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A B S T R A C T 

We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform 

this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the 
OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement 
uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C IV emission 

line, we developed a set of criteria that rank the reliability of a reco v ered time-lag depending on the agreement between different 
reco v ery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These 
criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius–Luminosity 

relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R–L relation was 
reco v ered within 1 σ for each of the three quality samples, with the gold standard having the lowest dispersion with a reco v ered 

a R–L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES 

sample of 771 AGN. 

K ey words: galaxies: acti ve – quasars: emission lines – quasars: general. 
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 I N T RO D U C T I O N  

he innermost regions of active galactic nuclei (AGN) are powered
y supermassive black holes, whose role in galaxy formation and
volution is complex and poorly understood. For AGN within the
ocal Universe, high spatial resolution instruments are capable of
robing the sphere of influence of the central black hole and directly
easuring the mass (e.g. Gebhardt et al. 2000 ; Greene et al. 2010 ;
ebhardt et al. 2011 ; Kuo et al. 2011 ; Event Horizon Telescope
ollaboration 2019 ). Ho we ver, we require alternate methods to

tudy AGN at greater distances in order to explore the evolution of
 E-mail: a.penton@uq.edu.au (AP); umang.malik@anu.edu.au (UM); 
amarad@physics.uq.edu.au (TMD) 
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upermassiv e black holes. F or this purpose, rev erberation mapping
RM) can be used to directly measure distances within these compact
egions and infer the masses of the central supermassive black holes
SMBH). 

The technique of reverberation mapping (Blandford & McKee
982 ; Peterson 1993 ) uses time-domain observations to provide
 window to AGN physics on spatial scales below the angular
esolution of contemporary observatories. The prompt and variable
est-frame UV emission from the accretion disc ionizes the more
xtended broad-line region (BLR). Variations in the UV continuum
adiation from the disc produce a variation in the observed emission-
ine signal o v er an e xtended time-scale, on the order of months to
ears. The observed reverberation of the BLR in response to the UV
ontinuum is due to the light crossing time from the central source
o the BLR and the geometry of the BLR. Therefore, by measuring
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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his time delay, τ , we can measure the radius of the BLR ( R BLR =
 τ ). The velocity dispersion of the BLR ( � V ) can be estimated from
he width of the broadened emission lines. The mass of the central
lack hole ( M BH ) can then be measured using the Virial theorem: 

 BH = f 
R BLR �V 

2 

G 

, (1) 

here f is the virial coefficient; a dimensionless scale factor that 
ccounts for the geometry, orientation, and kinematics of the BLR. 

Extensive time-domain monitoring of both the continuum emis- 
ion and emission line flux is required to conduct reverberation 
apping of the BLR. Due to limits of technology at the time,

arly campaigns targeted few bright highly variable sources, which 
orresponded to relati vely lo w-luminosity AGN in the local Universe. 
ubsequent generations of these surv e ys o v er man y years gradually
roduced a sample of reliable lag measurements for 63 AGN (e.g. 
aspi et al. 2000 ; Onken & Peterson 2002 ; Peterson et al. 2004 ;
entz et al. 2009 ; Denney et al. 2010 ; Barth et al. 2011 ; Grier et al.
012 ; Bentz & Katz 2015 ). As most of these sources were at low
edshifts ( z < 0.3), most results were obtained using the H β emission
ine. The observations confirmed the predicted relationship between 
he AGN luminosity and the radius of the BLR (Kaspi et al. 2000 ;
entz et al. 2006 ; Bentz et al. 2009 ). 
This Radius–Luminosity ( R −L ) relationship is a powerful tool 

o estimate SMBH masses from a single-epoch spectroscopic mea- 
urement. This has allowed single-epoch Virial BH mass estimates 
o be made for tens of thousands of objects (Shen et al. 2011 ), in
rder to study SMBH e volution. Ho we ver, for sources at higher
edshifts (and hence greater evolutionary lookback times), H β is 
edshifted into the near-infrared spectrum and becomes increasingly 
hallenging to observ e. F or these more distant sources, both single-
poch and RM observations rely on emission from Mg II and C IV , for
hich a detailed R −L relation calibration is not yet available. This

nhibits the direct construction of single-epoch virial BH estimates 
or these important sources. Single-epoch SMBH mass estimators 
ased on C IV are calibrated based on UV spectra of local sources
Vestergaard & Peterson 2006 ). 

These AGN have longer lags, due to both the increased intrinsic
uminosity of the observed sources, and the impact of time dilation, 
hus requiring long-baseline monitoring. With the C IV line, signifi- 
ant RM measurements have been made for an additional 65 AGN to
ate (Peterson et al. 2004 , 2005 ; Metzroth, Onken & Peterson 2006 ;
aspi et al. 2007 ; Trevese et al. 2014 ; Lira et al. 2018 ; Grier et al.
019 ; Hoormann et al. 2019 ; Shen et al. 2019 ). 
Recent ‘industrial-scale’ Reverberation Mapping campaigns have 

robed new regions of the AGN luminosity-redshift parameter space, 
ith a particular focus on high-redshift sources. The Australian Dark 
nergy Surv e y (OzDES; see Yuan et al. 2015 ; Childress et al. 2017 )
egan one of the first multi-object RM campaigns, monitoring 771 
GN o v er a 6-yr baseline with the Anglo-Australian Telescope. 
his was complimented by photometric monitoring of the same 
ources in the Dark Energy Surv e y (DES; see Dark Energy Surv e y
ollaboration 2016 ) deep fields for the same time period (see Fig. 1 ).
ith the ability to conduct multi-object spectroscop y, OzDES w as 

ble to target hundreds of AGN o v er a broad range of redshifts (0.1 <
 < 4.5) and luminosity (apparent r -band AB magnitudes from 17 <
 < 22.5). About one-third of these AGNs are at redshifts greater than
.7, where the C IV line is visible. Hoormann et al. ( 2019 ) published
ur first RM results with the C IV line, for two sources at redshifts of
.905 and 2.593, which are among the highest redshift and highest 
ass black holes measured to date with RM. 
Due to our goal of measuring these high-redshift long-duration 
GN time-lags, the observ ational windo w of our surv e y differed

rom traditional RM programs that employ single-object spectro- 
raphs. A multiyear baseline was required to ensure the longer 
ags could be measured. As the spectroscopic counterpart of the 
ES, we monitored the supernova fields (Neilsen et al. 2019 ), which
ere visible for ∼6 months of the year. We used a lower cadence

or the spectroscopic monitoring than traditional surv e ys. Monthly 
onitoring of an AGN at z ∼ 3 is approximately equi v alent to weekly
onitoring of an AGN at z ∼ 0.1 because of the factor of ∼4 in

ime dilation. A similar industrial-scale surv e y was conducted by the
loan Digital Sky Survey Reverberation Mapping Project (SDSS- 
M) (Shen et al. 2015 ). Simulations for the OzDES RM and SDSS-
M programs (King et al. 2015 ; Shen et al. 2015 ) and recent RM

esults from these programs (Grier et al. 2017 , 2019 ; Hoormann et al.
019 ; Homayouni et al. 2020 ) sho w ho w the observational window
resents challenges for reco v ery of these high- z AGN lags, such as
liasing due to seasonal gaps. In addition, lag reco v ery depends on
he signal-to-noise of the flux measurements and observed intrinsic 
ontinuum variability of the AGN. We were moti v ated to de velop
ore sophisticated statistical techniques by the complications of 

easonal gaps, changes of cadence, and variations in S/N of both the
ontinuum and emission line data. 

