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Effect of pressure on the magnetism of bilayer graphene
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We study the effect of pressure on the localized magnetic moments induced by vacancies in bilayer graphene
in the presence of topological defects breaking the bipartite nature of the lattice. By using a mean-field Hubbard
model, we address the two inequivalent types of vacancies that appear in the Bernal stacking bilayer graphene.
We find that by applying pressure in the direction perpendicular to the layers the critical value of the Hubbard
interaction needed to polarize the system decreases. When combined with an external electric field applied
perpendicularly to bilayer graphene the effect becomes sizable and can be detected experimentally. The effect is
particularly enhanced for one type of vacancies, and admits straightforward generalization to multilayer graphene
in Bernal stacking and graphite. The results clearly demonstrate that the magnetic behavior of multilayer graphene
can be affected by mechanical transverse deformation.
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I. INTRODUCTION

The magnetic properties of graphene and its multilayer
compounds remain one of the most interesting topics in
the system that still awaits experimental confirmation. The
improved experimental capabilities to produce and manipulate
large samples has given rise to a renewed interest in the
issue.1 It is known that vacancies, edges, and other defects
that lead to dangling bonds in the graphene system induce
localized magnetic moments that might give rise to interesting
applications. The theoretical paradigm around the magnetism
in graphene is the Lieb theorem2 that fixes the spin of the
ground state of the bipartite system to be half the number
of the unpaired atoms in the lattice. Although the theorem is
demonstrated only for the Hubbard model in bipartite lattices,
the result has proven to be very robust and to hold in more
general calculations based on ab initio or density functional
methods.3,4 While the interactions can be extended, it has
been recently proven that the ground-state magnetization is
very sensitive to the presence of local topological defects such
as five or seven rings breaking the bipartite character of the
lattice.5,6 In particular it has been shown that when one of
the vacancies inducing magnetic moments is reconstructed to
form a pentagon, the critical value of the Hubbard interaction
needed to reach a finite polarization increases significantly.7

Bilayer graphene (BLG) is even more interesting than
single-layer graphene (SLG) under many points of view,8 in
particular for the magnetic properties. In Bernal stacking, BLG
can support two types of vacancies giving rise to unpaired
atoms: those produced by removing a site having a neighbor
in the adjacent layer are named β, and those coming from sites
that are not connected to the other layer are called α vacancies.
In a bipartite lattice, unpaired atoms give rise to zero-energy
states and the physics underlying the magnetic properties of
the system is that of the electronic interactions in the manifold
of zero-energy states. It has been recently shown9,10 that the
significant differences between the wave functions of the zero
modes associated with the α and β vacancies in BLG give rise
to different physical behaviors. In particular when the system
is gapped by an external gate, the vacancies of type α generate
fully localized states inside the gap.

Recent experimental progress in production and manipu-
lation of graphene samples has broadened the possibilities of
tailoring the properties of SLG and BLG. Pressure is known
to play an important role in the stability of the gate-induced
gap in BLG11 and on the impurity states.12

In this work we analyze the effect of pressure on the
behavior of the localized magnetic moments coming from
the two types of vacancies in the presence of a topological
defect. We show that the critical interaction value Uc needed
to polarize the system decreases for increasing pressure. The
effect is particularly enhanced for vacancies of type α. We
clarify the physical mechanism leading to this behavior and
propose pressure as a way to improve the magnetism of the
samples.

We work with the tight-binding (TB) model, including
a Hubbard interaction. The results are obtained by a self-
consistent computation within the unrestricted Hartree-Fock
approximation. A further analytical analysis using degenerate
first-order perturbation theory explains the results in terms
of the different energy lifting that occurs in the subspace
of the zero modes under the perturbations originated by the
pentagonal hopping. We argue that the physical result will
remain when going beyond the simple calculation performed in
this work and extend the results to other graphene multilayers.

