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A B S T R A C T 

We present a machine learning model to classify active galactic nuclei (AGNs) and galaxies (AGN-galaxy classifier) and a model 
to identify type 1 (optically unabsorbed) and type 2 (optically absorbed) AGN (type 1/2 classifier). We test tree-based algorithms, 
using training samples built from the X-ray Multi-Mirror Mission–Newton ( XMM–Newton ) catalogue and the Sloan Digital Sky 

Surv e y (SDSS), with labels derived from the SDSS surv e y. The performance was tested making use of simulations and of 
cross-validation techniques. With a set of features including spectroscopic redshifts and X-ray parameters connected to source 
properties (e.g. fluxes and extension), as well as features related to X-ray instrumental conditions, the precision and recall for 
AGN identification are 94 and 93 per cent, while the type 1/2 classifier has a precision of 74 per cent and a recall of 80 per cent for 
type 2 AGNs. The performance obtained with photometric redshifts is very similar to that achieved with spectroscopic redshifts 
in both test cases, while there is a decrease in performance when excluding redshifts. Our machine learning model trained on 

X-ray features can accurately identify AGN in extragalactic surveys. The type 1/2 classifier has a valuable performance for type 
2 AGNs, but its ability to generalize without redshifts is hampered by the limited census of absorbed AGN at high redshift. 

Key words: methods: statistical – galaxies: active. 
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 I N T RO D U C T I O N  

ctive galactic nuclei (AGNs) are the brightest persistent sources 
n the sky and their luminosities emitted in their innermost compact 
egions are a sign of accretion on to supermassive black holes. X-ray
urv e ys hav e helped to e xpand our knowledge of AGN, challenging
he sensitivity limits, and continuously expanding the AGN census 
e.g. Nandra et al. 2015 ; Luo et al. 2017 ; Hasinger et al. 2021 ). The
dvantage of X-ray surv e ys is that the y allow us to detect sources
bscured in other wavelengths, since X-ray spectra emitted from the 
uclei do not strongly interact with surrounding material. Telescopes 
uch as X-ray Multi-Mirror Mission–Newton ( XMM–Newton ; Jansen 
t al. 2001 ) have helped to identify a larger number of AGN,
ncluding absorbed and low-luminosity AGN, helping to distinguish 
hem from galaxies without an active nucleus (e.g. Caccianiga et al. 
007 ; El ́ıas-Ch ́avez et al. 2021 ; Torbaniuk et al. 2021 ). On the other
and, optical surv e ys such as the Sloane Digital Sk y Surv e y (SDSS;
ork et al. 2000 ) hav e pro vided information about identifications
nd redshifts o v er ∼30 per cent of the sk y. The surv e y pro vides,
esides multicolour data, also spectroscopic information that gives 
nformation on absorption along the line of sight, with broad optical 
ines observed in unabsorbed AGN (also called type 1 AGN) and not
ypically detected in absorbed AGN (also called type 2 AGN), the 
ifference being commonly interpreted as an orientation effect of the 
bsorbing material. 

Large surv e ys are planned for the next years and the incoming
uge data sets will bring information about galactic and extragalactic 
ources. For instance, in the field of optical – near-infrared astronomy, 
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he Le gac y Surv e y of Space and Time ( LSST ; Ivezi ́c et al. 2019 ) will
ring a dramatic impro v ement in AGN demography across cosmic
imes: with its wide and deep field observations, it will provide data
f millions of sources per night. The data flows will be beyond the
imits of human ability to analyse and the volume of the archives will
row fast. Classifying sources in these conditions is a challenging 
ask and, given the complexity of the algorithms, they cannot be
uilt manually. Automated tools become useful to analyse such 
arge data sets, but also in a more general context of moderately
ized surv e ys, since the y hav e the power to quickly perform the
esired tasks (e.g. classification or prediction) for new data flows. 
he expression machine learning (ML) refers to building automated 
rocedures that directly learn from data in order to perform the
bo v e-mentioned tasks (Samuel 1959 ). A specific branch of ML
s supervised learning, which makes use of labelled data, i.e. data
ith the desired outputs. These techniques provide the machine with 

nstructions for how to process the information behind labelled data 
n order to learn a model from them. Finding a relationship between
 set of measurements (features) and a target variable (label), ML
ethods use this relationship or model to predict the target variable

or new data. 
Supervised learning algorithms are broadly used in different fields 

here the labels are commonly referred to as ‘ground truth’, since
hey are trusted identifications, while features usually have some 
egree of uncertainty (Mitchell 1997 ). The techniques developed 
o far are suitable whenever the level of uncertainty and noise are
imilar across the features (Zhu & Wu 2004 ). Techniques of data
leaning are usually employed to filter noisy samples (e.g. Wilson 
972 , S ́anchez et al. 2003 ), while dimensionality reduction can help
educe the number of features by ignoring those that bring redundant
nformation or noise (Pearson 1901 ; Tipping & Bishop 1999 ). 
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Figure 1. Sample construction in the two test cases. The two squares enclose, 
respectively, test case 1 to identify AGNs and galaxies, and test case 2 to 
divide the AGN class into type 1 and 2 AGNs. The sample construction of 
XMM–SDSS is described in Section 2.1, while the construction of XMM–
SDSS–Milli is described in Section 2.2. New type 2 candidates ∗: galaxies not 
included in Milliquas, with L > 10 42 erg s −1 (see the text for details). More 
details of the sample construction are illustrated in Fig. A1 . 
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ML has successfully been used in astronomy in sev eral conte xts
or instance to identify transient sources (D’Isanto et al. 2016 ) and
GNs, using their optical variability (De Cicco et al. 2021 ) or their
agnitudes in optical surv e ys (Cavuoti et al. 2014 ). ML methods

ave also allowed to address other aspects of extragalactic surveys,
uch as to estimate redshifts: for instance, Mountrichas et al. ( 2017 )
stimated photometric redshifts of more than 1000 X-ray sources.
edshifts were also estimated in Ruiz et al. ( 2018 ) for more than
0 per cent of the 3XMM catalogue, with an outliers rate ranging
rom 4 to 40 per cent, depending on the amount of available data. For
he classification of X-ray sources, ML methods have been applied
o classify sources in the 4XMM-DR9 catalogue by Zhang, Zhao &

u ( 2021 ), additionally using infrared data. The authors classified
alaxies, quasars and stars with a total accuracy of around 95 per cent.
L has also been valuable for expanding the census of quasars at

igh redshift (Wenzl et al. 2021 ). Finally, the high predictive power
f ML methods enables assessment studies for new instruments, for
nstance forecasting background contamination for the future X-ray

ission Athena (Kronberg et al. 2020 ). 
The aim of this work is to determine the performance of ML
ethods to identify sources in X-ray surv e ys, inv estigating the

ele v ance of features from X-ray and optical surv e ys. In view of
ata from recent facilities such as eRosita (Merloni et al. 2012 ) and
uture X-ray observatories such as Athena (Nandra et al. 2013 ), this
ork aims at exploring frameworks and building models that can be
eployed for incoming data. The aim of this paper is twofold: in the
rst part we build a supervised learning algorithm to identify AGNs
nd galaxies (test case 1); a second algorithm aims at distinguishing
etween two subclasses of AGNs, specifically unabsorbed (type 1)
GNs and absorbed (type 2) AGNs (test case 2). The algorithms
re built from training on two of the largest existing data sets in
he archives, namely the XMM–Newton and SDSS surveys (details
bout the data are provided in Section 2). For our classification tasks,
he features are derived from the XMM–Newton X-ray catalogue and
he labels from SDSS (in test case 1) and the Million quasar surv e y
combined with SDSS and XMM–Newton , in test case 2). 

This paper is organized as follows: data and sample construction
re described in Section 2; methods are described in Section 3;
esults are discussed in Section 4, conclusions and future applications
re described in Section 5. Additional information on the samples
sed to train the models are provided in Appendix A, while results
n the AGN–galaxy classifier trained after having relabelled high-
uminosity galaxies are described in Appendix B, a test to check the
mpact of features is shown in Appendix C. 

 DATA  C O L L E C T I O N  

he first catalogue involved in this study is the XMM–Newton
atalogue. We used the 4XMM DR9 19/12/2019 detection catalogue
resented in Webb et al. ( 2020 ), 1 referred to as ‘XMM’ hereafter.
he ML methods used in this paper are based on supervised learning,
hich makes use of labelled data from existing catalogues in order

o build a classifier. For the galaxy–AGN identification, which is the
rst step of this work, the classifications (i.e. the labels) have been
erived from optical spectra in SDSS data release 16 (2019, Aguado
t al. 2019 ). Redshifts and labels are therefore obtained from the
R16 SDSS spectral information, 2 which results in three classes:
GNs, galaxies, and stars. 
 See http://xmm-catalog.irap.omp.eu . 
 https:// www.sdss.org/dr16/ spectro/ spectro access/ 

5  

3
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The type 1 and 2 AGN identifications are derived from the Million
uasar surv e y: Version 7.0, 30 September 2020 (Milliquas) 3 in Flesch
 2019 ). This catalogue mainly takes information from SDSS, and in
art also from AllWISE (Secrest et al. 2015 ). The procedure used to
uild the training sample is illustrated in Fig. 1 and described below.
ore details on sample construction are included in Appendix A and

ig. A1 . 