The most widely used lag reco v ery methods in the literature
re the Interpolated Cross-Correlation Function ( ICCF ; Gaskell & 

eterson 1987 ) and JAVELIN (Zu, Kochanek & Peterson 2011 ). These
echniques have proven to recover reliable and consistent lags for tra-
itional RM surv e ys; ho we ver, this has not conclusi vely been sho wn
or large-scale RM programs targeting higher- z AGN. The restricted 
ignal-to-noise and more limited sampling of these programs dictate a 
igorous analysis of the biases and false positive rates, to devise robust
ag reco v ery and confidence criteria. Two comprehensiv e studies
omparing lag reco v ery methods hav e been performed recently.
imulations conducted by Li et al. ( 2019 ), specifically for SDSS-
M, found JAVELIN performed better o v erall than ICCF , but were
erformed with pre-set detection criteria on populations of sources 
ather than the individually customized simulations that will be 
sed here to inform our significance criteria. These results were 
orroborated by Yu et al. ( 2020 ), who found JAVELIN produced
ore correct lag uncertainties; ho we ver, their results were based off

imulated light curves of a few local sources that had been monitored
t very high cadence. 

In this work, we conduct simulations using mock light curves 
epresentative of our data quality, created on a source-by-source 
asis, to compare the performance of these lag reco v ery techniques.
his is used to determine the reco v ery and significance criteria that
ill be used for following OzDES RM analyses with each emission

ine. For each source on the OzDES RM C IV catalogue, a set of
espoke simulations will be run using the observable parameters 
or that source while letting not observable characteristic, such as 
ime-lag and black hole mass vary. This will be discussed in full in
ection 2. The lag reco v ery methods and structure of our simulations
re discussed in Section 3. In Section 4 we outline our quality
riteria, and apply these cuts to analyse the resulting R–L relations
n Section 5. We summarize our results and outlook to the future in
ection 6. 

 SI MULATI ONS  

imulations have become an important part of assessing the accuracy 
f reverberation mapping lag recoveries. Before wide-scale simula- 
ions were computationally easy, RM studies used other means to 
MNRAS 509, 4008–4023 (2022) 
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Figure 1. Representative light curves from the OzDES RM sample. C IV emission line light curves shown in black, with g -band photometric light curves shown 
in green. The photometric light curves contain seven seasons of data with approximately weekly cadence. These are accompanied by spectroscopic light curves 
containing 5-6 seasons of approximately monthly cadence. 
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auge the statistical reliability of their lags – such as using the number 
f ne gativ e lags ( τ < 0) as a measure of the expected false positive
eco v ery rate (Grier et al. 2019 ). 1 Since then simulations have been
ntroduced as a means to impro v e that estimation of uncertainties.
he largest simulation suite to date was run by Li et al. ( 2019 ),
ho simulated a large variety of mock sources that spanned the 
bservational features (redshift, luminosity, etc.) of their data. In this 
ork we go one step further, and make bespoke simulations for each

ndividual source in our sample. 
We use the same AGN variability model as Li et al. ( 2019 ). This is

ased on Kelly, Bechtold & Siemiginowska ( 2009 ), who showed that
 damped random walk (DRW) can be used to model the stochastic
ariability of AGN light curves. A DRW is a random walk with an
dditional term that pushes deviations back to the mean value. It
s characterized by two parameters, the damping time-scale and the 
mplitude, which are unique to the source. Kozłowski et al. ( 2010 )
nd MacLeod et al. ( 2010 ) extended this work and compared this
odel to more observed AGN light curves, applying the DRW model 

o directly constrain the variability parameters. MacLeod et al. ( 2010 ) 
etermined the correlations between the variability parameters and 
hysical AGN properties, including luminosity and black hole 
ass, using photometric light curves for ∼8000 spectroscopically 

onfirmed quasars in the Stripe 82 field, which were monitored o v er
 10 yr baseline by the SDSS. 

We simulate light curves following the method described by King 
t al. ( 2015 ), which is the same DRW model used by Kelly et al.
 2009 ), Kozłowski et al. ( 2010 ), and MacLeod et al. ( 2010 ), applied
pecifically for each of the objects in the OzDES RM program. The
ontinuum and emission-line light curves are created as described 
n the Section 2.1. Following this, we describe the customization for
ach source, and the simulation set-up used for our analysis. 

.1 Continuum and emission-line light cur v es 

he following parameters are required to model the continuum and 
mission-line light curves for an AGN: 

(i) mean of the light curve, μ; 
(ii) damping time-scale, τD , in days; 
(iii) long-term structure function, SF ∞ 

, in mag; 
(iv) lag, τ , in days. 

The damping time-scale (also referred to as the relaxation time or
haracteristic time-scale) is the average time it takes for the random 

alk to return to the mean. The amplitude of the DRW can be
escribed a function of the standard deviation of the DRW known 
s the structure function, SF ( � t ). The simulated light curves for the
zDES AGN sample need to be generated for a surv e y baseline of

t least � t = 7 yr. The asymptotic value of the structure function at
arge � t is: 

F ( �t � τD 

) ≡ SF ∞ 

= 

√ 

2 σ, (2) 

here σ is the long-term standard deviation of the variability. 
The continuum light curve, in magnitudes, is defined by a damped 

andom walk with a mean μ, and variable term � C ( t ): 

( t) = μ + �C( t) , (3) 
 Since ne gativ e lags are unphysical, Grier et al. ( 2019 ) assumes they are all 
purious, and calculates the FPR on the assumption that there will be as many 
andom false positives with τ > 0 as τ < 0. 

