not as small as predicted.9,13 Besides, since SOI is the key

ingredient for the quantum spin Hall state, the new phase
of matter proposed by Kane and Mele14 in graphene, the
previously considered almost negligible SOI interaction in
graphene-based nanostructures has risen to be a main topic
in the condensed matter field.15–20

The electronic properties of GNRs have been intensively
investigated due to the remarkable behavior of the zero-
mode edge states.21–27 Most of the works have been based
either on the k.p or the effective π -orbital TB approaches,
the simplest models that capture the physics of graphene,
although some first-principles and LCAO28–30 calculations
have also been reported. Furthermore, the effect of the SOI
in graphene sheets and GNRs with different boundaries is
currently attracting great interest and, in spite of the large
amount of published works, many aspects are still hidden.
Some numerical calculations based on multiorbital models31

and first principles32,33 can be found in the literature but, to our
knowledge, no investigation of the SOI on flat and bent GNRs
based on a sp3 tight-binding model has so far been performed.

We address here the study of the intrinsic spin-orbit
coupling effects on the electronic properties of GNRs with
edges of different shapes. We consider flat and bended
ribbons to investigate the interplay between the SOI and the
curved geometry and focus on the topological edge states, not
only the well-known π -derived states, but also those arising
from σ orbitals. We investigate how curvature influences
the interplay of confinement and SOI in determining the
topological character of the edge states.

An explicit description of edge states requires a model
that gives the energy bands through the entire BZ. Therefore,
calculations are performed by exactly solving an empirical
tight-binding Hamiltonian with a sp3 basis set. The TB model
handles equally all points in the BZ, which is not possible
with the continuum model and is especially appropriated with
regard to the treatment of the SOI. Besides, it takes into account
the full symmetry of the honeycomb lattice, hence the threefold
rotational symmetry and the trigonal warping are included.
Neither external potentials nor doping are taken into account,
although the effect of the σ -derived edge states on the behavior
of the spin Hall conductivity with the chemical potential would
be discussed.
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In addition to the π -edge states we found that σ -derived
edge states are also present for all the boundary geometries
of the GNRs studied. Furthermore, as expected its energy is
independent of GNR width and, for a large interval of k values
of the one-dimensional BZ, the σ edge states are located in
a gap. Hence, they are likewise perfectly localized along the
edges of the ribbon. Our main finding is that when the SOI
term is included in the Hamiltonian, independent of the GNR
termination, the fourfold degeneracy of edge states, both of π

and σ character, is lifted except at the time-reversal invariant
symmetry points � and K of the one-dimensional BZ. They
split into the spin-filtered edge states, which are robust upon
σ -π band hybridization and, as expected for a topological
state, are unaffected by curvature.

The paper is organized as follows: in Sec. II the details of
the model are given. In Sec. III the results obtained for the
different types of GNRs are described, and curvature effects
are analyzed by comparison of flat and curved geometries.
Finally, we conclude in Sec. IV summarizing our results and
drawing some conclusions.

II. MODEL AND METHOD

A ribbon consists of a stripe of graphene of infinite length
and finite width. There are two prototypical shapes of the
GNR edges, zigzag and armchair; they have a θ = 30 angle
of difference in the cutting direction and the termination of
a generic ribbon has a combination of the two types. We
consider ribbons of three different kinds of terminations:
zigzag, bearded, and armchair, and define the width of the
GNRs as n, where n stands for the number of zigzag lines for
the zigzag and bearded ribbons and for the number of dimer
lines for the armchair ribbon.21 The corresponding unit cell
contains N = 2n carbon atoms. Examples of the three types of
ribbons are displayed in Fig. 1. We do not consider here any
reconstruction or relaxation of the edges.34,35 Nevertheless,
chemical and structural modifications of graphene edges are
promising routes to design GNR-based devices.20,25,27

Curvature effects are introduced by bending the ribbon
along its width. The bending is realized without stretching,
varying the atom coordinates to form an open cylinder.
Different curvatures are obtained by changing the angles and
diameters of the cylindrical configurations.

The electronic properties of the graphene nanoribbons are
calculated from the one-electron Hamiltonian given by

H = H0 + HSO.