.1 AGNs and galaxies from XMM–SDSS 

s a first step to construct our sample, a catalogue of sources in
ommon between XMM and SDSS was constructed (using the full
able SpecObj of SDSS). This was done matching the coordinates
f XMM and SDSS at 5 arcsec. We selected the closest match
in sky distance) if more than one SDSS source was within the
 arcsec radius. The cross-correlation radius is the same used in
 https:// heasarc.gsfc.nasa.gov/ W3Browse/all/milliquas.html 

http://xmm-catalog.irap.omp.eu
https://www.sdss.org/dr16/spectro/spectro_access/
art/stab3435_f1.eps
https://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html
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any previous works such as Falocco et al. ( 2014 ), Traulsen et al.
 2019 ), and Webb et al. ( 2020 ); its value is limited by the angular
esolution of X-ray instruments: the PSF has full width at half-
aximum of 6 arcsec and half energy width of 15 arcsec 4 in XMM–
ewton . In this step, we obtained 33 647 detections (XMM–SDSS

ample hereafter), corresponding to 33 469 individual sources. The 
tarting X-ray catalogue contains all detections in XMM, 810 795 
n total, that have not been filtered. Though in the XMM–SDSS
ample the difference between the number of detections and the 
umber of sources is only ∼200, it is useful to exploit all available
etections for each source. This is because each of them results in
if ferent observ ational features due to v ariability of the source itself
s well as different observational conditions. Including a variety of 
bservations of the same source in the training sample helps to train
 classifier on a broad range of conditions that would not be captured
f only one observation for each source was selected. 

AGN objects are defined extracting labels from SDSS using the 
olumns ‘class’ and ‘subclass’ in that catalogue. In SDSS, the class
an assume three values: QSO, galaxy, and stars. The sources labelled 
s stars have been excluded from this work because we focus on
xploring ML classification of extragalactic surveys. With respect 
o this, we note that a simple cut in latitude (e.g. between −30
nd 30 deg) would remo v e 72 per cent of stars if this label had been
navailable. The AGN class is composed of sources with evidence for 
 compact nucleus as per the SDSS catalogue 5 ; the class of galaxies
s also based on the SDSS classification. 6 The resulting catalogue is
omposed of detections divided as follows: 

(i) 25599 AGN 

(ii) 7262 galaxies 

The definition of galaxies may in principle have some mislabelling 
ue to the fact that very faint AGN could be difficult to identify from
he optical spectra. This could for instance happen for obscured 
uclei or intrinsically faint AGN, also called low-luminosity AGN 

LLAGN). In order to better investigate this aspect, we cross-matched 
he full sample of AGN and galaxies with Milliquas, which contains 
xtra information in addition to that included in SDSS (AllWISE 

s also used as mentioned abo v e). Details of the cross-match with
illiquas are reported in Section 2.2. 
Finally, we created a version of the AGN-galaxy sample with 

hotometric redshifts, which allows us to test how the type of
edshift information affects the ML classification. The photometric 
edshifts were obtained from the Kilo-De gree-Surv e y (KiDS) by 
uijken et al. ( 2019 ). 7 Cross-matching the sample of 25 599 AGN
lus 7262 galaxies with ∼ 2 million KiDS sources, which includes 
uasars from Nakoneczny et al. ( 2021 ) and bright galaxies from
ilicki et al. ( 2021 ), we obtained 260 galaxies and 710 AGN with
hotometric redshifts. The cross-match was done between the optical 
DSS coordinates and the KiDS coordinates using a 1 arcsec radius.
his value is widely used in the literature as a reasonable matching

adius for optical catalogues (e.g. Falocco et al. 2015 ; De Cicco
t al. 2019 ). The photometric sample constructed in this way has
 similar redshift distribution as the initial spectroscopic sample, 
 See Section 3.2.1.1 of XMM–Newton Users Handbook. 
 AGNs were selected based on two conditions: (1) CLASS = QSO; (2) 
LASS = GALAXY and (SUBCLASS = AGN or SUBCLASS = AGN 

ROADLINE). 
 Galaxies were selected based on the condition: CLASS = GALAXY and 
UBCLASS other than AGN and AGN BROADLINE (the y might hav e no 
ubclass provided in SDSS or STARFORMING, or STARBURST). 
 http:// kids.strw.leidenuniv.nl/ DR4/ 
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imilar selection effects in redshift, as well as a similar degree of
mbalance between the majority and minority classes. The results 
f training the ML algorithm on this sample and using photometric
nstead of spectroscopic redshifts are reported in Section 4.1. 

.2 AGN from XMM, SDSS, and Milliquas 

e further investigate the AGN-galaxy sample defined abo v e by
ross-correlating it with Milliquas. Matching the coordinates at 
 radius of 1 arcsec (value motivated abo v e) results in 25 246
xtragalactic sources in common between the parent surv e ys (see
ig. A1 in Appendix A and Fig. 1 ). Out of these sources, 24 691
ere defined as AGN from the SDSS surv e y and 555 were defined as
alaxies in SDSS (as explained in the previous section). These 555
DSS galaxies clearly show some evidence for being AGN, since 

hey are in the Milliquas sample. They represent ∼7 per cent (555
ut of 7262) of sources identified as galaxies in SDSS. The effect
f relabelling these 555 sources on the classification performance 
ill be described in Section 4.1. An opposite problem could arise

f sources identified as AGN in SDSS have no nucleus, but this is
 xpected to hav e a lo wer incidence, gi ven that optical spectroscopy
s one of the most solid methods to find and classify AGN. 

There is a group of ∼900 sources labelled as AGN in SDSS which
o not appear in Milliquas, most probably because the Milliquas 
urv e y remo v ed all sources that hav e a probability of being AGN
ower than 80 per cent, thus excluding faint SDSS objects with low
/N spectra. This resulted in removing over 20k SDSS objects in the
illiquas surv e y, as e xplained in section 2 of Flesch ( 2019 ). We call

he full sample of 25 246 extragalactic sources XMM–SDSS–Milli. 

.3 Type 1 and 2 AGNs from XMM–SDSS–Milli 

mong XMM–SDSS–Milli, we further selected only those sources 
dentified as type 1 or type 2 following the identifications in the

illiquas catalogue. Other kinds of sources like lobed or jetted AGN
369 sources) have not been included in this sample to explore the
otential of ML classification in finding type 2 AGNs versus type
 AGNs. Type 1 AGNs are those with evidence for an unabsorbed
ucleus in the optical and type 2 include those with evidence for an
bscured nucleus. 8 This selection results in 24 877 observations of 

(i) 24029 type 1 
(ii) 848 type 2 

We added to this sample new type 2 candidates from the parent
MM–SDSS sample. These candidates were not included in the 
arent Milliquas surv e y and labelled as galaxies in SDSS; their X-
ay luminosities 9 are abo v e 10 42 erg s −1 (between 0.2 and 12 keV,
orresponding to band 8 of the XMM catalogue). Literature reports 
onvincing evidence that galaxies with X-ray luminosities higher 
han this threshold indeed have some kind of AGN activity (Ranalli,
omastri & Setti 2003 ; Maiolino et al. 2003 ; Castell ́o-Mor et al.
012 ). There are 4355 optical galaxies excluded from the Milliquas
urv e y with X-ray luminosities abo v e the limit of 10 42 erg s −1 that
 Type 1 are defined as ‘q’ (QSO, type-I broad-line core-dominated) and ‘a’ 
AGN, type I Seyferts/host-dominated) in the Milliquas surv e y, while type 
 AGNs have labels ‘K’ (NLQSO, type-II narrow-line core-dominated) and 
N’ (LAGN, type II Seyferts/host-dominated). 
 The luminosity is determined as F × 4 π d 2 where F is the flux and d is 
he luminosity distance extracted from the redshift using the cosmological 
arameter H 0 = 72 km s −1 Mpc −1 . 

MNRAS 510, 161–176 (2022) 
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Table 1. Features used to train the classifiers. All features are used for the AGN–galaxy classification, 
while EP −8 −FLUX is not included in the type 1/2 classifier training. All features except for redshifts 
are from the XMM catalogue. 