D
r  

s
b
s  

22
here μ is the monochromatic continuum flux density at a given 
av elength, conv erted to an apparent magnitude. The variable term

t t = 0 is � C ( t 0 ) = σG (1), where σ is as defined in equation (2),
nd G (1) is a random number drawn from a Gaussian distribution
ith a mean of 0 and standard deviation of 1. Subsequent variable

erms are given by: 

C( t i+ 1 ) = �C( t i ) exp 
(

−| t i+ 1 −t i | 
τD 

)
(4) 

+ σG (1) 
[ 
1 − exp 

(
−2 | t i+ 1 −t i | 

τD 

)] 1 
2 
. (5) 

Blandford & McKee ( 1982 ) interpret the emission-line flux varia-
ions as a response to continuum variations using: 

L ( t) = 

∫ 
�( τ ) �C( t − τ ) d τ, (6) 

here � L ( t ) is the emission-line light-curve flux relative to its mean
alue, �( τ ) is the transfer function, C ( t ) is the variable component of
he continuum light curve flux and τ is the lag. The transfer function
escribes the BLR emission-line flux response to a delta function 
ariation of the continuum flux. It has the effect of smoothing the
mission-line light curve and shifting it, relative to the continuum 

ight curve, by the lag τ . We convolve the continuum light curve
ith a top-hat transfer function to generate the smoothed and shifted

mission-line light curve. As the true form of �( τ ) is complex and
elated to the geometry and kinematics of the BLR (Peterson 2001 ),
e use the top-hat as an approximation. As in Zu et al. ( 2011 ), we
se a top-hat transfer function of the form: 

( t) = 

{ 1 

w 

τ − w/ 2 < t < τ + w/ 2 

0 otherwise 
, (7) 

here w is the width of the top-hat. Following King et al. ( 2015 ), we
dopt w = 0.1 τ . 

To generate light curves for the AGN sample monitored by the
zDES RM program, the four parameters described abo v e ( μ, τ ,
D , SF ∞ 

) were used to create a bespoke simulation for each source.
he parameters were found using the apparent r -band AB magnitudes 
nd redshifts unique to each source, as described in Appendix A. The
ight curve’s magnitudes are also scaled such that their magnitudes 
nd variations are consistent with the light curve of the source from
hich they are modelled (‘parent’ source). 

.2 Cadence and uncertainties 

ur custom simulations have the same cadence and noise properties 
s the data for each AGN. We construct them by producing high-
adence light curves using the method illustrated in the previous 
ections. These are then subsampled to have identical cadence as their 
parent’ source. This ensures that any effects that are a function of
he observ ational windo w are reflected in the simulations. In addition
o this, the absolute errors from the parent source are used directly.
his ensures that the simulated light curves include any observational 
ffects caused by the surv e y. The final result of this process is shown
n Fig. 2 . 

.3 Matching simulations to data variability 

ue to the subsampling, the difference in variability of different 
ealizations could vary considerably by chance. This can be shown by
ubsampling the same underlying light curve with the same cadence 
ut with different starting points. The distributions of variability are 
hown in Fig. 3 . Since it is likely that light curve variability is an
MNRAS 509, 4008–4023 (2022) 
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Figure 2. Comparison of observed continuum and emission line light curves 
(top) to simulated continuum and emission line light curves (bottom). Note 
that whilst they are inherently different, the uncertainties, cadence, mean, and 
variability are consistent between the top and bottom panels. 

Figure 3. Variability of 1000 subsamples of the same underlying light curve. 
This shows the dispersion in the apparent variability from subsampling a 
simulation to match the observing cadence. The black vertical line indicates 
the measured variability of the parent source. 
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mportant parameter in the reco v erability of a time-lag, it is vital that
his is representative in the simulations. 

To ensure that the simulated light curves closely match the data
e perform a post-selection based on the light curve variability.
erforming the post-selection is done by retaining the photometric-
pectroscopic pair of light curves only if the measured variability
fter subsampling is within 33 per cent of the observed variability of
he input source. In this case the variability is quantified to be the
ractional variability F var (Fausnaugh et al. 2016 ) to encapsulate the
ariation of the light curve inclusive of errors, 

F var = 

1 

〈 f ( t) 〉 

√ √ √ √ 

1 

N 

N ∑ 

i 

{
[ f ( t i ) − 〈 f ( t) 〉 ] 2 − σ 2 

i 

}
, (8) 
NRAS 509, 4008–4023 (2022) 
here f ( t i ) are flux values in the light curve and σ i are the errors
n each data point. This subsampling process also allows us to
llow some freedom in our input parameters, importantly the BH
ass. Assuming a specific black hole mass would likely bias

he simulations as the black hole mass is not accurately known.
herefore, for each simulated light curve a new black hole mass

s drawn from the parent distribution (Fig. A1 ). This allows some
ealizations to have a high black hole mass, and therefore a high
ntrinsic variability, while others have low black hole mass and a
ow intrinsic variability. Both can appear to have the same variability
fter subsampling based on observational cadence and this method
llows us to not be biased to any specific black hole mass based on
ariability. 

.4 Range of time-lags simulated 

ore luminous AGN tend to have longer time-lags. One can use the
 –L relation to predict the time-lag ( τ expected ) for a source based on

ts absolute luminosity. Ho we ver, for each of the sources that is used
n this analysis, a range of different lags has been considered. This
eans that not only were the sources simulated with the expected

ime delay but with a range of seven time delays ranging from
0 per cent of τ expected to 160 per cent of τ expected , giving seven sets of
imulations for each source, each containing 200 light curves, all of
hich pass the variability selection discussed in the previous section,
iving a total of 1400 simulations per source. This was done in an
ttempt to not bias our analysis towards reco v ering lags that were
xactly what were expected. 

 LAG  R E C OV E RY  M E T H O D S  

wo of the most commonly used lag reco v ery methods are the
nterpolated Cross-Correlation Function ( ICCF ; Gaskell & Peterson
987 ; Peterson et al. 1998 ) and JAVELIN (Zu et al. 2011 , 2013 ).
he ICCF uses linear interpolation to provide information about the

ight curve between data points. Under the assumption of smooth
ariations in light-curve structure on intermediate time-scales, linear
nterpolation of the observational data sets maps the sparse sampled
hotometric and spectroscopic light curves to a common sampling
requency prior to cross-correlation. The statistical and systematic
ncertainties in the cross correlation are estimated via bootstrap
ampling (Gaskell & Peterson 1987 ; Peterson et al. 1998 ). 