(c)(b)(a)

FIG. 1. (Color online) Schematic lattice structure of graphene
nanoribbons with (a) zigzag, (b) bearded, and (c) armchair edges.

H0 is the spin-independent noninteracting Hamiltonian,

H0 = p2

2m
+ V (r),

and HSO the microscopic spin-orbit interaction term,

HSO = h̄

4m2c2
S · (∇V × p),

where V is the full crystal potential, p the electron momentum,
and S represents the spin operator.

We calculate the band structure of the graphene ribbons
by the Slater-Koster36 empirical tight-binding (ETB) Hamil-
tonian. A four-orbital 2s, 2px , 2py , and 2pz basis set
is considered in order to include the conventional on-site
approach for the intrinsic SO interaction. Within the TB
approximation the H0 term is written as

H0 =
∑
i,α,s

εα
i,s +

∑
〈ij〉,α,β,s

t
α,β

ij cα+
i,s c

β

j,s + H.c., (1)

where i and j stand for the atomic sites of the honeycomb
lattice, α and β are atomic orbitals, and s the spin. εα

i,s

represents the atomic energy of the orbital α and spin s, t
α,β

ij

the hopping matrix elements between i and j atomic sites
and α and β orbitals, and cα+

i,s and cα
i,s are the creation and

annihilation operators of one electron at site i, orbital α, and
spin s, respectively.

Since the major contribution of the crystal potential, ∇V ,
is near the atomic nuclei, the intrinsic SOI can be accurately
approximated by a local atomic term of the form:

HSO =
∑

i

h̄

4m2c2

1

ri

dVi

dri

L · S = λL · S,

where spherical symmetry of the atomic potential is assumed.
ri is the radial coordinate with origin at the i atom, Vi the
spherical symmetric potential about the same atom, and L the
orbital angular momentum. The atomic SO coupling constant
λ depends on the orbital angular momentum L and thus on the
atomic orbital.

For the sp3 model Hamiltonian, the HSO term only couples
p orbitals and neglecting nearest neighbor SO terms, the
intrinsic SOI is described as an on-site interaction among
the p orbitals. The nonvanishing matrix elements of HSO

have been widely discussed previously (see, for example,
Refs. 37 and 38). In contrast, in the k.p and effective π -band
models, the atomic SOI is treated by perturbation theory as a
second-neighbor spin-dependent hopping term.3,7

HSO adds diagonal and off-diagonal spin-dependent matrix
elements to the 8N × 8N matrix Hamiltonian, where N is the
number of carbon atoms of the unit cell and 8 comes from
the four-orbital per spin TB basis set. Using the raising and
lowering angular momentum operators, L+ = Lx + iLy and
L− = Lx − iLy , respectively, and the Pauli spin matrices, the
complete Hamiltonian, H, in the 2 × 2 block spinor structure
is given by

H =
(

H0 + λLz λL−
λL+ H0 − λLz

)
, (2)
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FIG. 2. (Color online) Energy splitting for the conduction
(circles) and valence (diamonds) bands of the (61,0) zigzag CNT
as a function of the value of the spin-orbit coupling constant λ. The
solid (black) and dashed (red) lines are a guide to the eyes.

where the atomic-like spin-orbit term HSO has been added to
the SK-ETB spin-independent H0 Hamiltonian. The diagonal
terms act as an effective Zeeman field producing gaps of
opposite signs at the K and K ′ points of the BZ. HSO

induces σ -π hybridization and does not break the time-reversal
symmetry, therefore spin degeneracy cannot be removed on
systems with inversion symmetry.