Parameter Definition 

1 SC −EXTENT Extent in the merged observations in arcsec 
2 SC −EXT −ML Average of extent likelihood in the detections of the source a 

3 EP −8 −FLUX Flux in EPIC in 0.2–12 keV 

b 

4 EP −FLUX −2 −3 −4 Sum of EPIC fluxes in 0.5–1, 1–2, 2–4.5 keV 

b 

5 SC −DET −ML Maximum detection likelihood in band 0.2–12 keV 

6 EP −5 −FLUX EPIC flux in band 4.5–12 keV 

c 

7 EP −8 −CTS EPIC combined counts in band 0.2–12 keV 

8 Z Spectroscopic redshifts 

9 DIST −NN Distance to the nearest neighbour detection (arcsec) 
10 EP −ONTIME Net exposure time after filtering (s) 
11 SUM −FLAG Quality flag c 

12 EP −OFFAX Offaxis angle (arcsec) 
13 N −DETECTIONS Number of detections in merged observations 

a The extent likelihood is defined in XMM as −ln p , where p is the probability of the extent occurring 
by chance. b Flux units: erg cm 

−2 s −1 . 
c Sum of the quality flags of individual cameras, it can assume zero value for the most reliable 
detections and values increasing until 4 in the worse cases when the source is most likely spurious. 
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an be interpreted as extra candidate type 2 AGN. These sources
re classified as galaxies in the optical band, but most likely have
bscured nuclei as attested by their high X-ray luminosities. Test
ase 2 is therefore based on a sample of 29 232 observations of 

(i) 24029 type 1 
(ii) 5203 type 2 

This sample is used for training the type 1 and 2 AGN (type 1/2)
lassifier. The sample and its composition is detailed in Fig. A1 . It
ncludes 24 476 sources defined as AGN in SDSS and 4756 sources
efined as galaxies in SDSS. 
In test case 1, we have 7262 SDSS sources classified as galaxies in

DSS (as detailed in the Section 2.2), but 555 of them have evidence
from Milliquas) for an AGN nucleus. On the other hand, there are
355 SDSS galaxies that do not have evidence for a nucleus from
ptical spectroscopy, but where active nuclei can be inferred from
heir high X-ray luminosities. We found that these sources have a
mall impact on the final results on the AGN–galaxy classification,
s will be explained in Section 4.1 and Appendix B. 

As for test case 1, we performed an additional experiment also
or the type 1/2 classifier in order to explore its performance when
ubstituting spectroscopic with photometric redshifts. This was done
ross-correlating the optical coordinates of the abo v e sample of type
 and 2 AGN with the KiDS surv e y as described in Section 2.1
or test case 1. The starting sample of 24 029 type 1 AGN plus
203 type 2 AGN cross-matched with the KiDS sources results in
87 type 1 AGNs and 155 type 2 AGNs with photometric redshifts.
his photometric sample has a very similar imbalance and selection
ffects in redshifts as the corresponding spectroscopic sample, as we
lso noted in test case 1. The results of training the ML algorithm on
his sample using photometric redshifts are reported in Section 4.2. 

 M E T H O D S  

he workflow follows the main steps detailed in this section: 

(1) Features selection (see Section 3.1) 
(2) Define the ML algorithms most suitable for the data (described

n Section 3.2) 
NRAS 510, 161–176 (2022) 
(3) Estimate the performance of the classifiers with the 10 fold
ross validation (see Section 3.3) 

(4) Features importance (see Section 3.4) 

his work used the following PYTHON libraries: SKLEARN for the
L algorithms application and feature importance (Pedregosa et al.

011 ); IMBALANCED-LEARN (Lema ̂ ıtre, Nogueira & Aridas 2017 )
as used to apply o v ersampling techniques as described below.
atalogues have been handled with PANDAS (Wes McKinney 2010 );
ost plots have been made with MATPLOTLIB (Hunter 2007 ), some

lots made use of SEABORN , presented in Waskom ( 2021 ). Decision
ree-based algorithms make use of probabilistic decisions and some
egree of randomness (i.e. when a feature is selected to split the
ample in a tree-based model). For this reason, every time an ML
lgorithm is trained and e v aluated o v er the same data set, it will
i ve slightly dif ferent results. In order to reproduce exactly the same
umbers at every run, we fixed the random seed in PYTHON to 42.
e note that changing the random seed would cause a change in

he performance metrics of less than 0.1 per cent, and all results
escribed below are unaffected by this. 

.1 Features selection 

eeping the dimension of the training set small is useful when apply-
ng ML algorithms with the purpose to both reduce the computing
ime and to a v oid feeding the ML algorithm with redundant features.
he features used to train the classifiers (defined in Table 1 ) are
elected with the procedure described below. 

The training samples have columns from the XMM catalogue,
esides the optional redshifts and the labels. We defined the features
et after a first filtering of the columns. First of all, we only used
olumns whose values were present for all sources in the sample,
hich left 94 columns. We preferred to filter columns, not rows,

n order to have a reasonable size of the data set (filtering rows
ith missing values would leave only a few sources in the sample).
trongly correlated features (defined as having a Pearson correlation
oefficient with a p -value P ≥ 0.9) have been eliminated, because
he y giv e redundant information. 
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A group of features related to source properties are retained in our
election. First, we decided to keep the flux in the full X-ray band,
amely band 8 in the catalogue (0.2–12.0 keV), for the AGN–galaxy 
lassification, because it can provide hints for an active nucleus. 
hese full-band fluxes are often used to check for the presence of an
GN in a galaxy (Ranalli et al. 2003 ; Castell ́o-Mor et al. 2012 ). This
as not done for the type 1/2 classification because the individual 
ands can be more instructive when searching for type 1 and 2
GNs. Specifically, the fluxes below 2 keV and above 2 keV have
ro v en useful to select type 2 AGNs (e.g. Terashima et al. 2015 )
nd to train ML algorithms (Farrell, Murphy & Lo 2015 ). Fluxes
n bands 2, 3, and 4 of XMM have been combined into a single
alue co v ering the energy range between 0.5 and 4.5 keV. The total
umber of counts in the band between 0.2 and 12 keV ( EP −8 −CTS )
as been included in both test cases, as well as the net exposure
ime of the observation ( EP −ONTIME ). These two parameters are
ele v ant because the y giv e information on how many X-ray counts
an be collected in a given exposure time (i.e. their ratio is the
ource count rate). We further included SC −DET −ML in the full band
ecause sources with different redshifts may have different detection 
ikelihoods (e.g. at high redshifts, there is a higher probability to 
etect high-luminosity sources rather than faint sources). We also 
nclude parameters related to the extent in the merged observation: 
C −EXTENT and SC −EXT −ML . We prefer to use these features from
he merged observation rather than the individual ones because they 
re more robust (the extent is not expected to change across the
bservations). 
Features related to instrumental conditions are included in a first 

un and then excluded in a second run to quantify their actual
nfluence on the trained model. SUM −FLAG and N −DETECTIONS 
re part of this group: while the first one is a summary of the
uality flags in each camera, the second one gives the number of
etections of each unique source, and thus how many detections 
ontribute to the merged parameters. The distance from the nearest 
eighbours ( DIST −NN ) is also used in order to check its rele v ance
n the classification, since it has been included in previous works
Farrell et al. 2015 ); the offaxis angle ( EP −OFFAX ) has also been
ept to check if it might affect the classification (in principle it
ight affect the extension, thus the ability to distinguish genuine 

xtent from artefacts). We will see, ho we ver, that EP −OFFAX has
o influence in our ML algorithms, so our classification tasks are 
ot affected by this parameter. We used spectroscopic redshifts in a 
rst run; photometric redshifts have been used to replace them in a
econd run; the last training run was done without redshifts. 

The selection just described includes the features listed in Table 1 .
s can be noted, there are directly source-related properties (from 

eature 1 to 8 of the table) and other features more connected with
he instrumental conditions (i.e. from feature 9 to the end of the
ist in the same table). We demonstrate the consistency of results
y retraining our models including all of the features, and only the
irectly source-related properties, as described in the Appendix C. 
ur feature selection just described results in 13 columns for the 
GN–galaxy classification (those defined in Table 1 ) and 12 columns 

n the type 1/2 classification. The reason for this difference is that we
ecided to add the flux in the full band, EP −8 −FLUX , in test case 1,
ollowing the literature as mentioned abo v e. 

.2 Supervised learning algorithms 

ev eral models hav e been used in this work for classification. The
ubset of the surv e y used to fit the classifier is referred to as training
ample, while the subset used to test the sample is composed by
ifferent data points not included in the training sample, which 
onstitute to the so-called test sample. 