Employing a more sophisticated statistical model, JAVELIN utilizes
 Markov chain Monte Carlo (MCMC) approach based on a damped
andom walk model (Section 2) for AGN variability. This is then
sed to constrain the time-lag between light curves. The prior range
et on the time-lag search for both ICCF and JAVELIN is 0 d to 3 ×
exp d, where τ exp is the time-lag that is estimated using the known
–L relations. While both ICCF and JAVELIN will be considered and
mployed in this analysis, the final results will utilize JAVELIN results.

A third contemporary lag reco v ery methodology, CREAM (Starke y,
orne & Villforth 2016 ), uses similar methods as JAVELIN to constrain

he time-lag; ho we ver, this method is not considered in this analysis
t this time. For other possible methods for reco v ering time-lags see
aja ̌cek et al. ( 2021 ). 

.1 Lag posterior analysis 

rom both JAVELIN and ICCF lag reco v ery methods the output is a
robability distribution function (PDF) of possible lags as seen in
ig. 4 . There are multiple ways that a time-lag and uncertainty can
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is no Count Out option for the peak lag reco v ery method as the method often 
failed in noisy PDFs. 
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2 We choose to make these cuts absolute rather than relative to the time-lag, 
as the confidence that we have in a measurement relies upon how close the 
measurements are – we have intrinsically more confidence in measurements 
that are 100 d apart than 300 d apart regardless of the underlying lag. 
An attempt was made to utilize relative cuts but this either made the cuts 
unreasonably small for short lags or unreasonably high for large lags. A 

relative cut may be more appropriate for samples where the range of time- 
lags is smaller than that of the C IV lags considered here. 
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e computed from the PDF. The choice of how to compute a lag and
ncertainty is important as it can vastly affect the result; see Fig. 4 . 
Our goal is to obtain an unbiased measurement of the lag and

ts uncertainty. For this we must find a method that displays two
mportant characteristics: no systematic bias and uncertainties that 
re the correct size. To answer this we considered three methods 
o determine the most representative way to determine the lag: the 
ean, the median, and the peak of the PDF. These methods were

hen applied to the PDFs from JAVELIN and ICCF for all simulations
iscussed in Section 2.4. Note that the PDFs for both JAVELIN and

CCF have a bin width of 3 d, this was found to be the smallest
in size that made the PDFs smooth enough to accurately define the
eak. 
The difference between the reco v ered lag and the simulation’s

nput lag ( �τ = τ sim 

−τ true ) should ideally be zero. Fig. 5 compares
he �τ distributions for the three different methods for computing 
he time-lag, for the simulations of our entire sample. From this we
onclude that the mean appears to be the poorest estimator of time-
ag, gi ving a positi vely ske wed distribution �τ . This is likely due
o poorly constrained lags having means that are central to the prior
ange. Since in this case the prior range is zero to three times the input
ag, the mean estimate will often skew upwards since the center of the
rior range is greater than then input lag. Once the poorly constrained
ags are remo v ed with cuts outlined in Section 3.2, this problem is
reatly reduced. 

.2 Quality cuts 

sing the peak of the PDF gives a result for τ that is well centred
n the input value as desired, but has a tail of spurious detections
t high time-lags. These spurious detections are far fewer when 
ne uses the median to determine τ , but the median distribution
s not as well centred about the input value as the peak distribution.
he desirable behaviour would be a distribution that is centred on 
ero as the peak is, but without the high �τ anomalies. To this
nd, we impose a restriction on a good reco v ery, requiring that the
easurement determined by the peak and that determined by the 
edian be consistent within a certain threshold, to be discussed in
ection 4.1. Since the peak measurement is best centred around �τ =
, we use this as the measure of τ , with the proximity to the median
easurement used as a filter to remo v e the spurious peak results that

xist at a high �τ . 
Requiring the peak and median measurements to agree within 

00 d reduces the prominence of the artefacts present in both JAVELIN

nd ICCF at high �τ while retaining most of the accurate lag
eco v eries (see the top panel of Fig. 6 ). In an attempt to mitigate
he offset still present after applying this cut, we enforce another
ut similar to that implemented in the top panel of Fig. 6 ; ho we ver,
his time we only accept lags for which JAVELIN and ICCF agree.
oth methods should return the same lag for a reliable reco v ery,

herefore we enforce that they must agree within a certain margin,
he size of which we optimize in Section 4.1. 2 This cut further
mpro v es the accurac y of the reco v eries, remo ving almost all of the
emaining outliers at high �τ . These two cuts remo v e 26 per cent
nd 41 per cent of realizations, respectively, with 49 per cent remo v ed
ith both cuts applied. Without these cuts the average bias is
τ = 75 d for JAVELIN and �τ = 141 d for ICCF . After applying these
rst two cuts, those average biases are reduced to �τ = 24 d and
τ = 48 d, respectively. We note that this bias arises because of the

kew in the distribution – the median bias for JAVELIN is never over
 d, even without cuts. After cuts it is reduced to 2 d. ( ICCF starts at
 median bias of 46 d without cuts, which reduces to 18 d after cuts).
MNRAS 509, 4008–4023 (2022) 
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Table 1. The effect of cuts on the acceptance fraction and �τ offsets. Note 
that the mean and median offset are measured in days, with each consecutive 
cut improving the positive offset in both the mean and the median. 

Mean �τ Median �τ

After per cent accepted JAVELIN ICCF JAVELIN ICCF 

No cuts 100 75 142 6 46 

Cut 1 76 41 82 4 33 

Cut 2 59 52 59 3 16 

Cut 1 and Cut 2 51 24 48 2 18 
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A summary of both the mean and median offsets at each cut level
or both JAVELIN and ICCF, as well as the proportion of the full
ample that pass those cuts, can be found in Table 1 . 

.3 Determining measurement uncertainties 

n addition to understanding the optimal way to measure time- 
ags from PDFs, we also need to extract the most representative 
ncertainties. To do this, we considered three methods to compute the 
ncertainty: the mean absolute deviation (Mean AD), the median ab- 
olute deviation (Median AD), and the area that encloses 34 per cent
1 σ ) of the probability on each side of the preferred lag (Count
ut) as is used by default in JAVELIN . To assess the performance of

ach of these uncertainty measures, we used the relative distance 
f each simulation from its true lag or �σ = 

�τ
σ

, where σ is the
agnitude of the measurement uncertainty. Using the peak as the lag 
easure, we can test the comparative distributions for each of the 
ethods for both JAVELIN and ICCF to determine the optimal measure 

nd whether any error cuts are needed. We considered the absolute 
alue of �σ as the sign correlates to the �τ value, therefore any 
iases in the sign were already shown in Fig. 6 . We find that the
ount out method seemed to be the most representati ve; ho we ver,
ue to its asymmetric nature, it often displayed other undesirable 
ehaviour, such as having uneven upper and lower uncertainties (e.g. 
50, + 500). Of the remaining two methods, the median absolute 

eviation closely matched a unitary Gaussian, as should be the 
ase; ho we ver, it displayed an oversupply of higher �σ , meaning
hat it often underestimated the size of the uncertainties. Given the 
ption of a method that tends to o v erestimate uncertainties versus
nderestimate them, an o v erestimation is preferred as o v erestimated
ncertainties may take into account unknown systematic errors and 
an be mitigated using quality cuts as was done in Section 3.2. Due
o this we will conduct the remainder of this analysis using the mean
bsolute deviation as our uncertainty measure. 