The electronic properties of the GNRs are obtained by
the exact diagonalization of the total Hamiltonian H . The
Tománek-Louie parametrization for graphite,39 previously
used to calculate SOI effects on CNTs, has been also employed
in the present calculations. The TB parameters, taken from
Ref. 39 are as follows: εs = −7.3 eV, εp = 0.0 eV, ssσ =
−4.30 eV, spσ = 4.98 eV, ppσ = 6.38 eV, ppπ = −2.66 eV,
and specify the energy scale of the model. The spin-orbit
coupling strength of graphene is unknown and its exact value
is under debate. Due to the low atomic number of carbon; it has
been assumed to be very small and different values in the range
of meV have been given.7,8,14 In order to have a quantitative
estimate of the SOI-induced splittings, we have evaluated
λ from the SO-induced gaps experimentally measured in a
CNT quantum dot.9 In the experiment a zigzag small gap
CNT of about 5 nm of diameter is probed using tunneling
spectroscopy. The anisotropic gaps measured at zero magnetic
field are of ≈0.37 meV for electrons and of ≈0.21meV for
holes. The (61,0) CNT with a diameter of about 4.8 nm is
a zigzag semiconducting tube of the n = 3m + 1 family, so
the SOI-induced splitting is greater for the conduction than for
the valence band10 as occurs in the experiment. Calculated SOI
splittings for the conduction and valence bands are represented
in Fig. 2 for the (61,0) nanotube as a function of λ. From the
figure it is inferred that λ ≈ 3 meV is needed in order to
obtain SOI splittings similar to those experimentally reported.
This value is of the same order of magnitude of previous
estimations.7,8 In the figures we present results obtained with
values of λ in the range of 0.2–0.4 eV, for illustrative purposes.
This range corresponds to 0.03–0.06 in units of the ppσ =
6.38 eV parameter.

III. RESULTS

The electronic properties of GNRs are derived from the
band structure of graphene subject to a stripe geometry. The
combination of the confinement due to the finite size and
the presence of boundaries yields the peculiar band structure
of GNRs. The truncation of interatomic bonds caused by the
borders gives rise to the appearance of edge states, which are
strongly dependent on the atomic termination of the GNR.
Moreover, the energy subbands associated with the intrinsic
band structure of the graphene sheet are also dependent on
the boundary conditions of the GNR. Calculations have been
carried out in GNRs of different geometries and widths. In
order to avoid the coupling between edge states localized
at each boundary, ribbons of more than 50 chains are
considered.

A. Zigzag graphene nanoribbons

In zigzag graphene nanoribbons (ZGNRs) the atoms of each
edge belong to the same sublattice and opposite edge atoms
are of different sublattices. In the absence of SOI, the band
structure of ZGNRs presents together with the subbands orig-
inating from the two-dimensional graphene electronic struc-
ture, zero-energy π -orbital derived states at the 2

3
π
a < k < π

a
interval, where a is the graphene lattice constant. Hereafter k
will be given in units of π

a . These states, with wave functions
localized at the edges, form flat bands and give rise to a peak
in the density of states at the Fermi energy being crucial for
magnetic instabilities.21,40 Besides, between 1 and 3 eV below
the Fermi energy, a σ -orbital derived edge band appears in the
sp3 TB calculation. These states, which are missed in one-π
band models, disperse along the BZ and their wave function
amplitude is also fully localized at the edge atoms around
k = 0 and k = ±1, where the ZGNRs have energy gaps. It is
worth mentioning that ribbons of different widths have been
studied, from n = 10 to n = 200 and edge states, both π and
σ , appear at similar energies independent of the ribbon width.

To analyze the result of the SOI in ZGNRs, the band
structure of the n = 60 flat ZGNR with λ = 0.4 eV is
shown in Fig. 3 in the range of −1 � k � 1. The spectrum
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FIG. 3. Band structure of the zigzag ribbon n = 60 obtained with
SOI λ = 0.4. k are in units of π

a .
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FIG. 4. Zoom of the band structure of the ribbon N = 60 with
λ = 0.4 for the two edge states, left around k = 1 for the zero-edge
states (energies are multiplied by 30) and right in the region of k = 0
for the σ -derived band. k are in units of π

a .

remains gapless and the degeneracy of edge sates, originated
from both π and σ orbitals, is partially lifted. A zoom of the
dispersion relation of the π - and σ -edge states around the
time-reversal invariant k = ±1 and � points, respectively, are
presented in Fig. 4. The SOI shifts down in energy, the edge
states giving a small dispersion to the π flat bands. It also lifts
partially the fourfold degeneracy of both π - and σ -edge states,
which become twofold degenerate, except at the k = ±1 and
k = 0/(k = ±1) points of the BZ, respectively. Each edge
state splits into two degenerate Kramers doublets, with linear
dispersion in a very small k region around the crossing and
forward and backward mover states with opposite spin. In
addition, degenerate states are confined at different edges of
the ZGNR and thus two independent spin-filtered edge states
are at each boundary of the ribbon. Hence, for a given energy
the ZGNR has four conducting channels spatially separated;
an extreme of the ribbon contains a forward mover with a
given spin S and a backward mover with opposite spin, −S,
and conversely for the other extreme of the ribbon. Note that
in Fig. 4 the energy splitting of the π - and σ -edge states differs
almost by a factor of 30.