The methods tested in this work are tree-based algorithms, which 
re a sequence of if-else conditions to split the surv e y. This process
s optimized in order to build meaningful splits. This is done mini-
izing the Gini impurity (Breiman et al. 1984 ). The Gini impurity

or a split is the probability for a data point to be identified with the
ight label i p ( i ) multiplied for the probability to be misclassified (1

p ( i )). The formula of the Gini impurity is 

i= c ∑ 

i= 1 

p( i)(1 − p( i)) , 

hich sums o v er the classes in the data set. An ideal perfect split
ould give a Gini impurity of 0 and can be achieved if all data
oints in the split fall into a single class. We point out that the
ini criterion is not used to e v aluate the goodness of an ML model.

nstead, it is used only to estimate how homogeneous a split is. The
ini criterion is used to optimize the sample splitting in the decision

ree: it determines the selection of features and threshold to define
he nodes and the leaves of the tree, as will be explained below. 

In ensemble methods such as random forest (Breiman 2001 ), 
he decision tree represents only a starting point to develop better
lgorithms. This is due to the fact that the simple decision tree could
esult in o v erfitting. Ov erfitting is detected when the performance
f the training set is excellent while the performance of the test
ata set is poor, and this occurs because the model has learnt noise
atterns in the training data set. We have taken several measures to
 v oid o v erfitting: keeping the data set dimension low, N fold cross-
alidation to properly estimate performance metrics, and making 
se of ensemble algorithms. The 10-fold cross-validation (Stone 
974 ) is described in the next section and the features selection
as been explained in the pre vious section, belo w we describe the
lgorithms that we have used and which help to address the problem
f o v erfitting. 
An advantage of tree-based algorithms is that they do not make

pecific assumptions on the data distribution, as for instance the 
ean and the standard deviation for a normal Gaussian distribution 

Friedman 1977 ). On the contrary, these models learn from the data
ith high fle xibility. F or this reason, we do not use the Naive Bayes

lgorithm that instead assumes a Gaussian distribution of the data 
n the parameter space (e.g. Zhang 2004 ). We did not explore in
etail Support Vector Machine approaches either (Crammer & Singer 
001 ), because they might not be suitable for data sets where the
lasses o v erlap in the parameter space. This is expected in our clas-
ification problem, since there is a continuous distribution between 
GNs and galaxies; indeed, LLAGN and Low Ionization Nuclear 
mission Line Regions have intermediate luminosity between AGNs 
nd galaxies. There is also a continuous distribution between type 
/2 AGNs (Hasinger 2008 ). 
Below, we briefly describe the ML algorithms used in this work. 

Tree : The decision tree is a sequence of if-else conditions to
plit a labeled sample. Optimization methods are used to build 
eaningful splits, estimating the homogeneity of the labels in the 

ubsets. The splitting is continued until a stopping criterion is met,
hich prev ents o v erfitting. In our setting of hyperparameters, the
ptimization criterion is the Gini impurity. The stopping criterion 
dopted is to have a minimum of 100 sources in each split or a
aximum tree depth of 10. The tree depth is the number of iterations

f the decision tree. The decision tree algorithm was presented in
reiman et al. ( 1984 ) 
MNRAS 510, 161–176 (2022) 
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RF : Random Forest starts from a set of decision trees to build
 better classifier starting from the idea that a large number of
ncorrelated trees will outperform any of the individual tree models.
he reason for this behaviour is that each tree will make errors in a
ifferent direction and some trees will perform better than others, as
 consequence their combination might impro v e the result. Random
orest builds a forest of trees trained on different random sets, drawn
rom the training samples with the bootstrap method. Each bootstrap
ample given as input to the decision tree is not a chunk of the training
ata set, but it instead has the same size as the training sample. A
ootstrap sample is composed by a number U of unique data points
rom the initial training sample of dimension N , the rest N − U of the
ootstrap sample are duplicates. Moreo v er, each tree uses a random
ubset of the features, composed by f features. This is a parameter of
he model, for instance it can be equal to the total number of features
 , log 2 ( n ), 

√ 

n , or even an arbitrary number. Randomness introduced
y the choice of features and the choice of the bootstrap samples is a
enefit of this method, since it is able to produce different individual
rees. The combination of these individual, randomly chosen trees, is
ess prone to o v erfitting than one individual deep tree. In our specific
ettings, the number of features f is 

√ 

n and the number of weak
earners (decision trees) in the forest has been set to 100. Random
orests were presented in Ho ( 1998 ) and Breiman ( 2001 ) 

AB : The AdaBoost algorithm starts from a set of simple decision
rees and acts iteratively to impro v e the resulting classification. The
lgorithm is designed to impro v e the performance at each iteration.
he algorithm is built such that, in each subsequent iteration, the

ncorrectly identified data will have an increased weight, while the
orrectly identified ones will have a lower weight so that the model
ill focus more on the most difficult data. The final prediction

s therefore the weighted average (or the mode of the labels in
lassification problems) of the predictions obtained from the previous
ree models. In this work, it is built with 100 weak learners (simple
ecision trees with depth = 1). This algorithm was presented in
reund & Schapire ( 1997 ). 
grad : Gradient Boosting is another iterative algorithm that trains

eak learners in sequence, similarly to AB. The main difference
etween the two algorithms is that grad does not use the weights to
rain the new model at each iteration. It uses instead the optimization
f a loss function, a function that measures the error rate in the
lassification. In our settings, the weak learners are again 100 simple
ecision trees (with depth = 1). The learning rate (an optimization
arameter that indicates the gain of the model) has been set to 1.0.
his algorithm was presented in Friedman ( 2001 ) 
vote : Voting algorithm with different weights (w) attributed to the

stimators. This algorithm takes the weighted majority vote among
hese estimators. We initially setup the algorithm such that AB ( w =
), Tree ( w = 1), RF ( w = 1), and grad ( w = 2). The weights were
hosen in this way to consider preferentially the boosting algorithms
B and grad which are most often free from o v erfitting. Ho we ver, our
L algorithms have a similar performance and converge to the best

erforming tree-based algorithm, as will be discussed in Section 4,
hus the specific weights of each of them are not rele v ant. We have
ndeed noticed that adopting the same weight = 1 for all estimators
oes not affect the results. Therefore, to simplify the discussion, we
eport the results with equal weights for all estimators in the next
ections. The voting algorithm was presented in Zhang et al. ( 2014 ).

ifferent hyperparameters of the abo v e models have been tested
roving that the above specified values are reasonable in terms of
erformance. In particular, when there is no limit on the depth of the
ecision tree, its performance is lower. We have checked the reason
 t  

NRAS 510, 161–176 (2022) 
or this and we found that this is due to o v erfitting, since the training
erformance was good, which is at odds with a low test performance.

.3 Performance estimates 

he performance metrics have been calculated comparing the ex-
ected labels and the predicted labels in the test set. This has been
one with an iterative method, the 10-fold cross-validation: the
rocedure divides the sample in ten parts after random shuffling.
ased on this partition, it does ten iterations: in each of them nine
arts of the ten folds construct the training set, and one is the testing
et. As a consequence, a different fold represents the test set at each
teration. This procedure is the standard method used in statistics to
nderstand how accurately a model will perform with new data. We
ighlight that this method does not repeat the random definition of the
0-folds in each iteration. Indeed, it is fundamental for this method
o be ef fecti ve to guarantee that the testing is done on a different
old in each iteration (as explained in the original paper by Stone
974 ). The testing set has been used for calculating the performance
n each iteration. The 10 estimates of the performance metrics (that
re described below) have finally been averaged. We also checked
hat the performance in the 10 iterations is not characterized by a
arge variance, but shows only marginal variations. 

The samples used for the AGN–galaxies classifier and for type 1/2
GN classifier are imbalanced (more AGNs than galaxies and more

ype 1 than type 2), which might ne gativ ely affect the performance
f the minority classes represented by galaxies and type 2 AGNs.
o mitigate this effect, we used the SMOTE (Synthetic Minority
versampling Technique) algorithm to o v ersample the minority class

n the training set as was done in Farrell et al. ( 2015 ). The SMOTE
ethod was independently applied fold by fold to increase only the

raining part, not the testing part of the sample, following the standard
rocedure which consists of creating extra training data (Chawla et al.
002 ; Ha & Bunke 1997 ). We o v ersampled the minority classes up
o become 50 per cent of the majority class in the training sample.
MOTE produces synthetic data from a real data point considering

ts five nearest neighbours, using the algorithm presented in Chawla
t al. ( 2002 ): for each data point selects one of its five nearest
eighbours at random. It determines the vector that represents the
istance between them (in the features space) and multiplies it by a
andom number between 0 and 1. In this way, the new synthetic data
oint will be in one point of the distance vector between the original
ata point and its randomly selected neighbour. 
The performance has been estimated starting from the confusion
atrix (CM), which is a simple but complete way to describe the

erformance of a classification model. For a general class A and
lass B identification, CM is defined as 

M = 

(
T A Mis A 

Mis B T B 

)
, 

here T A is the number of true objects of class A identified as A;
 B is the number of B objects classified as B; Mis B is the number
f objects belonging to class B but misclassified (classified as type
 objects); Mis A is the number of objects of class A misclassified

classified as B). In the AGN–galaxy classification algorithm, the CM
ontains number of true galaxies T g , the number of true AGN T AGN ,
he number of false galaxies (in reality AGN) Mis AGN , the number
f false AGN (in reality galaxies) Mis g . For the type 1/2 classifier,
he CM contains the number of true type 1 AGNs (in the matrix it
s called T type1 ), the number of true type 2 ( T type2 ), the number of

isclassified type 2 objects, i.e. classified as type 1 (Mis type 2 ), and
he number of misclassified type 1 objects, i.e. classified as type 2
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Mis type1 ). The CM in the last case is therefore 

M = 

(
T type1 Mis type1 

Mis type2 T type2 

)
. 