II. MODEL

The lattice structure of AB Bernal-stacking BLG is
schematically represented in Fig. 1(a). The atoms of the A
sublattice in the top layer are connected by t⊥ to these of the
B sublattice of the bottom layer. We will consider the minimal
model for the BLG with only intralayer t and interlayer t⊥
couplings. The estimated values of these parameters in the
system are t ≈ 3 eV, and t⊥ ≈ 0.3–0.4 eV ∼ t/10.8

The two different types of vacancies are also shown in
Fig. 1(a). The α vacancy where the removed atom in the
top layer (B1 in the figure) is not connected to the second
layer is represented in the left-hand side. The right-hand side
represents a β vacancy (A1 in the figure). Figure 1(b) shows
the reconstructed pentagonal link named tp in this work. tp
represents the hopping integral between two atoms belonging
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FIG. 1. (Color online) (a) Bilayer lattice structure and main
tight-binding parameters. Left: α vacancy. Right: β vacancy.
(b) Reconstructed vacancies modeled by a pentagonal link.

to the same sublattice in the reconstructed vacancy. The
formation and dynamics of topological defects in graphene
have been experimentally observed with transmission elec-
tron microscopy.13 Defects consisting of multiple five- and
seven-membered rings of C atoms spontaneously appeared.
Moreover the formation of pentagonal rings is identified as
the first stage of vacancy reconstruction in the honeycomb
lattice.14

The non-interacting TB Hamiltonian for the π electrons of
the bilayer system is15–17

HTB =
2∑

i=1

Hi − t⊥
∑
R,σ

[a†
1σ (R)b2σ (R) + H.c.], (1)

where Hi corresponds to the SLG Hamiltonian:

Hi = −t
∑
R,σ

a
†
iσ (R)[biσ (R) + biσ (R − a1)

+ biσ (R − a2)] + H.c. , (2)

and aiσ (R) [biσ (R)] are the annihilation operators for electrons
at position R in the sublattice Ai (Bi) of the layer i (i = 1,2)
with spin polarization σ . The basis vectors can be chosen
as a1 = a êx and a2 = a(êx − √

3 êy)/2, with a = 0.246 nm
being the lattice spacing.

The lattice of BLG is a bipartite lattice and the TB
minimal model has electron-hole symmetry. Vacancies are
modeled by suppressing the corresponding lattice site. When
the pentagonal reconstruction is considered, a bond between
two neighboring atoms is added as explained below. We
will consider the simplest topological defect modeled by
first producing a vacancy and then adding a pentagonal link
connecting two of the closest atoms to the vacancy as shown
in Fig. 1(b). Since the two atoms belong to the same sublattice,
this defect breaks the bipartite nature of the lattice.

The magnetic behavior of BLG in the presence of vacancies,
edges, and other defects has been investigated using the Hub-
bard model in Refs. 9,18–20. The interacting TB Hamiltonian
is H = HTB + HU , with

HU = U
∑
R,ι

[naι↑(R)naι↓(R) + nbι↑(R)nbι↓(R)] , (3)

where nxισ (R) = x†
ισ (R)xισ (R), with x = a,b, ι = 1,2 and

σ =↑,↓.

We use finite clusters with one electron per atom (half-
filling) and impose periodic boundary conditions in order to
avoid edge effects. The calculations have been performed with
clusters of different number N × N of unit cells, with four
C atoms per unit cell. Clusters up to 2500 atoms have been
considered to explore finite size effects. We found that they
are negligible in all our physical variables (energy per cell,
charge distribution, spin-spin correlations) for cluster sizes
above 900 atoms. The Hamiltonian is solved in the unrestricted
Hartree-Fock approximation, and the mean-field spin density
at each lattice site is obtained self-consistently.