Given that the confidence we have in a measurement is intrinsically 
ied to the uncertainty attached to that measurement, it is logical to
lace a cut on the absolute size of the error on each lag reco v ery.
o show the effectiveness of this cut, we compare the normalized 
ncertainties for the mean absolute deviation before and after this 
ut. In Fig. 7 we have applied an 80 d uncertainty cut and can observe
he effect this cut has on the behaviour of the sample. Both JAVELIN

nd ICCF become much less peak ed tow ards small �σ , with ICCF

n particular being very close to Gaussian. The slight peaking in the
AVELIN population indicates that the uncertainties are in general 
eing o v erestimated. 
With an extra cut being applied to the data, it is important to

onsider the effect it has on the �τ distribution. In Fig. 6 we can see
hat this uncertainty cut has remo v ed man y sources from the central
egion of the distribution. This last cut further decreases the mean 
ffsets; from 24 to 14 d for JAVELIN , and from 48 to 21 d for ICCF .
his is still a positive offset, meaning that it may introduce a bias into
uture measurements such as black hole masses and the R–L relation
hat would need to be corrected for. A possible solution to this would
e making the prior range symmetric around 0, as opposed to using
n the physical positiv e re gime. Ho we ver, as displayed in Fig. 8 there
s a negligible difference between the bias these two methods exhibit
esides a sign swap, with the ne gativ e baseline inclusion giving a
e gativ e bias of 16 d after the same three cuts are applied. This
ndicates that the proportion of the prior range that exists above the
correct’ answer versus below has a strong impact on the average
ffset. We could make the prior symmetric around the expected lag
hich would be more likely to give a minimal offset, but would also
e strongly biasing ourselves toward what we expect. Instead we can
se these simulations and modelling to account for biases that we
nd. Now that we better understand the behaviour of the simulation
ample and how to extract the most representative lags, we can mo v e
o construct a statistically meaningful set of quality criteria through 
hich to assign quality ratings to the observed C IV sample. 

 CRI TERI A  TO  ESTA BLISH  LAG  

EASUREMENTS  

he purpose of studying the cuts discussed in Section 3 is to assign a
uality rating to each reco v ery to encapsulate the reliability of each
eco v ery. Each successful reco v ery will be given a ration of gold,
ilver, or bronze with gold being the most reliable lags. In order to
ssess the efficacy of the quality cuts, we investigated the number of
ources that pass the quality cuts discussed in Section 3.2 but reco v er
he lag incorrectly. After these cuts approximately 15 per cent of the
emaining measured lags produced by JAVELIN and ICCF didn’t satisfy 
he following criteria: 

(i) | τ sim 

− τ true | =| �τ | < 80 d 
(ii) �τ

σ
= �σ < 3 

These false detections show that reco v ering incorrect lags remains
ossible even after applying the cuts. To mitigate this effect there
MNRAS 509, 4008–4023 (2022) 
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Figure 9. Graphical representation of the false positive test conducted on 
randomly selected C IV source. The points on the plot represent all of the 
points that pass the quality cuts. We choose only the points that are consistent 
with the reco v ered lag in the data at a 1 σ level; these are shown in black. The 
black stars show the points with an input lag consistent with the reco v ered lag. 
On the other hand, the blue points show the simulations where the reco v ered 
lag is consistent with the lag reco v ered in the real data when the input to that 
simulation is more than 3 σ away from the point. From these we define our 
FPR as the number of blue points as a percentage of the number of blue and 
black combined. 
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re two courses of action: more stringent cuts to reduce the false
etection rate, and a source-by-source test to measure this effect.
ince we can individually simulate sources, a source by source false
ositive test will be implemented that considers the probability of
eco v ering the lag that was reco v ered in each ‘real’ source by chance.

F or an y lag measured from a real light curv e, we define the
alse positive rate (FPR) as the fraction of simulations, drawn from
cross the full range of simulated input lags for that source, which
rroneously present as the measured lag with high confidence. This
uantity will remo v e sources that include a systematic error in the
ime-lag signal, for example a signal that arises from aliasing due to
he observing cadence. 

Fig. 9 graphically sho ws ho w we compute the FPR. The black
oints show the simulations where the reco v ered lag is within 1 σ of
he lag that was reco v ered in the observed light curve. Of these, we
nd the instances where the reco v ered lag disagrees with its input

ag beyond a 3 σ level, these are presented in blue. This is important
s, assuming Gaussian errors, we would only expect 1 per cent to
e inconsistent at this level. In the case pictured, the blue points
ake up ∼ 5 per cent of the non-red points, this means that having

eco v ered a lag of ∼400 d there is a ∼ 5 per cent chance that your
eco v ery passes the first two quality cuts but is inconsistent with the
hysical lag in the light curves. In addition to this test, we can require
igh quality reco v eries pass more stringent cuts compared to those
iscussed in Section 3. We test the bulk behaviour of the simulated
ample with respect to these cuts; ho we ver, a cut on the source by
ource FPR will also be applied for each quality level. 

.1 Determining cut sizes 

n Sections 3.2 and 3.3, we found that introducing three data quality
uts impro v ed the accurac y of lag reco v eries as well as remo ving
he artefacts at high �τ . For that initial proof of concept, we used a
hreshold of 100 d for the first two cuts (peak agrees with median, and
AVELIN agrees with ICCF) and 80 d for the third cut (uncertainty).
NRAS 509, 4008–4023 (2022) 
o we ver, to determine the optimal size of these cuts we now consider
he impact of the cut size on four lag-quality measures: 

(i) the average offset from the true lag (mean �τ ); 
(ii) the median offset from the true lag (median �τ ); 
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Table 2. Statistics for the samples that satisfy each of the different quality criteria. The median offset does not change significantly between cuts; however, the 
average offset does. This indicates that there is a systematic offset that is present at all cut levels, with the cuts mostly removing outliers that skew the average 
to higher offsets. Also note that the percentage accepted includes those in the quality tier abo v e (e.g. Bronze includes those that pass Silver and Gold). 