From the CM, we calculated the following metrics. 

(i) The precision of each class (AGN or galaxy in the first classifier, 
ype 1 or type 2 in the second classifier), for example, the precision
or type 1 AGN is 

 ( type1 ) = 

T type1 

( T type1 + Mis type2 ) 
. 

s can be seen, the precision is best when minimizing the number
f false identifications of a given class. 
(ii) The recall is a measurement of how many objects have been 

ound of a class o v er the total number of examples of that class, for
nstance, for type 1 AGN: 

( type1 ) = 

T type1 

( T type1 + Mis type1 ) 
. 

he recall is instead maximized by minimizing the number of objects 
hat belong to the class and have been missed by the classifier. 

(iii) The F1 score is the harmonic average of precision and recall: 

 1 = 

(2 ∗ P ∗ R) 

( P + R) 

nd it has been calculated for each class separately. This score for a
erfect performance should be 1, while it would be 0.5 for a random
lection. 

(iv) The standard accuracy is 

 = 

(
T type1 + T type2 

T type1 + Mis type1 + T type2 + Mis type2 

)
. 

(v) Another performance metric investigated in this paper is the 
alanced accuracy, defined as the average of the recalls, for instance 
or the type 1/2 classification: 

a = 

1 

2 

(
R type1 + R type2 

)
. 

The balanced accuracy is suitable for testing a binary classifier 
here the performance is different for the two classes. Its value for
erfect predictions is 1, for random prediction is 0. There are cases
here the classifier performs differently for the two classes but the 

tandard accuracy is good thanks to the imbalanced test set, in those
ases the balanced accuracy is preferred. 

.4 Features importance 

he rele v ance of the features has been studied using the technique of
ermutation feature importance (Breiman 2001 ). This method starts 
y computing the performance of the algorithm, after that it starts
o analyse the features one by one. For each feature, it randomizes
ts values in the data set column producing a perturbed data set. It
epeats this randomization process several times and in each of them it 
alculates the performance of the algorithm. After having finished all 
terations, the average performance among all of them is calculated. 
he importance of a feature is defined as the difference between 

he averaged performance (obtained from the randomization) and its 
nitial value (from the real data set). 

In our set-up, we do 30 iterations for each feature and we compute
he algorithm performance using the precision; we applied this 

ethod to the fitted algorithms adopted in this work. 
 RESULTS  A N D  DI SCUSSI ON  

he selected features are given as input to the ML algorithms in
rder to predict labels in the two test cases: AGNs–galaxies in the
rst case and type 1/2 AGNs in the second case. The performance
f the different ML algorithms was estimated with the 10-fold 
ross-validation for each of the two classes in both test cases. The
erformance has been e v aluated in terms of the metrics described
n Section 3.3. We also investigated the influence of instrumental 
eatures or directly source-related features to the model training. 
his was done to understand if such parameters alone can be enough

o identify the extragalactic sources in question. We additionally 
ested the importance of spectroscopic redshifts among the features 
y checking the model performance after having replaced them with 
hotometric redshifts; we finally made a test removing redshifts 
uring the model training. 

.1 Classification of AGNs and galaxies 

he first classification experiment aims at building a classifier based 
n the sample composed by 25 599 AGNs and 7262 galaxies. The
erformance metrics are discussed below. The analysis described 
elow has also been repeated after relabelling 555 galaxies as AGNs,
ince the y hav e some evidence for AGNs in the literature (as reported
n the Milliquas surv e y), giving similar results. Another test has been
ade retraining the model after relabelling a broader sample of 4355

alaxies, based on their X-ray luminosity, higher than expected for 
n non-active galaxy; the results of this redefinition of the sample
re discussed in Appendix B. To simplify the discussion below, we
efer to the performance metrics of the AB classifier with SMOTE
ith spectroscopic redshifts included among the features (the shaded 

ine of Table 2 ), unless differently stated. We note that all ML
lgorithms trained with spectroscopic redshifts give very similar 
esults, therefore any of them could be used as a reference and would
ead to the same conclusions. 

.1.1 Performance metrics 

he performance metrics in terms of precision, recall and F1 score,
re reported in Table 2 . The classifiers perform better for AGNs than
or galaxies; removing redshifts degrades the performance of the 
lassifiers, especially for galaxies. This can be intuitively understood 
s an effect of sample imbalance and of a better sampling of the
GN class in redshift; besides that, the X-ray spectra of AGNs come

rom well-kno wn radiati ve processes in the nucleus itself, while for
alaxies there can be radiation of different nature (binaries or star
ormation), which would make their X-ray spectra a mix of these
ontributions. More details on these aspects are discussed below. 

The algorithms reach a good performance and changing their 
yperparameters does not impact the results: changing the number 
f SMOTE nearest neighbours from 5 to 10 has no impact as well as
ncreasing the SMOTE ratio between the minority and the majority 
lass to 0.9. We also notice that the performance is rather similar
or the different ML algorithms used. With redshifts included among 
he features, our results show that the precision in identifying AGN
s ∼95 per cent while for galaxies it reaches 77 per cent (see the
haded line of Table 2 ). The identification for AGN reaches recall
s high as 93 per cent, while the galaxies recall is ∼82 per cent.
he classifiers reach such good results mainly thanks to X-ray data
hich provide the most ef fecti ve way to find AGN: while X-ray

adiation abo v e a certain threshold constitutes evidence for an active
ucleus, it allows to detect nuclei obscured in other wavelengths 
MNRAS 510, 161–176 (2022) 
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Table 2. Performance metrics for AGN–galaxy classification with features 
set including spectroscopic redshifts (top table), photometric redshifts 
(central table), no redshifts (bottom table). SM indicates that the training 
sample was built with o v ersampling of the minority class (see the text). 
Obs indicates that the training sample only includes observed data. P AGN 

= precision calculated with respect to the AGN class. P g = precision for 
galaxies class. R AGN = recall of AGN. R g = recall of galaxies. F 1 AGN 

= F1 score of AGN. F 1 g = F1 score of galaxies. ba = balanced accuracy. 
RF, Tree, AB, grad, and vote are defined in Section 3.2. 

algorithm P AGN P g R AGN R g F 1 AGN F 1 g ba 

Spectroscopic redshifts 
SM 

RF 0 .948 0 .778 0 .934 0 .819 0 .941 0 .798 0 .876 
Tree 0 .95 0 .737 0 .916 0 .83 0 .933 0 .781 0 .873 
AB 0 .947 0 .77 0 .931 0 .817 0 .939 0 .793 0 .874 
grad 0 .947 0 .777 0 .933 0 .816 0 .94 0 .796 0 .875 
vote 0 .949 0 .776 0 .932 0 .825 0 .941 0 .800 0 .879 

obs 
RF 0 .937 0 .804 0 .947 0 .774 0 .942 0 .789 0 .86 
Tree 0 .936 0 .772 0 .935 0 .776 0 .936 0 .774 0 .855 
AB 0 .934 0 .807 0 .948 0 .762 0 .941 0 .784 0 .855 
grad 0 .935 0 .816 0 .951 0 .766 0 .943 0 .790 0 .858 
vote 0 .937 0 .815 0 .95 0 .773 0 .943 0 .793 0 .862 

Photometric redshifts 
SM 

RF 0 .961 0 .844 0 .937 0 .892 0 .949 0 .865 0 .915 
Tree 0 .958 0 .862 0 .946 0 .876 0 .951 0 .865 0 .911 
AB 0 .953 0 .845 0 .939 0 .872 0 .945 0 .856 0 .906 
grad 0 .955 0 .841 0 .936 0 .88 0 .945 0 .857 0 .908 
vote 0 .957 0 .855 0 .942 0 .884 0 .949 0 .866 0 .913 

obs 
RF 0 .959 0 .858 0 .945 0 .885 0 .951 0 .869 0 .915 
Tree 0 .931 0 .898 0 .966 0 .797 0 .948 0 .842 0 .882 
AB 0 .945 0 .856 0 .946 0 .848 0 .945 0 .85 0 .897 
grad 0 .948 0 .858 0 .945 0 .857 0 .946 0 .855 0 .901 
vote 0 .955 0 .868 0 .949 0 .879 0 .951 0 .869 0 .914 