The localized character of these states can be observed in
Fig. 5, where the wave-function amplitudes are represented
against the atomic coordinates across the width of the
n = 60 ribbon, for three different values of k in the BZ.
The wave-function amplitude of both π and σ states is fully
localized at the edge atoms in a large k interval around the
k = ±1 and � points, respectively. The localization length of
the zero-energy state increases with k and eventually, for k
close to ± 2

3 , where it merges with the bulk bands, becomes
extended. Furthermore, the spatial localization correlates with
the π -σ hybridization induced by the SOI. At k = ±1, where
the state is composed of purely π orbitals, its wave function is
fully localized in the edge atoms, moving toward the � point
(i.e., k = ±0.9); the localization starts to decrease together
with an admixture with σ orbitals. Therefore, the presence of
the SOI and consequently of the π -σ hybridization, slightly
reduces the localization length of π -edge states. Analogously,
the σ -edge states show an almost pure σ -orbital character and
a strong localization at the borders of the ribbon for both � and

0

0.2

0.4

0 0 0
x

0

0.2

0.4

(a)

(b)

1 2

FIG. 5. (Color online) Wave-function amplitude of the localiza-
tion versus atomic coordinates across the ribbon width for the two
edge states represented in Fig. 4. (a) for the state at the Fermi level
at k = 1 (black stars), k = 0.85 (red circles), and k = 0.7 (green
diamonds), and (b) for the σ derived state at k = 0 (black stars),
k = 0.15 (red circles), and k = 0.3 (green diamonds). Black solid,
red dashed, and green dot-dashed lines are guides for the eyes. k are
in units of π

a .

k = ±1 points. The presence of a small π contribution, for k
values different from the high symmetry points, gives rise to
the increase of the localization length.

Due to spin-orbit coupling, S is not longer a good quantum
number and the eigenfunctions are a linear combination of
spin-up and spin-down states. The calculated expectation value
of 〈S〉 shows that the spin orientation of both π - and σ -edge
states is almost perpendicular to the graphene plane at the
time-reversal invariant k = 1 and � points. The deviation from
the perpendicular axis is smaller than 1%. The orientation axis,
although dependent on the magnitude of k, slightly changes
in the k interval in which the edge states remain spatially lo-
calized. When σ -π hybridization becomes relevant and states
delocalize, the in-plane component has a finite value and the
spin orientation axis of the extended states forms an angle with
the graphene plane. Furthermore, the expectation value of the
orbital angular momentum 〈L〉 for edge states is almost zero,
indicating the quenching of the orbital angular momentum.

Finally, because of the estimated small value of λ ≈ 3 meV,
the corresponding SOI splitting of the π states is only
of the order of 0.17 × 10−3 meV, which gives temperatures
in the range of 10−3 K, in agreement with previous estima-
tions. Nevertheless, for the new σ -derived edge states the
calculated splitting is much larger, 0.51 meV, which results
in a temperature of the order ≈5 K that, although small, is
experimentally attainable and, thus, the topological protected
spin-filtered states of graphene could be observed.

B. Klein bearded graphene nanoribbons

In this termination, as in the case of zigzag edges, all atoms
of one end belong to one sublattice, and those of the opposite
end, to the other sublattice. The Klein’s edge could be formed
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FIG. 6. Band structure of the bearded edge N = 60 ribbon without
(with) SOI top (bottom). k are in units of π

a .

by bonding an additional C atom to every edge site of the
zigzag-ended ribbon.41 Zigzag and Klein ribbons differ in the
number of cut bonds.