Cut Size (days) Quality Measure (days or per cent) 
Quality JAVELIN-ICCF Peak-Median Uncertainty Mean �τ Median �τ False detection per cent per cent accepted 

Gold 100 65 65 13 6 12 12 per cent 

Silver 100 80 80 15 6 15 19 per cent 

Bronze 100 110 110 18 6 19 29 per cent 
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(iii) the false detection rate (Section 4); and 
(iv) the proportion of the simulations that pass the cuts. 

We varied the three cuts from 30 to 200 d, and examined the four
ag-quality measures in each case. The ideal set of cuts would have
o w of fsets and false detection rates, with a high acceptance fraction.
n practice, as we loosen the cuts the acceptance fraction increases 
ut the quality declines. We use this to define a set of quantitative
uality cuts. 
First, we considered the effect of each of the cuts separately on

ach of the measurable quantities described previously. We find that 
he cut on the agreement between JAVELIN and ICCF produces the 
ame average result for mean offset, acceptance fraction, and false 
etection rate regardless of the size of the cut (between 30 and 200 d).
n light of this, we set 100 d as the maximum acceptable difference
etween measurements made by JAVELIN and ICCF . 

With this cut made, we can visualize the effect of the other two
uts on the mean offset, acceptance fraction, and false detection rate 
s shown in Fig. 10 . It is obvious that the cut on uncertainty size is
he main driver for low mean offset and false detection rate; however,
he difference between peak and median offset also makes an impact 
n certain regimes. Using this information, we can choose thresholds 
n both of these cuts that provide differing qualities of recovery while
till giving reliable reco v eries across the board. The chosen cuts are
hown in Table 2 . 
 R −L R E L AT I O N  ANALYSI S  

ne of the important products that is generated through analysing an
M data sample is the R −L relation. Given that we have access to a

arge number of representative simulations, we have the opportunity 
o test the accuracy with which we can measure the R −L relation
iven that the input R −L relation for the simulations is known. To
est the ef fecti veness of the quality criteria, we can fit the R −L
elation using only sources that fit into each quality criterion. With
he large number of simulations we have generated we can do these
ts many times choosing a different subset of measurements each 

ime. This will allow us to not only observe the overall quality of
he fits but also the effect that the cuts have on the R −L relation
ts. For each iteration of this test, a sample of recovered lags was
hosen that contained only one realization of any one source, with
he fit being repeated 1000 times to determine the reliability of
he fits. 

It is important to note that our sources co v er a fairly small
ange of radii and luminosities. Due to this we have included
iterature measurements to anchor the R–L relation fits at the low and
igh luminosity ends. Combining data sets in this way is standard
hen generating the C IV R −L relation. The extra sources co v er a

uminosity range of 43.6 erg s −1 � log λL λ � 47.2 erg s −1 and time
elay range of 4 d � τRF � 460 d. Detailed information on these
ources is shown in Table B1 and visualized relative to our data in
ig. B2 . 
MNRAS 509, 4008–4023 (2022) 
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Figure 11. Best-fitting R −L relations for a sample of 50 iterations, computed using a subsample of sources from each cut group. The cuts have an obvious 
effect on the quality of the R −L relation reco v ery with the gold standard fits having very little variation from true fit. 
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Figure 12. Best-fitting R −L relation slopes ( log 10 ( days ) 
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) and intercepts [log 10 (days)] computed using a subsample of sources from each cut group. These 

histograms contain 1000 iterations of the fitting procedure. The cuts have an obvious effect on the quality of the R −L relation reco v ery with the gold standard 
fits being centred around the truth value for the slope and closest of the three groups for the intercept. Next most reliable is silver and then bronze as expected. 
All three distributions are offset from the truth value with regards to the intercept; this is likely due to the positive offset seen in the simulation results and may 
be compensated for if well understood. Note that the mean uncertainties in the intercept measurements are approximately 0.034 for all cuts, with the average 
uncertainty in the intercept being 0.070, 0.077, and 0.086 for the gold, silver, and bronze level cuts, respectively. 
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The effect that the cuts have on the R −L relation fits is shown in
igs 11 and 12 . The gold standard cuts provide the most accurate
t on average, and also display the least variance in the fits with
 mean slope of 0.454 and a standard deviation in slope of 0.016.
n contrast, the silver and bronze fits have slopes and deviations of
.445 ± 0.027 and 0.447 ± 0.034, respectiv ely. The av erage fits for
ach of the three quality tiers are within 1 σ of the true value for
he R −L relation, suggesting that they are all reliable, with the gold
tandard simply being the most well constrained. 

All three of the quality levels do display slight offsets in both the
lope and the intercept from the input value (Fig. 11 ). Given the small
esidual offset we found in the lag reco v eries, this is to be expected.
ven though the offsets are less than the 1 σ uncertainties, we would
NRAS 509, 4008–4023 (2022) 
ik e to tak e them into account and derive an even more accurate
elation. The ultimate source of the bias comes from the imperfect
r incomplete observational data (e.g. sampling limitations, surv e y
indow functions, malmquist biases). Some of those are irreducible

ystematic uncertainties, but with a thorough simulation suite some
f these can be accounted for (as is done in many astrophysics
pplications, such as supernova cosmology; e.g. Kessler et al. 2019 ).
n Section B we show that simply adding the mean time-delay offset
 �τ ) between the simulated time delays and the reco v ered time
elays to each AGN data point ( τ ) impro v es the reco v ery of the R −L
elation. We defer a more thorough examination of bias-correction
ethods to a future paper. Even without any further correction, our

eco v ery of the R −L relation is accurate to within 1 σ , so it is already
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seful for many astrophysical questions (such as the relative size 
f black holes at different epochs), but the bias will be critical to
ddress for applications, such as using AGN as standard candles for
osmology. 