No redshifts 
SM 

RF 0 .848 0 .625 0 .93 0 .412 0 .887 0 .496 0 .671 
Tree 0 .849 0 .579 0 .911 0 .427 0 .879 0 .491 0 .669 
AB 0 .845 0 .644 0 .938 0 .396 0 .889 0 .490 0 .667 
grad 0 .846 0 .646 0 .938 0 .399 0 .89 0 .493 0 .668 
vote 0 .847 0 .66 0 .941 0 .401 0 .892 0 .499 0 .671 

obs 
RF 0 .839 0 .717 0 .961 0 .349 0 .896 0 .469 0 .655 
Tree 0 .837 0 .671 0 .952 0 .348 0 .891 0 .458 0 .65 
AB 0 .83 0 .775 0 .976 0 .295 0 .897 0 .428 0 .635 
grad 0 .832 0 .762 0 .972 0 .309 0 .897 0 .440 0 .641 
vote 0 .837 0 .752 0 .969 0 .333 0 .898 0 .462 0 .651 
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Brandt 2005 ). The main limitation to the recall of 93 per cent could
e the presence of sources with low X-ray luminosities, but defined
s AGN in the optical catalogues. There are 167 misclassified AGN
n the test sample in Fig. 2 and part of them co v er a low flux–
ow redshift region of the plane in Fig. 2 , since they are below the
ine of luminosity 10 42 erg s −1 (continuous line in the same scatter
lot). Connected to this, there is a limitation in the precision of
he galaxy classification, which does not reach levels higher than
8 per cent with the ML classifiers trained in this work (see Table 2 ).
he precision of galaxies is limited due to the AGN classified as
alaxies by the ML model. This is because part of sources labelled
s AGN in the training sample (thus, in the optical spectroscopy) are
ot seen as AGN by the ML classifier. One of the likely reasons is that
NRAS 510, 161–176 (2022) 
he X-ray features used to train the model are affected by absorption;
s a consequence, our ML model classifies them as galaxies, which
ives a high rate of misclassified AGNs. Ho we ver, heavily absorbed
GNs are expected to be a small percentage in the survey, so other

easons such as intrinsically faint nuclei could bring the ML classifier
o identify sources as galaxies, when they are optically classified as
GNs. 
On the other hand, the limited recall of galaxies, which can reach

 maximum 82 per cent level with our ML models, by definition
imited by the number of misclassified galaxies, is most probably due
o the presence of sources in the training sample with galaxy labels
rom optical surv e ys, but with a conspicuous X-ray emission with
 > 10 42 erg s −1 . Fig. 2 shows that almost all the 138 misclassified
alaxies are abo v e that limit. As mentioned in Section 2.3, there
re 4355 sources in total with no evidence for nuclei reported
n the optical surv e ys used in this work, but with high X-ray
uminosities. High luminosities might cause the model to classify
hem as AGNs, even though an AGN was not reported in the optical
ata. Relabelling these 4355 sources as AGN slightly impro v es the
erformance metrics in the AGN classification (see Appendix B),
ith an AGN precision and recall impro v ement of ∼3 per cent (e.g.

ee AB algorithm with SMOTE and redshifts included in Tables 2
nd B1 ). On the other hand, the galaxy classification from this test
as a precision reduced by 12 per cent and a recall impro v ed by
 per cent (comparing the same lines of Tables 2 and B1 ). We deduce
hat when relabeling these 4355 optical galaxies with high X-ray
uminosity, the classifier is able to achieve a very good performance
or AGN, but does not significantly impro v e the galaxy classification
ith a balanced accurac y impro v ement of only 3 per cent (from the

ame tables as before). More details of this test are shown in the
ppendix B. The F1 score of 94 per cent for AGN and 79 per cent

or galaxies (see shaded line of Table 2 ) means that our classifier
dentifies both classes with a performance well abo v e random (which
ould instead be characterized by a F1 score of 50 per cent). The F1

core also indicates a better performance for AGN than for galaxies,
eflecting the performance metrics just discussed. There are multiple
easons for this: first, again the AGN o v ersampling; second, galaxies
re strongly limited in redshift. 

As e xplained abo v e, the AGN–galaxy classification uses labels
rom optical spectroscopy, but part of the SDSS galaxies might
ave evidence for AGN outside SDSS. We are not dealing here
ith the true intrinsic nature of the sources that we classify as AGN
r galaxies, but we rather aim at providing labels as assigned from
ptical spectroscopic classifications. Ho we v er, we e xplored the effect
f mislabelling in a small percentage of the galaxy class since part of
he galaxies ( ∼7 per cent, from 555/7262 as mentioned in Section 2.2)
ave some evidence for an AGN nucleus reported in the Milliquas
urv e y. We repeated the analysis relabeling these sources as AGN and
ound very similar results, concluding that 7 per cent of mislabelled
ources does not ne gativ ely affect the ML algorithms built with these
arge data sets. 

.1.2 Importance of features 

he importance of features has been investigated with the permuta-
ion method described in Section 3.4. We refer to the results of the
ermutation with the AB classifier, as everywhere else in this section,
o simplify our discussion. We note indeed that all algorithms give
imilar permutation feature importance. These results are reported
n Table 3 . The permutation shows that redshifts represent the most
ele v ant feature, which is most likely due to the pre v alence of galaxies
t lower redshifts and the pre v alence of AGN at higher redshifts.
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Figure 2. Distribution of a test sample (with the corresponding training sample in the background) in redshift and X-ray flux (in band 2 + 3 + 4, see the 
text), from the AGN–galaxy classification. The model used to obtain the predictions has been obtained from one iteration of the cross validation with redshifts 
(top panels and bottom left-hand panel) and from another iteration without using redshifts (bottom right-hand panel). The training has been done with the AB 

algorithm with SMOTE. The green continuous line in the top left-hand panel corresponds to the luminosity 10 42 erg s −1 . 

Table 3. Permutation feature importance of the AGN–galaxy classifier using 
the AB algorithm trained with SMOTE. Importance: mean of importance from 

iterations; STD: standard deviation of the importance. 

Feature Importance STD 

Z 0.216 0.004 
SC −DET −ML 0.032 0.002 
SC −EXT −ML 0.010 0.001 
SC −EXTENT 0.009 0.001 
EP −ONTIME 0.008 0.002 
EP −8 −CTS 0.005 0.001 
EP −OFFAX 0.004 0.001 
DIST −NN 0.001 0.001 
N −DETECTIONS 0.001 0.001 
SUM −FLAG 0.001 0.001 
EP −FLUX −2 −3 −4 0.000 0.000 
EP −8 −FLUX 0.000 0.000 
EP −5 −FLUX 0.000 0.000 
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he permutation importance of the other features is at most 0.03; 
his means that the reference performance metrics change less than 

3 per cent when the given feature is randomized. The redshift
istributions will be discussed in more detail in Section 4.1.3. 
We further investigated the importance of features with an addi- 

ional test described in Appendix C. This test demonstrated that the 
L algorithms trained with source-related features only can achieve 

 similar performance as using all features in Table 1 . 
.1.3 Impact of redshifts–X-ray fluxes 

e have investigated how selection effects might affect the classifi- 
ation algorithms. We mainly explore flux and redshift parameters, 
ince galaxies are preferentially found at low redshifts, while the 
GN distribution is extended up to higher redshifts, with conse- 
uences in the classification performance when the data set is used
o train the ML models. Fig. 2 shows the distribution of a training
nd test sample splitting the data set, as usual, into 90 per cent for
he training set and 10 per cent for the testing set. The figure shows
hat the redshift distribution of galaxies is extended up to redshift 1,
hile the AGN distribution peaks at redshift ∼2 and it is extended
p to very high redshifts ( z ∼ 8). 
Focusing on the galaxies (yellow triangles and blue crosses in 

ig. 2 ), most of the misclassified galaxies (labeled as galaxies in the
ptical surv e ys but classified as AGN by the ML model) are at redshift
 between 0.5 and 1, where the model assigns the AGN identification
o sources that are galaxies in many cases. Ho we ver, from Fig. 2
e notice that most of the misclassified galaxies have luminosities 

bo v e the threshold of 10 42 erg s −1 : i.e. from Fig. 2 , almost all 138
alaxies interpreted as AGN by our ML algorithm have luminosities 
eyond 10 42 erg s −1 (the continuous line in Fig. 2 ). Moreo v er, man y
f these sources are located in an area at 2 × 10 −14 erg cm 

−2 s −1 

nd z ∼ 0.9, which corresponds to luminosities of 0.3 × 10 44 erg s −1 .
hese luminosities are too high to be emitted from a galaxy without
n active nucleus. The histograms in Fig. 2 show that, abo v e redshift
0.7, the number of misclassified galaxies exceeds the distribution 
MNRAS 510, 161–176 (2022) 
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f the correctly identified ones (see blue histogram in Fig. 2 ). The
istribution of galaxies in X-ray flux shows identified galaxies (true
ositive galaxies) well above the misclassified galaxies at low fluxes,
hile the misclassified galaxies become more important at higher
uxes (larger than 10 −13 erg cm 

−2 s −1 ). This seems to suggest that
igh fluxes are interpreted by the classifier as an evidence for an
GN nucleus, which is somehow expected. 
The AGN classification achieves very good performance at all

ux es e xplored in this surv e y. The identified AGN distribution (red
ine) is abo v e the misclassified AGN distribution (black dashed line)
t redshift beyond 0.2. Misclassified AGN are instead concentrated
t redshifts lower than 0.2, most likely because this is where most
alaxies are found. 