Figure 6 shows the dispersion relation of an n = 60 ribbon
with this geometry without and with the SOI effect. The Klein
boundary produces as well edge states localized at the ends
of the ribbon, with the same behavior of those of the zigzag
nature, although the zero-energy flat bands lie at the central
region of the BZ,21,23 − 2

3 � k � 2
3 . Besides the flat zero edge

π states, there are two new edge states of σ character. In the
absence of SOI, one of the σ states, not shown in the figure, lies
well below the Fermi energy, at around −4 eV, mixing with the
bulk bands, and showing a weak dispersion along the whole
BZ. The other σ state lies at zero energy at the � point, but
presents energy dispersion, lowering its energy as |k| increases.
The flat bands are of pure π character, and are localized in
the outermost atoms at either edge of the ribbon. Also the
wave-function amplitude of the dispersive band of mainly σ

nature is strongly localized at the edge atoms, ≈0.91% at the
extreme atoms. The spin-orbit coupling, besides to induce the
splitting into two Kramer’s doublets of the edge bands, has
drastic effects on the energy and dispersion of both π and
σ bands. While π states acquire a small dispersion, a large
energy shift and flattening of the σ bands occur. These effects
originate from the π -σ hybridization induced by the SOI and

depend on the value of the coupling strength. For example, the
zero-energy state was at k = 0.2 pure π -like in the absence
of the SOI term, but has around 1.1% of σ components when
the SOI term is considered with the λ = 3 meV coupling. As
shown in Fig. 6 bottom, the SOI shifts the edge bands, inducing
a separation at �, for λ = 0.4 eV, of 276 meV which varies
almost linearly with the value of λ and therefore it reduces to
≈7 meV estimated when λ = 3 meV.

Moreover, the SOI-induced energy splitting of edge states is
of ≈0.38 meV and 0.18 × 10−3 meV for the lower and higher
energy bands, respectively, at k = ±0.2. The difference of the
splittings is due to the different orbital compositions of the
bands and is of the same order than in the zigzag ribbons.
Furthermore, the variation of the orbital composition with k
explains the different splitting magnitudes at different regions
of the BZ. The extended bulk subband states, associated with
the intrinsic band structure of the graphene sheet are, in the
presence of spin-orbit coupling, still doubly degenerate due to
the combination of time-reversal and inversion symmetries.

The average 〈S〉 and 〈L〉 values, analogous to those of
zigzag ribbons, point out the counterpropagation nature of
the edge states and give a spin quantization axes almost
perpendicular to the sheet axes.

C. Armchair graphene nanoribbons

Armchair edges are formed by homogeneous lines of
dimers where atoms belonging to the two different sublattices
alternate. The electronic properties of these ribbons present
a strong dependence on their width, as it happens for zigzag
CNTs. The armchair-ended ribbons are metallic when its width
W = (3M − 1)d, where M is a positive integer and d is
the C-C atom distance. For other values of W the armchair
ribbons (AGNRs) are semiconductors with direct band gaps
at � which are inversely proportional to its width.28,42 They
follow a family behavior as it is found for zigzag CNTs,10,30

where metallic behavior is obtained in a sequence of period 3.
However, zigzag CNTs are metallic for n = 3M due to the dif-
ferent periodic boundary conditions imposed by the cylindrical
geometry. Ribbons, with both metallic and semiconductor
behavior, of different widths are calculated in order to clarify
how the SOI affects both electronic structures.

1. Metallic AGNRs

Armchair ribbons of width W = (2M − 1)d present a band
structure with two states crossing at the Fermi energy at the
� point of the BZ. Figure 7 shows the band structure of
the n = 62 ribbon calculated with SOI and λ = 0.4. In the
absence of spin-orbit coupling, the crossing states are only
spin degenerate, have pure π -orbital character, show linear
dispersion, and their wave functions are extended throughout
the whole ribbon width. The inclusion of the SOI term in the
Hamiltonian opens a small gap at �, for the ribbon n = 62
is of ≈10−4 meV for λ = 3 meV, which increases as the
width of the ribbon decreases.31 Furthermore, it changes the
orbital composition of the linear states allowing for a small
proportion about 5%, of σ orbitals and the pure spin nature is
not conserved. Nevertheless, the two linear dispersing states
remain twofold degenerate and keep their extended character.
These states have been found to persist in the presence of
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FIG. 7. Band structure of the armchair N = 62 metallic ribbon
(top) and N = 60 semiconductor ribbon (bottom) with SOI λ = 0.4.
k are in units of π

a .

intrinsic spin-orbit interactions as spin-filtered states localized
on the ribbon edges within the low-energy Dirac model.15

In the present model, in order to obtain localization of these
states, we need unphysical high values of λ of the order of
2.8 eV.