 SUMMARY  

n this paper, we have developed an extensive set of simulations
hat can be used to model individual sources based on their exact
ariability, cadence, and other observable traits. We use this powerful 
ool to quantify the lag reco v ery of each AGN in our sample rather
han derive summary results from an observable distributions of 
arameters. 
Using these simulations we investigated how best to extract a 

ime-lag from the posterior lag distribution produced by JAVELIN and 
CCF . We found that the peak of this distribution is the best measure
f the time-lag and the mean absolute deviation is the best measure
f the uncertainty. From there we developed a set of quality cuts to
how which of the reco v eries e xhibit the characteristics of a reliable
ime-lag. We use cuts based on the deviation between ICCF and 
AVELIN reco v eries, the deviation between the peak and median of
he underlying PDF for each reco v ery, and on the absolute uncertainty
f the lag. We also designed a false positive test that quantifies the
ikelihood that the reco v ered lag has been measured in an incorrect
ocation. Using these cuts, we implemented a gold, silver, and bronze 
ating system, and used these ratings to test the quality of the resulting
–L relation. All of these quality levels produced R −L relations that
ere correct within a 1 σ confidence level, with the gold sample 
roducing the least variance in fits. 
In future work we aim to make impro v ements to sev eral aspects

f our analysis: 

(i) Where in this paper we estimated the spectroscopic calibration 
ncertainties using the method described in Hoormann et al. ( 2019 ),
e are developing a new empirical model of estimating the cali- 
ration uncertainties based on the F-star spectra for the upcoming 
zDES papers. This has been implemented for MgII measurements 

Yu et al. 2021 ) and we will apply it to the C IV region in the future. 
(ii) The photometry used in this analysis was measured in the 

 −band; ho we v er, we also hav e r − and i −band magnitudes. These
re currently used only in our spectrophotometric calibration but 
t is possible that they could be used in constraining time-lags 
s well. Using JAVELIN it is possible to cross-correlate multiple 
hotometric bands as well as the spectroscopic light curve, in theory 
his would provide better constraints. The slight time-delay between 
he photometric bands due to the continuum emission for the host
lack hole’s accretion disc (Mudd et al. 2018 ), would provide slightly
ifferent time domain information and may reduce effects such as 
liasing. This method would be computationally e xpensiv e and thus
as not explored here but is a consideration moving forward. 

With a well understood set of criteria to help understand our 
onfidence in measurements made on the full DES/OzDES sample, 
e now have a strong frame work on which to build the bulk analysis
f the remainder of the data set (Penton et al. in preparation, Malik
t al. in preparation, Yu et al. in preparation). 

C K N OW L E D G E M E N T S  

his research was supported in part by the Australian Go v ernment
hrough the Australian Research Council Laureate Fellowship fund- 
ng scheme (project FL180100168). 
AP and UM are supported by the Australian Go v ernment Research
raining Program (RTP) Scholarship. 
PM and ZY were supported in part by the United States National

cience Foundation under Grant No. 161553. 
Funding for the DES Projects has been provided by the U.S.

epartment of Energy, the U.S. National Science Foundation, the 
inistry of Science and Education of Spain, the Science and Technol- 

gy Facilities Council of the United Kingdom, the Higher Education 
unding Council for England, the National Center for Supercomput- 

ng Applications at the University of Illinois at Urbana-Champaign, 
he Kavli Institute of Cosmological Physics at the University of 
hicago, the Center for Cosmology and Astro-Particle Physics at the 
hio State University, the Mitchell Institute for Fundamental Physics 

nd Astronomy at Te xas A&M Univ ersity, Financiadora de Estudos
 Projetos, Funda c ¸ ˜ ao Carlos Chagas Filho de Amparo ̀a Pesquisa do
stado do Rio de Janeiro, Conselho Nacional de Desenvolvimento 
ient ́ıfico e Tecnol ́ogico and the Minist ́erio da Ci ̂ encia, Tecnologia
 Inova c ¸ ˜ ao, the Deutsche Forschungsgemeinschaft and the Collabo- 
ating Institutions in the Dark Energy Surv e y. 

The Collaborating Institutions are Argonne National Laboratory, 
he University of California at Santa Cruz, the University of Cam-
ridge, Centro de Investigaciones Energ ́eticas, Medioambientales y 
ecnol ́ogicas-Madrid, the University of Chicago, University College 
ondon, the DES-Brazil Consortium, the University of Edinburgh, 

he Eidgen ̈ossische Technische Hochschule (ETH) Z ̈urich, Fermi 
ational Accelerator Laboratory, the University of Illinois at Urbana- 
hampaign, the Institut de Ci ̀encies de l’Espai (IEEC/CSIC), the 

nstitut de F ́ısica d’Altes Energies, Lawrence Berkeley National 
aboratory, the Ludwig-Maximilians Universit ̈at M ̈unchen and the 
ssociated Excellence Cluster Universe, the University of Michigan, 
FS’s NOIRLab, the University of Nottingham, The Ohio State Uni- 
 ersity, the Univ ersity of Pennsylvania, the University of Portsmouth, 
LAC National Accelerator Laboratory, Stanford University, the 
niversity of Sussex, Texas A&M University, and the OzDES 

embership Consortium. Based in part on observations at Cerro 
ololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab 
rop. ID 2012B-0001; PI: J. Frieman), which is managed by the
ssociation of Universities for Research in Astronomy (AURA) 
nder a cooperative agreement with the National Science Foundation. 
The DES data management system is supported by the Na- 

ional Science Foundation under Grant Numbers AST-1138766 
nd AST-1536171. The DES participants from Spanish institutions 
re partially supported by MICINN under grants ESP2017-89838, 
GC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016- 
597, and MDM-2015-0509, some of which include ERDF funds 
rom the European Union. IFAE is partially funded by the CERCA
rogram of the Generalitat de Catalunya. Research leading to 
hese results has received funding from the European Research 
ouncil under the European Union’s Seventh Framework Pro- 
ram (FP7/2007-2013) including ERC grant agreements 240672, 
91329, and 306478. We acknowledge support from the Brazilian 
nst it ut o Nacional de Ci ̂ e ncia e Tecnologia (INCT) do e-Universo
CNPq grant 465376/2014-2). 

This manuscript has been authored by Fermi Research Alliance, 
LC under Contract No. DE-AC02-07CH11359 with the U.S. 
epartment of Energy, Office of Science, Office of High Energy 
hysics. 

ATA  AVAI LABI LI TY  

he data underlying this article are available in DES data release
, at https:// des.ncsa.illinois.edu/ releases/dr2 and the OzDES data 
MNRAS 509, 4008–4023 (2022) 

https://des.ncsa.illinois.edu/releases/dr2


4020 A. Penton et al. 

r  

s  

(

R

A
B
B
B  

B
B  

B
C
D
D
E
F
G
G
G  

G
G
G
G
H
H
K  

K  

K
K
K
K
K
L
L
L
M
M
M
,  

 

O
P
P  

P  

P
P
S
S
S
S
T  

V
Y  

Y
Y

Z
Z
Z

A

A

M  

s

w  

c  

s  

c  

c  

e  

l
 

i  

M

P

w  

0  

p
 

m  

d  

w  

w
 

f  

w  

u  

h  

a  

f  

g  

a  

t  

c  

g  

t  

b  

Table A1. Coefficients of the power-law relation defined for the damping 
time-scale and structure function. 
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elease 2 at ht tps://datacent ral.or g.au/ser vices/download/. The data
ets were derived from sources in the public domain Abbott et al.
 2021 ) and Lidman et al. ( 2020 ). 
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PPENDI X  A :  SI MULATI ON  PA R A M E T E R S  