We also made an experiment to quantify the performance achiev-
ble without spectroscopic redshifts. With this purpose, we defined a
raining sample that includes only sources with photometric redshifts
rom KiDS (see details in Section 2). The resulting sample is
omposed by 260 galaxies and 710 AGNs; for the test we substituted
pectroscopic with photometric redshifts. This training experiment
av e e xcellent results in term of performance, considering the per-
ormance metrics shown in Table 2 (middle table). Precision, recall
nd F1 scores are similar for AGNs and galaxies with spectroscopic
r photometric redshifts (looking as usual at the AB classifier with
MOTE). 
The performance metrics degrade when redshifts are not included

mong the features. The distribution of the test sample made without
sing redshifts among the features is shown in the bottom-right-hand
anel of Fig. 2 . The detection of AGN becomes more challenging for
edshift higher than 1, since the misclassified AGN peak at redshift
2. The model trained without redshift does not learn selection

ffects which cause high redshifts to be populated preferentially by
 GNs. The A GN recall is unchanged for A GN because on average

he model is able to find the same rate of AGN. Although we found
 dramatic decrease of performance for galaxies when training the
L algorithms without any redshifts, the ability to classify AGN is
arginally af fected. This sho ws that including redshifts among the

eatures is necessary to achieve a good classification performance
f galaxies, due to their limited redshift span (and corresponding
ack of statistics abo v e redshift 1); the performance of the AGN
lassification is not strongly affected by redshifts since AGN have
etter statistics and a broader redshift co v erage. 
Other parameters besides fluxes and redshifts among the list of

elected features do not give new information in addition to what has
een discussed in this section. Source extent SC −EXTENT is strongly
 v erlapping for AGNs and galaxies. AGNs correctly identified are
omposed by a vast majority of point-like sources (only 0.4 per cent
f them have extent larger than zero as mentioned in the previous
ection), but galaxies correctly identified are also dominated by point-
ike sources in the X-rays (since only the most nearby sources would
e resolved by XMM–Newton ), even though the fraction of extended
ources among the galaxies becomes 26 per cent. Distributions in the
emaining features do not highlight substantial differences between
GN or galaxy surv e ys. 

.1.4 Class imbalance 

he sample used for this test case is composed by AGN which popu-
ates the surv e y 3.5 times more than the galaxies; we tried to mitigate
his imbalance with the SMOTE method to o v ersample the training
ata. Besides the different statistics, the two classes have a different
o v erage in the parameter space, the minority sample composed by
NRAS 510, 161–176 (2022) 
alaxies is limited within redshift z ≤ 1, while the majority sample
omposed by AGN has a broader redshift distribution. As discussed
bo v e, the class imbalance affects mostly the ability of the models to
ecognize the minority class. The impro v ement of the recall for the
inority class obtained with the SMOTE o v ersampling (see Table 2 )

s only marginal, from 76 per cent in the real data set to 82 per cent
n the data set including SMOTE (see Table 2 , highlighted row).
he simulations, while slightly improving the recall of galaxies, give
 marginally lower precision for the same class, consequently the
erformance in terms of accuracy is similar. Oversampling does not
ffect the performance of AGN classification, since AGNs are the
ajority class (see Table 2 ). 

.2 Type 1/2 AGN classification 

n this section, we discuss the classifier obtained to distinguish
etween type 1 and type 2 AGNs, this model has been trained
 v er the sample of 24 029 type 1 AGNs and 5203 type 2 AGNs.
or the discussion below, we use AB algorithm with SMOTE with
pectroscopic redshifts included among the features as a reference
odel (the shaded line of Table 4 ), unless differently stated. As

n the test case 1, all algorithms trained with the same features
ive similar results, therefore our conclusions do not depend on the
pecific reference algorithm chosen for our discussion. As done in the
revious test case, we made a consistency check to understand the
lassification performance with a features set reduced to describe
irectly source-related parameters, therefore the model has been
etrained with a reduced features set. The test has demonstrated the
bility of the model to generalize without using the features related
o the instrumental conditions of these specific observations. 

.2.1 Performance metrics 

he performance metrics are reported in Table 4 and have been
stimated with the same procedure adopted for the previous test case.
he different ML algorithms hav e v ery similar performance when

rained on the same data set. On the other hand, the best performance
s achieved when the classifiers are trained including redshifts in the
eatures. 

Varying the algorithm hyperparameters or the SMOTE number of
eighbours does not lead to significantly better results. Similarly, the
mpact of changing the SMOTE ratio is very small (as discussed in
he next paragraph), so we continue to discuss the results with a 0.5
MOTE ratio, as was done in the previous paragraph. 
The performance of different algorithms is rather similar when

sing the same features. The best performance is achieved when the
eatures include redshifts, with very good results in the identification
f type 1 AGN. When the training uses spectroscopic redshifts, the
lassifiers reach levels of precision of 96 per cent and a recall of
4 per cent for the type 1 class (see the shaded line of Table 4 ). For
he more challenging task of identifying type 2 AGN, the precision is
4 per cent with a recall of 80 per cent for the reference model. The
1 score is 95 per cent for type 1 AGN and 77 per cent for type 2 for

his model. This results in a balanced accuracy of 87 per cent, which
s a good result despite the severe selection effects (in redshifts and
ux, as explained in Section 4.2.3) of the type 2 subsample. 
When redshifts are excluded from the features, the performance

rops for both classes, impacting in particular the recall of the
inority class (type 2). In absence of redshifts, the ML algorithms

end to assign the type 1 label to sources that are instead type 2, with a
ery low recall of type 2 (26 per cent obtained with the AB algorithm
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Table 4. Performance metrics for type 1/2 classification with features 
selection including spectroscopic redshifts (top table), photometric redshifts 
(middle table), no redshifts (bottom table). SM indicates that the training 
sample has been built with o v ersampling of the minority class (see the 
text). Obs indicates that the training sample includes observed data only. 
P type1 = precision calculated with respect to the type 1 AGN class. P type2 

= precision for type 2 AGN class. R type1 = recall of type 1 AGN class. 
R type2 = recall of type 2 AGN class. F 1 type1 = F1 score of type 1. F 1 type2 

= F1 score of type 2. ba = balanced accuracy. The ML algorithms are the 
same as in Table 2 . 

Algorithm P type1 P type2 R type1 R type2 F 1 type1 F 1 type2 ba 

Spectroscopic redshifts 
SM 

RF 0 .955 0 .754 0 .944 0 .795 0 .949 0 .774 0 .87 
Tree 0 .957 0 .699 0 .925 0 .806 0 .94 0 .749 0 .865 
AB 0 .956 0 .737 0 .938 0 .802 0 .947 0 .768 0 .87 
grad 0 .957 0 .749 0 .941 0 .807 0 .949 0 .777 0 .874 
vote 0 .958 0 .746 0 .94 0 .812 0 .949 0 .777 0 .876 

obs 
RF 0 .943 0 .807 0 .962 0 .734 0 .953 0 .768 0 .848 
Tree 0 .939 0 .77 0 .954 0 .715 0 .946 0 .741 0 .834 
AB 0 .942 0 .797 0 .96 0 .728 0 .951 0 .760 0 .844 
grad 0 .944 0 .800 0 .96 0 .739 0 .952 0 .768 0 .849 
vote 0 .945 0 .809 0 .962 0 .74 0 .953 0 .773 0 .851 