It is known that a finite staggered magnetization appears
in the honeycomb lattice above a critical value of the on-
site Coulomb interaction which, in mean-field calculations is
Uc ≈ 2.2t .21,22 We will keep the values of U below this value
to make sure that the physics explored is due to the magnetic
moments associated with the defects on the lattice. Notice
that the critical values of the Hubbard repulsion obtained with
a mean-field approach are smaller than those obtained with
methods which take into account quantum fluctuations.23

Evidence of the presence of localized magnetic moments
around isolated vacancies has been reported recently in
scanning tunneling microscopy experiments on a graphite
surface.24 The experimental results have been fitted by using
a nearest-neighbor TB model for the π electrons, showing
that the π band TB Hamiltonian describes correctly the main
electronic properties of the system in the presence of a vacancy.

III. VACANCY-INDUCED ZERO-ENERGY STATES

In the honeycomb lattice, a vacancy gives rise to a
quasilocalized state with a continuum limit wave function

�(x,y) ≈ eiK.r

x + iy
+ eiK′.r

x − iy
, (4)

where K and K′ are the reciprocal space vectors of the two
inequivalent corners of the first Brillouin zone, and (x,y) are
distances from the vacancy position.25

An analytic expression for the vacancy-induced states in
the continuum model of BLG was obtained recently in Ref. 10
following the procedure outlined in Ref. 26 for the monolayer
case. By cutting the lattice into left and right regions with
respect to the vacancy position, a zigzag edge to the left and
a Klein edge27,28 to the right appear. The wave function is
obtained by matching surface state solutions at the zigzag
edge with that localized at the Klein edge. Depending on the
type of vacancy, two solutions are obtained. The β vacancy
produces a zero-energy state quasilocalized on atoms of the
opposite sublattice in the same layer of the vacancy, decaying
as 1/r away from the vacancy. Assuming the vacancy to be
located in layer 1, the continuum limit wave function can be
written as

ϒ1(x,y) ≈ �(x,y),
(5)

ϒ2(x,y) ≈ 0 ,

where ϒi specifies the wave function component on layer i,
and �(x,y) is the quasilocalized state given in Eq. (4). The
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zero-energy states induced by a vacancy of α type has the wave
function

ϒ1(x,y) ≈ �(x,y),
(6)

ϒ2(x,y) ≈ t⊥
t

e−i2θ eiK.r + t⊥
t

ei2θ eiK′.r ,

where θ = arctan(y/x). This is a delocalized state, with the
peculiarity of being quasilocalized in one layer (where the
vacancy sits) and delocalized in the other.10 We notice here
that the wave function of the β vacancy is insensitive to t⊥
while this parameter enters explicitly in the wave function of
the α vacancy, a fact that will be important in the forthcoming
analysis.

IV. NUMERICAL RESULTS

A. Magnetism and the pentagonal links

Since the lattice of the BLG model used in this work is
bipartite, the magnetic behavior of the system follows Lieb’s
theorem as in SLG. Therefore in the presence of vacancies, for
any repulsive value of the Hubbard interaction U , the ground
state of the system at half filling has a total spin equal to half
the number of unbalanced atoms S = (NA − NB)/2. We have
analyzed the magnetic behavior of the two different types of
vacancies that occur in the BLG in the presence of a pentagonal
link. We observed that both types of vacancies have the same
behavior and it coincides with what happens in SLG.7 We first
considered the simplest situation: two vacancies on the same
layer and of the same sublattice, one of them reconstructed by
forming a pentagonal link tp pictorially shown in Fig. 1(b).
In this situation a finite critical value of the on-site Coulomb
interaction is needed to reach the ground-state polarization
predicted by Lieb’s theorem. For values of U below Uc, the
total spin of the ground state is zero. By varying the pentagonal
hopping integral from 0.1t to t we have verified that the critical
value of U increases monotonically with tp for both types of
vacancies. This is shown in Fig. 2(a) for different values of the
perpendicular hopping t⊥.
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FIG. 2. (Color online) (a) Critical value of the Hubbard parameter
U needed to polarize the cluster as a function of the strength of the
pentagonal link tp , for different values of the perpendicular hopping
t⊥ in units of t . From lower to upper curves: t⊥/t = 1, 0.5, 0.1.
(b) Dependence of the critical U on the perpendicular hopping t⊥ for
fixed values of the pentagonal link.