Edge states composed mainly of σ orbitals and fourfold
degeneracy appear below the Fermi level. They lie below
−1 eV at the k = ±1 points of the BZ, and are dispersive and
fully localized at the edge atoms of the ribbon. At k ≈ ±0.3,
they merge with the bulk bands, but keep their fourfold
degeneracy and localized character. The wave-function am-
plitude is confined to the outermost atoms, although at the
zone center, localization occurs at both ends of the ribbon.
These σ -orbital derived states are truly surface states appearing
at the same energy independently of the ribbon width, as we
have confirmed calculating AGNRs of up to n = 122 and
n = 242.

The σ -derived edge states, upon SOI inclusion, split into
two doublets. The value of the splitting varies with k reaching
a maximum value of ≈0.36 meV at k = ±0.5 for λ = 3 meV.
These states keep the localization at the boundary atoms,
although their orbital composition presents now a small
proportion of π orbitals. The so-called bulk subbands of the
ribbon maintain always their double degeneracy.

2. Semiconductor armchair GNRs

The bottom of Fig. 7 shows the band structure correspond-
ing to the semiconductor ribbon N=60, with SOI λ = 0.4.
The energy gap at � is of 0.156 eV almost equal to the
value obtained without SOI. The σ -orbital derived edge states
and bulk-related subbands present the same features as in
the metallic ribbons. Even the SOI energy splitting of the
Krammers doublets are of the same order than in the previous
case.

D. Curvature effects

Next we analyze the effect of curvature. As stated earlier,
in the curved geometry bond stretching is not allowed along
the ribbon. The lattice structure of the ribbon is isotropically
bended along the width, x direction, while the bonding
distances, and therefore the hoppings, between atoms in the y

direction are not modified.
Curvature induces hybridization between π and σ orbitals.

In fact, several works have shown that curvature enhances
the SOI effects in CNTs.6,10,11,31 The curvature-induced σ -π
hybridization is related to the amplification of the SOI effects
for small diameter tubes. However, curvature effects turn out
to be weaker for ribbons than for CNTs.31,43 The cylindrical
shape of the tubes impose periodic boundary conditions that
confer symmetries to the wave functions which do not hold in
the open geometries. As for the flat geometry, a critical value
of the width—slightly greater—is needed in order to avoid the
coupling of edge states in the bent ribbons. Above the critical
value of the width of the ribbon, the behavior of the edge states
found in the flat ribbons is not affected by the curvature. The
localized nature of the edge states remains upon bending, only
in some cases the localization length increases. In order to
illustrate the differences between flat and curved geometries
the electronic structure of the n = 10 zigzag ribbon, both flat
and bent, are depicted in Fig. 8.

In the absence of SOI, flat and bent ZGNRs only differ
by a small variation of the subband dispersions. In both
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units of π

a .

075406-6



INTRINSIC SPIN-ORBIT INTERACTIONS IN FLAT AND . . . PHYSICAL REVIEW B 83, 075406 (2011)

-4

-2

0

2

4

E
ne

rg
y

0 0.5 1
k

-4

-3

-2

-1

E
ne

rg
y

0 0.5 1
k
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calculated with λ = 0 (top left) and λ = 0.4 eV (top right). Bottom
panels represent a zoom of the corresponding bands between −4 and
−1 eV. k are in units of π

a .

geometries, edge states—π - and σ -orbital derived—appear
at similar energies although the orbital composition of the π

states is slightly changed with a small admission of σ orbitals
in the curved ribbon. The zero-energy dispersionless states, in
the bent geometry, present a very weak dispersion. Both, the
σ -orbital admission and the dispersion, increase as k increases,
and merge with the bulk bands at a k smaller than in the flat
geometry. These differences are clear in Fig. 8, where crossing
of the edge state occurs in the flat n = 10 ZGNR band structure
while, due to the hybridization, anticrossing is observable in
the curved case. SOI effects are similar in both geometries,
although a slight increase of the splittings appears in the curved
ribbon.