1 Variability time-scale, τD , and amplitude, SF ∞ 

acLeod et al. ( 2010 ) determined the following power - law relation-
hip between τD and SF ∞ 

and the physical properties of AGN: 

log 10 ( α) = A α + B α log 10 

(
λ

4000 

)
+ C α( M i + 23) 

+ D α log 10 

(
M BH 

10 9 M 	

)
, (A1) 

here α refers to τD (in days) or SF ∞ 

(in mag), λ ( Å) is the rest-frame
ontinuum wavelength, M i is the absolute i -band magnitude of the
ource and M BH is the mass of the black hole (in solar masses). The
oef ficients are gi ven in Table A1 . The correlations were found after
onverting time-scales to the rest frame of the sources, therefore the
stimated τD values were multiplied by (1 + z) to create simulated
ight curves in the observed frame. 

The black hole mass that is often used in simulations of this type
s that predicted from the following Gaussian distribution used by

acLeod et al. ( 2010 ): 

 ( log 10 M BH | M i ) = 

1 √ 

2 πσ 2 
M BH 

exp 

[ 

− ( log 10 M BH – log 10 M BH ) 2 

2 σ 2 
M BH 

] 

, (A2) 

ith mean log 10 M BH = 2 . 0 –0 . 27 M i and standard deviation σM BH =
 . 58 + 0 . 011 M i which signifies the dispersion in the black hole
opulation. 
In general, equation (A2) can be used to estimate the black hole
asses for a large population of SMBH, Ho we ver, it was found that,

ue to our surv e y target selection, the expected masses for our sources
ere tightly localized to much smaller regions than this distribution
ould predict. 
Fig. A1 shows the difference in distributions between the masses

or the OzDES sample as predicted by equation (A2) in comparison
ith the distribution of these same black hole masses estimated
sing the virial relation (equation 1). To use the virial relation we
ave used the R–L relation from Hoormann et al. ( 2019 ) to find
n approximate radius of the BLR. Then used the RMS spectrum
or each source to find the velocity of the region. The two distinct
roups of blue in Fig. A1 represent the H β sources ( ∼ 10 8 M 	)
nd the C IV and Mg II sources ( ∼ 10 9 –10 10 . 5 M 	). The reason for
he distinct groups is due to both surv e y design and astrophysical
onstraints. All of the nearby sources utilize the H β line and are
enerally smaller or dimmer sources. This in general means that
hey host a lower mass SMBH. At a higher redshift we target much
righter objects, which generally house much larger SMBHs. There
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Figure A1. Histograms showing that our lag measurements primarily sample 
the high-mass end of the black hole mass distribution predicted by equation 
(A2). This is expected since we are primarily sensitive to long lags. The data 
in blue was obtained using the lag estimated from the R −L relation listed in 
Hoormann et al. ( 2019 ) and the line velocities from the RMS spectra for each 
source. These are then used to compute a mass using the virial relation (equa- 
tion 1). The green distribution is the prediction of the black hole mass distribu- 
tion using equation (A2) and the absolute i −band magnitudes for each source. 
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re also simply no quasars that house ( > 10 9 M 	) SMBH at z < 0.6
n our surv e y footprint. Due to these differences from the commonly
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) and intercepts [log 10 (

orrections for each based on the average of fset sho wn in T able 2 . W e can see that 
imulations to account for biases can be ef fecti ve. 
2 Expected lag, τ

e estimated the rest-frame lag for each source using published R −L
elationships for each of the emission lines, which have the form: 

log 10 ( R) = K + α × log 10 ( λL λ) (A3) 

here R is the radius of the BLR in light-days ( i.e. the lag, τ , in
ays), L λ is the monochromatic continuum luminosity at wavelength 
( Å) in erg s −1 Å−1 , K is the zero-point for the relation, and α is

he slope of the power-law relationship. We use the R −L relation
alibrated for C IV from Hoormann et al. ( 2019 ) with coefficients of
 = −20.74 ± 2.2, α = 0.47 ± 0.04, and λ ( Å) = 1350. The simulated

ight curves were generated in the observed frame, so to generate the
 xpected observ e-frame lags for each source, the rest-frame lags
ere multiplied by (1 + z). 

PPENDI X  B:  RADI US–LUMI NOSI TY  

ELATI ON  FITTING  A N D  C O R R E C T I O N S  

s mentioned in Section 5 we use some previous C IV lag measure-
ents to help anchor the Radius–Luminosity relationship for our 

imulated data. These are shown in Table B1 . In order to assess
hether the small residual bias in the R–L relation can be remo v ed,
e take the average magnitude offset we see in each of our Gold,
ilver, and Bronze samples, and add that offset to the results for
ach time delay in our simulated sample. For example, the Gold
ample had a mean offset �τ = 13 d (Table 2 ), so we add that
o each reco v ered τ before fitting the R–L relation. The result is
hown in Fig. B1 , in which an impro v ed reco v ery of the relation is 
chieved. 

We note that this offset is not applied to previous data because that
ample would have different statistical properties that would require 
ts own simulation analysis. A more sophisticated technique would 
e to apply a different offset for different subsets of the data, e.g. as
 function of luminosity or lag. We defer such explorations to future
ork. 
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the biases seen in Fig. 12 are greatly reduced. This indicates that using these 
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igure B2. An example of a best-fitting R −L relations computed using a
ubsample of sources. This figure shows the wide range of luminosities in the
iterature values that are used to supplement the smaller luminosity range of
he simulated values. 

able B1. Rest frame time-lags and 1350 Å luminosities for all C IV lags
sed to anchor the R −L relationship. 

GN log λL λ [ergs s −1 ] τRF [days] Ref. 

GC 3783 43.59 ± 0.09 4 . 0 + 1 . 0 −1 . 5 1 

GC 5548 Year 1 43.66 ± 0.14 9 . 8 + 1 . 9 −1 . 5 1 

GC 5548 Year 5 43.58 ± 0.06 6 . 7 + 0 . 9 −1 . 0 1 

T286 47.05 ± 0.12 459 + 71 
−92 2 

T406 46.91 ± 0.05 115 + 64 
−86 2 

214355 46.96 ± 0.07 128 + 91 
−82 2 

221516 47.16 ± 0.12 165 + 98 
−13 2 

ote . References: (1) Peterson et al. ( 2005 ) and references therein; (2) Lira
t al. ( 2018 ). 
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