B. Effect of pressure

We have explored the influence of pressure on the magnetic
properties of BLG. The effect of increasing pressure is
modeled by increasing the hopping between atoms of different
layers t⊥. The most common value for t⊥ considered in BLG is
t⊥ ≈ 0.1t , although recent works considering different types
of stacking in few layers graphene have produced values up to
t⊥ ∼ 0.502 eV with t = 3.16 eV.29

In order to exemplify the behavior found in this work and for
simplicity we will study the magnetic polarization of the sys-
tem in the situation described before: two vacancies of the same
sublattice, one of them reconstructed forming a pentagonal
ring. We have seen that the effect of pressure is very different
for the two different types of vacancies supported by BLG.

We have varied the perpendicular hopping in the range
t⊥ = 0.1t to t⊥ = t and for each value of t⊥, we increased
the pentagonal hopping tp from 0.1t to t . In the case of the β

vacancies we found that the magnetic behavior of the system
is independent of t⊥. The value of Uc increases with tp but
does not depend on t⊥. Pressure has no effects on the spin
polarization of the system in this case. This can be understood
by observing that since the wave functions induced by β

vacancies have amplitude only on one layer, the behavior is
just that of the SLG. This behavior will change if next-nearest
interlayer hoppings γ3 and γ4 are taken into account, with β

vacancies becoming more similar to α vacancies.
Considering α vacancies we observed that for a fixed value

of the pentagonal hopping tp, Uc decreases as t⊥ increases.
This behavior can be appreciated in Fig. 2(b), where we show
the dependence of the critical Uc on t⊥ for various fixed values
of tp. This indicates that pressure could help the polarization
of the BLG ground state. In Sec. VI we discuss how effective is
pressure in changing t⊥ in real systems, and thus how sensitive
is BLG magnetism to pressure. Here we anticipate that, when
used simultaneously with a perpendicular electric field,9 the
effect could be seen experimentally.

We have seen that the strength of the pentagonal hopping
increases the critical Uc needed to polarize the cluster, but in
the case of the α vacancies the perpendicular hopping has the
opposite effect: it decreases Uc and favors the magnetization.
This behavior will be explained in Sec. V by performing an
analysis with degenerate perturbation theory.

We have also considered the case that the two vacancies are
in different layers. To obtain a nonzero magnetization, Lieb’s
theorem requires that the two vacancies belong to the same
sublattice, A or B. Hence, in this case to get a magnetic ground
state, both types of vacancies α and β must be present. We
observe that t⊥ has no effect on the critical value of the Hubbard
interaction needed to obtain the spin polarization of the ground
state when the pentagonal link is attached to a vacancy of β

type. On the contrary, when the pentagonal ring is formed
by reconstructing the α vacancy, Uc decreases as t⊥ increases
as it occurs in the case of having both vacancies of α type.
Therefore the value of t⊥ affects the magnetic behavior of the
bilayer system when a pentagonal hopping exists. Otherwise
Lieb’s theorem holds and the critical U is zero for any value of
t⊥. This behavior will also hold for other types of local defects
breaking the sublattice symmetry as heptagons, dislocations,
or clusters of defects.
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V. PERTURBATIVE ANALYSIS

In the following we explain the results obtained in the
previous section by studying how the zero-energy modes
introduced in Sec. III are affected by the pentagonal link
giving rise to the topological defect shown in Fig. 1(b). We
use first-order degenerate perturbation theory. The discussion
is presented on general grounds having in mind application to
multilayer graphene and graphite.