In order to compare with the n = 10 ribbons, Fig. 9
represents the band structure of the armchair (5,5) carbon
nanotube, both without and with SOI. The (5,5) CNT could
be thought of as formed by joining44 the two borders of the
curved ZGNR n = 10. Due to the breaking of the rotational
symmetry, the number of bands is greater in the ribbon than
in the tube. While the point group of the ZRGN is the C3

group of graphene, the (5,5) tube belongs to the D5d group.
The corresponding irreducible representations are ten 1D for
the C3 and two 1D and four 2D for the D5d .2 Consequently,
considering spin all the subbands are twofold degenerated in
the ZGNR and two are twofold and four fourfold degenerated
in the CNT, out of the 10 bands appearing in the energy interval
shown in Figs. 8 and 9 (see, for example, Ref. 6). However,
in both ribbons and NT, the lower bands crossing at the Fermi
level are only spin degenerate.

The different degeneracy accounts for the different conse-
quences that curvature has in the ribbons and in the CNTs

in the presence of SOI. As it is well known, SOI removes
all degeneracies compatible with time-reversal symmetry and
parity. Since ZGNR states are only spin degenerate, large
splittings comparable to those of the fourfold degenerate
bands of the NT are not observable. Note that the band
structure shown in Fig. 8 corresponds to the major possible
bended ZGNR, which forms an open cylinder with a curvature
identical to that of the CNT. In fact, curvature effects are also
small in ZGNR in the presence of the SOI. They reduce to a
slight increase of the energy splitting; see, for example, the
second subband. Therefore, enhancement of the SOI strength,
analogous to that shown for CNT, does not occur in ribbons.

The effects of curvature on the bearded ribbons are very
similar, inducing changes in the orbital compositions of the
edge states as well as a very weak dispersion in the flat bands.
At � the σ -orbital derived edge, zero-energy states are shifted
down in energy by curvature effects, but the shift in energy
decreases with the ribbon width. Furthermore, there is a small
increase of the energy splittings in the curved geometry when
the SOI is included.

On the other hand, the main effect of curvature on the
armchair ribbons is to induce a small gap at � on the metallic
ribbons between the two linear states crossing at the Fermi
energy. In addition, in both metallic and semiconducting
AGNRs, the SOI-induced energy splittings of the σ -derived
edge states are slightly greater on the curved than in the flat
geometry.

Curvature also results in a variation of the spin orientation
axis and in an increase of the orbital angular momentum.
The expectation value of 〈S〉 for the edge states is no longer
perpendicular to the graphene sheet, but always an in-plane
contribution turns the spin axis to form an angle with the
ribbon plane. Furthermore, 〈L〉 increases by more than two
orders of magnitude with respect to that of the corresponding
flat ribbon. Nevertheless, for all the ribbons studied it is still
much smaller than the orbital moment attributed to CNTs due
to their cylindrical geometry.

In general, the major effect of curvature is on the edge states,
in the absence of SOI and for flat ribbons with widths greater
than 50 chains, the wave functions of the degenerate edge
states are fully localized at either end of the ribbon, thus in the
presence of SOI they become spin-filtered states. However,
for curved ribbons a greater number of chains is needed in
order to avoid having the states, localized at the left and right
ends, interact and accumulate at both edges, preventing the
formation of spin-conducting channels.

IV. DISCUSSION AND CONCLUSIONS

We have studied the spin-orbit interaction effects on the
electronic structure of graphene nanoribbons taking into
account the actual discreteness of the lattice. The energy
subbands associated with the graphene intrinsic electronic
bands remain doubly degenerate even when the SOI term
is included in the Hamiltonian. The atomic lattice structure
satisfies spatial inversion symmetry and, in the presence of
time-reversal symmetry, the intrinsic spin-orbit coupling does
not break the spin degeneracy.6,14

The result of the spin-orbit coupling is much more
pronounced in the edge states and particularly in those with
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a large contribution of σ orbitals, as it happens in CNTs
and bilayer graphene.10,45 In fact, besides recovering previous
results on the edge states originated from π orbitals, a better
understanding of the interplay between the intrinsic spin-orbit
coupling and the lattice geometry is reached. It is found
that for the flat zero bands that appear at 2

3 � k � 1 and
− 2

3 � k � 2
3 in the zigzag and bearded ribbons, respectively,

the SOI-induced splitting is greater in the regions of the BZ
where the larger hybridization with σ orbitals takes place.