A. Definitions

Let H be the noninteracting TB model Hamiltonian for
some graphitic system preserving the bipartite nature of the
lattice, as is the case of Eq. (1). Let us assume the system to
hold n vacancies belongs to the same sublattice, with n induced
zero-energy modes |ψ1

v 〉 · · · |ψn
v 〉, such that

H
∣∣ψi

v

〉 = 0. (7)

Explicitly, using localized atomic orbitals as TB basis,
{|1〉 , . . . , |N〉}, where N is the number of lattice sites in the
system, we can write the zero-energy modes as

∣∣ψi
v

〉 =
∑

j

aj

∣∣j 〉
. (8)

Without loss of generality, we assume the vacancies to belong
to the A sublattice, which allows us to write∣∣ψi

v

〉 =
∑
j∈B

aj

∣∣j 〉
. (9)

In the case of SLG, for example, the continuum limit would
give 〈r|ψi

v〉 ≈ �(x,y), with �(x,y) as given in Eq. (4).
We want to perturb the system with a term that disrupts the

bipartite nature of the lattice. The simplest such term is just an
extra local hopping connecting the same sublattice,

Hγ = −tpc†γ cγ+δ, (10)

where c†γ creates an electron in the localized atomic orbital
|γ 〉, and δ is a vector connecting next-nearest neighbors.
The local perturbation defined by Eq. (10) provides a simple
parametrization of the pentagonal link shown in Fig. 1(b).

B. First-order degenerate perturbation theory

We want to know what happens to zero-energy modes once
we add the perturbation defined by Eq. (10) to the system.
Here we use a perturbative analysis, and apply degenerate
first-order perturbation theory within the zero-energy mode
sector. This is justified, strictly speaking, if the perturbing
parameter tp is much smaller than the difference between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), i.e., the HOMO-
LUMO gap.

The new energies for |ψi
v〉 within first-order perturbation

theory are given by the eigenvectors of the matrix

T =

⎛
⎜⎝

T11 T12 . . .

T21 T22 . . .
...

...
. . .

⎞
⎟⎠ , (11)

where

Tij = 〈
ψi

v

∣∣ Hγ

∣∣ψj
v

〉 =
{

0 γ ∈ A,

−tpa∗
γ aγ+δ γ ∈ B,

(12)

as we have assumed the vacancies to belong to the A sublattice.
Owing to the quasilocalized nature of vacancy-induced zero

modes (in multilayer systems we assume Hγ to act on the layer
where the zero mode has its quasilocalized component), we
may consider the limiting case where vacancies are sufficiently
far apart. In this particular case, zero modes will be almost
unaffected if tp connects two sites that are also sufficiently far
apart from any vacancy. Once these two sites approach a given
vacancy we will see the energy of the associated zero mode go
up as

E ≈ −tpa∗
γ aγ+δ, (13)

where aγ and aγ+δ′ are the real amplitudes of that particular
zero mode at the perturbed sites. The other zero modes being
almost unaffected. This is certainly a good description for the
pentagonal link shown in Fig. 1(b), when tp connects two of
the closest sites to a given vacancy.

It was shown in Ref. 7 that in SLG the pentagonal link
induces a finite Hubbard interaction Uc to polarize the system.
Within the present perturbative analysis this can be understood
as a consequence of the energy shift of the zero mode affected
by the pentagonal link: the effect of the Hubbard term has to
overcome the energy scale set by the shift in Eq. (13).

Multilayer graphene, and in particular BLG, are of especial
interest. There we can tune aγ by applying pressure, since
by increasing hopping between layers the amplitude of the
zero mode over the layer where the vacancy resides decreases.
This is apparent in Eq. (6) for the zero mode induced by the
α type vacancy and explains the numerical results shown in
Fig. 2. Nevertheless we must note that there is no possibility
of totally suppressing Uc by applying pressure. For that, the
wave function amplitude of the vacancy-induced state has to
be completely transferred to the layer opposite to the vacancy.

VI. PRESSURE IN REAL SYSTEMS AND THE INFLUENCE
OF AN EXTERNAL ELECTRIC FIELD

To our knowledge, no direct measure of the variation of
the interlayer hopping with pressure for BLG is available.
However, it is known on experimental grounds that the
perpendicular hopping is sensitive to external presure.30 In
a simple parallel plate capacitor model for bilayer, a pressure
variation up to several MPa can be achieved in standard electric
field effect devices. Changes in the t⊥ parameter above 10%
are thus within experimental reach. In our model a 10% change
in t⊥ translates in a few percent change in Uc.

In BLG an external electric field applied, through a back
gate, in the perpendicular direction to the planes opens a gap
by making the two layers asymmetric. The electrostatic energy
difference between both layers, eEzd (d = 0.34 nm is the
interlayer distance and e the electron charge), thus can be
tuned by fixing the magnitude of the electric field Ez.9 Further-
more, the electric field introduces nonzero diagonal elements
in the Hamiltonian matrix so that the bipartite nature of the
lattice is lost and Lieb’s theorem does not hold. The finite value
of the Hubbard interaction needed to polarize the system is,
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therefore, directly related to the magnitude of the EZ applied,
thus making it possible to externally manipulate the strength
of Uc. The few percent sensitivity to pressure found here, in
conjunction with a back gate bias, could be enough to tune
magnetic moments in BLG in experiments.

VII. DISCUSSION

The role of pentagonal or heptagonal rings in the magnetic
behavior of the honeycomb lattice is understood on the basis
of its breaking of the bipartite nature of the lattice by linking
two atoms belonging to the same sublattice. The magnetic
properties of the bipartite lattice, according to Lieb’s theory,
depend on the midgap states induced by defects that in the case
of vacancies of the same sublattice, are all degenerated at zero
energy. The pentagonal hopping integral tp lifts the degeneracy
lowering the corresponding zero-energy state, henceforth a
finite value of the Hubbard interaction is needed in order to
polarize the system. In BLG the interlayer hopping can affect
the interplay between kinetic energy and Coulomb interaction.
The increase of t⊥ from its estimated value ≈0.1t , has just the
opposite effect of tp on the midgap states, shifting them upward
in energy. Thus, there is an interesting interplay of these two
parameters in multilayer materials that affects their magnetic
behavior.

Since we are using a simple Hubbard model in a Hartree-
Fock approximation, the results of the present work refer to
the total magnetization of the ground state of the cluster and
little can be said with full accuracy on the local magnetization
around the defects or on the influence of the distance between
the vacancies on the given results. The qualitative analysis of
Sec. V permits us to envisage that if the topological defect
breaking the sublattice symmetry is very far apart from the
vacancies, voids, or defects contributing to the magnetism of
the sample, its effects will be minimized, but a full analysis
must be done with other methods to ascertain the matter. The
analysis referring to the different behavior of the two types

of vacancies is robust since it relies on the structure of the
zero modes responsible for the magnetism in these types of
lattices.

VIII. CONCLUSIONS

The possibility of tuning magnetic behavior by lattice
deformation in graphitic materials is nowadays a very active
development in the field. Tunable magnetism by mechanical
control in graphene is a hot topic due to the broad field
of applications of organic magnets and continues been a
challenge from the conceptual point of view. In this work
we have shown that pressure applied in the perpendicular
direction to the planes can override the negative effect
of topological defects breaking the sublattice symmetry in
multilayer graphene.

Vacancies are the principal type of defects produced in
graphitic materials by ion bombardment31,32 and play a sub-
stantial role in material properties. Topological defects break-
ing the sublattice symmetry are also energetically favorable
and are being considered in defect engineered devices.13,33,34

We have seen that the two different types of vacancies that
can form in Bernal stacked multilayer graphene have different
magnetic behaviors under pressure. Both of them are affected
by topological defects in the sense that a larger value of the
Hubbard interaction is needed to polarize the ground state. We
have seen that the critical U decreases by applying pressure
to the sample in the case of having a majority of α vacancies.
The β vacancies are not affected by pressure. These different
behaviors are due to the differences in the wave functions of
the zero-energy states induced by vacancies of the two types.
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7M. P. López-Sancho, F. de Juan, and M. A. H. Vozmediano, Phys.
Rev. B 79, 075413 (2009).

8A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
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