The inclusion of σ orbitals in the basis set gives rise to edge
states missed in one-band calculations. Edge states originated
from the σ orbitals have been found in the three types of
ribbons investigated, lying below the Fermi energy. These
states are localized in the extreme atoms at different regions
of the BZ (around k = 0 and = ±1). As it occurs for the
π -derived states, SOI lifts its fourfold degeneracy except at
the k = ±1 and � points protected by time-reversal symmetry.
A relevant result is that the energy splitting is greater, more
than two orders of magnitude, for the σ states than for the
π -derived states. This result confirms those found for CNTs10

and for a graphene bilayer where, due to the mixing between
π and σ bands by interlayer hoppings, the spin-orbit coupling
is about an order of magnitude larger than in a single layer.45

While the energy spin-orbit coupling-induced splittings are
of the order of 10−3 meV, equivalent to T ≈ 0.001 K for the
π -derived edge bands, the edge states originated from σ

orbitals present splittings of the order of 10−1 meV (i.e., T ≈ 4–
5 K). These results suggest that σ states would be particularly
appropriated to observe the spin currents associated with the
spin-filtered edge states.

In the present work, Fermi energy is taken at zero energy
and neutral graphene is considered, but appropriate chemical
doping or external gates may change this value to tune the
energy of the σ -edge states. In general, they lie around 1 eV
below the Fermi level, although for the Klein GNRs the
σ -derived states are only a few meV away from EF . Therefore,
they are easily accessible by applying an external potential,
which confers Klein nanoribons the ability to exhibit the
quantum spin Hall effect.

Since curvature is known to strongly enhance the spin-orbit-
induced effects on carbon nanotubes, we have considered both
flat and curved nanoribbons and showed the different behavior
that open and close boundary conditions impose.

The effects produced by the SOI term and by cur-
vature would, in principle, be similar since both induce
σ -π hybridization and lift degeneracies. Nevertheless, cur-
vature for the bearded and armchair ribbons, lifts some of the

degeneracies at the � point, while SOI does not. This result can
be understood considering the mapping of the two-dimensional
graphene bands on the axial direction of the ribbons: while for
the zigzag ribbons the Dirac points are projected at k = ± 2

3 ,
for armchair termination K and K ′ points are mapped to
�. The curvature of the lattice affects the bands around the
� region of the BZ in the armchair ribbons, in contrast, for
the zigzag termination, the main effects of curvature occur
in the vicinity of k = ± 2

3 . Analogously, in CNTs, curvature
induces a gap in the primary metal n = 3q zigzag tubes while
armchair CNTs are metallic.

The interplay between curvature and SOI effects in
nanoribbons is not as significant as in CNTs.31 The boundary
conditions imposed by the cylindrical shape of CNTs confer
rotational symmetry which, alongside the bipartite nature
of the honeycomb lattice, is in the origin of the unusual
electronic properties of CNTs. Orbital magnetic moments
10–20 times larger than the Bohr magneton have been observed
in suspended CNTs,46 attributed to semiclassical electron
orbits encircling the tube circumference, whose diameter is
much larger than the radii of the atomic orbitals.46 This
behavior does not occur in the bent ribbons, where no rotational
symmetry holds. The spin-orbit coupling effect in bent ribbons
is mostly due to the increased π -σ hybridization. Thus, both
curvature and SOI contribute to the increase of the orbital
angular momentum and deviate the spin orientation from the
perpendicular direction to the graphene sheet. Finally, it is
found that curvature does not break the chiral symmetry of the
edge states, and its effects on the localization reduce to a small
increase of the localization length.

In summary, we estimate the magnitude of the intrinsic
spin-orbit coupling to be ≈3 meV and, although small,
we have demonstrated that under certain geometries and
experimental conditions the quantum spin Hall state predicted
in graphene should be experimentally observed in nanoribbons
at temperatures of the order of 3–4 K. Furthermore, the spin-
filtered edge states are robust and unaffected by curvature. Our
results highlight the importance of symmetry to understand the
spin-orbit coupling effects in graphene nanoribbons.
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