Photometric redshifts 
SM 

RF 0 .973 0 .801 0 .952 0 .887 0 .963 0 .838 0 .92 
Tree 0 .958 0 .824 0 .963 0 .816 0 .96 0 .815 0 .889 
AB 0 .965 0 .794 0 .949 0 .857 0 .956 0 .818 0 .903 
grad 0 .97 0 .797 0 .951 0 .885 0 .96 0 .832 0 .918 
vote 0 .973 0 .828 0 .959 0 .889 0 .966 0 .855 0 .924 

obs 
RF 0 .965 0 .853 0 .968 0 .853 0 .966 0 .848 0 .911 
Tree 0 .952 0 .803 0 .956 0 .795 0 .954 0 .793 0 .876 
AB 0 .961 0 .837 0 .964 0 .841 0 .962 0 .831 0 .903 
grad 0 .962 0 .802 0 .954 0 .846 0 .957 0 .815 0 .9 
vote 0 .968 0 .835 0 .963 0 .867 0 .965 0 .842 0 .915 

No redshifts 
SM 

RF 0 .863 0 .598 0 .957 0 .298 0 .907 0 .398 0 .627 
Tree 0 .86 0 .595 0 .958 0 .282 0 .907 0 .382 0 .62 
AB 0 .859 0 .682 0 .974 0 .261 0 .913 0 .377 0 .617 
grad 0 .859 0 .655 0 .97 0 .265 0 .911 0 .377 0 .617 
vote 0 .859 0 .672 0 .972 0 .266 0 .912 0 .380 0 .619 

obs 
RF 0 .856 0 .793 0 .987 0 .234 0 .917 0 .361 0 .61 
Tree 0 .854 0 .726 0 .981 0 .227 0 .913 0 .346 0 .604 
AB 0 .850 0 .847 0 .992 0 .194 0 .916 0 .315 0 .593 
grad 0 .851 0 .840 0 .992 0 .198 0 .916 0 .320 0 .595 
vote 0 .854 0 .833 0 .991 0 .215 0 .917 0 .341 0 .603 
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Table 5. Permutation feature importance of the type 1/2 classifier trained 
using the AB algorithm with SMOTE. Importance: mean of importance from 

iterations, STD: standard deviation of the importance. 

Feature importance STD 

Z 0.214 0.007 
SC −DET −ML 0.022 0.003 
EP −ONTIME 0.018 0.002 
SC −EXT −ML 0.016 0.002 
SC −EXTENT 0.012 0.001 
EP −OFFAX 0.007 0.002 
EP −8 −CTS 0.003 0.001 
DIST −NN 0.001 0.000 
SUM −FLAG 0.000 0.001 
N −DETECTIONS 0.000 0.001 
EP −FLUX −2 −3 −4 0.000 0.000 
EP −5 −FLUX 0.000 0.000 
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ith SMOTE, see Table 4 ). This is due to the strong selection effects
f the type 2 AGNs, resulting in a smaller redshift span, which limits
heir statistics beyond redshift 1. 

.2.2 Importance of features 

he list of features was investigated with the permutation feature 
mportance as we did in test case 1. The results are given in Table 5
nd show that redshifts are the most relevant features. This is a
onsequence of the type 2 AGN dominating at low redshifts and type
 AGN at higher redshifts, as will be discussed in more detail in
ection 4.2.3. All other features result in a permutation importance 
t most 2 per cent, which is a similar to what we found in the test
ase 1. We have further investigated the impact of features with the
ame procedure adopted for test case 1. The test demonstrates that the
erformance of the ML classifier does not change when the training
s done with a reduced set of features including only source-related
arameters. More details are shown in the Appendix C. 

.2.3 Impact of redshift–X-ray fluxes 

he distribution of the sample in flux and redshift is shown in Fig. 3 ,
hich reports the test sample distribution resulting from one iteration 
f the cross validation. The training has been done with SMOTE and
raining o v er all features including redshifts in Fig. 3 except for the
ower panel on the right (which has been trained without redshifts).
he distribution of sources shows that the misclassified type 2 AGN

which have type 2 labels but have been missed by our classifier)
re mostly localized in a high-density area at redshift ∼0.7–1. A few
ources at higher redshift z > 1 have not been labelled as type 2
GNs, gi ven the lo w occurrence of type 2 AGNs in the training data

et that reflects, more in general, their low number in the literature.
n the other hand, the classifier is successful for type 1 AGN, as can
e seen in the histograms in the top-right and bottom-left panel of
ig. 3 : the distribution of the identified type 1 AGN is abo v e that of

he misclassified type 1 AGN at all redshifts and all fluxes. 
We also performed an experiment to test the performance of the
L algorithms when trained with photometric redshifts instead of 

pectroscopic redshifts. This was done with the subsample of sources 
n common with the KiDS sample of photometric redshifts, resulting 
n 687 type 1 and 155 type 2 AGN. The ML algorithms were trained
n this subset and using photometric redshifts instead of spectral 
nes, bringing good results in term of performance. As shown in
able 4 , the metrics are similar to those obtained for spectroscopic
edshifts for both type 1 AGNs and type 2 AGNs. 

The performance of the ML algorithms decreases when redshifts 
re not included among features. The lack of redshift information 
ffects the ability to select type 2 AGN, in particular in terms of
ecall (which decreases from 80 per cent to 26 per cent with the AB
lassifier , with SMO TE). The distribution of type 1 and type 2 AGNs
n the model trained without redshifts is shown in the lower right-
and panel of Fig. 3 : the type 2 AGN classification model results in
 distribution of misclassified type 2 AGN abo v e the classified type
 at all redshifts. The misclassified type 1 AGNs are instead mostly
MNRAS 510, 161–176 (2022) 
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Figure 3. Distributions of test sample (and training sample in background) in redshift and X-ray flux (band 2 + 3 + 4) from the type 1/2 AGN classification. 
Top panels and bottom-left panel: distribution of the test sample (10 per cent of sample) with predictions from a model trained o v er 90 per cent of the sample 
using redshifts among the training features. Bottom right-hand panel: Results from a different training iteration made without including redshifts among the 
features. The training has been done with the AB algorithm with the SMOTE o v ersampling. The green continuous line in the top left-hand panel corresponds to 
the luminosity 10 42 erg s −1 . 
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ocated at redshift 1–1.2. It is interesting to notice that this is where
he type 2 AGN distribution decays. 

Besides redshifts and fluxes, other features do not show a similarly
lear difference in the distributions for type 1 and type 2 classes. 

.2.4 Class imbalance 

he training sample in each of the cross validation iterations has
21 600 (90 per cent of 24 029) type 1 AGNs and ∼4670 (90 per cent

f 5203) type 2 AGNs. The imbalance ratio is ∼5:1 and we
ave tried to mitigate its effects with SMOTE to oversample the
raining data. Running the ML algorithm with SMOTE impro v es
he recall of the type 2 AGNs, but at the same time decreases their
recision. The o v erall accurac y of the AB algorithm impro v es only by
 per cent introducing the SMOTE simulations (from 84 to 87 per cent
omparing the AB line in SM and obs sections of Table 4 ). We tested
f a different SMOTE ratio might impro v e the performance of the
lassifier. A slight impro v ement in recall of the minority class of type
 AGN was obtained by increasing the SMOTE ratio from 0.5 to 0.9,
t the same time with a decrease in precision. This is a well-known
ffect when increasing the size of a class with synthetic data points:
 lower number of false ne gativ es with a corresponding better recall
s achieved (since the algorithms has been trained on a larger sample
f that class), but the number of false positives is not guaranteed to
ecrease, hence not necessarily increasing the precision. 
NRAS 510, 161–176 (2022) 
.3 Limitations of binary classification 

his work has presented two binary classifiers to study extragalactic
urv e ys in order to distinguish AGNs from galaxies (test case 1)
nd type 1 from type 2 AGNs (test case 2), using X-ray features.
ntermediate classes, including e.g. LLAGN, have not been taken
nto account to build this binary classifiers. 

Regarding the first test case, even though a significant fraction
f local galaxies shows some evidence of faint nuclei, they are
ot al w ays detected in X-rays, and it is unfeasible to disentangle
he nucleus from the host in the majority of the observations with
he current X-ray instruments. X-ray spectra of galaxies shows a
ontribution from binaries, with typically hard spectra, which could
ctually be similar to the spectra of faint nuclei. Literature reports
hat faint nuclei, when successfully disentangled from the light of
he host, also show a hard power law from the LLAGN (as explained
nvoking different scenarios, e.g. Connolly et al. 2016 or Ho 2008 or
uainazzi et al. 2000 ). 
Another aspect which may affect the classification is X-ray

ontinuum variability. It has indeed been demonstrated that vari-
bility features play a role in identifying AGNs (Lo et al. 2014 ).
ariability could be found in virtually all AGNs, from low to high

uminosity, highlighting intrinsic mechanisms in the SMBH (for
nstance, McHardy et al. 2006 ; Sobolewska & Papadakis 2009 ). 

While this aspect should not affect the ability to distinguish AGN
nd galaxies in the first test case, we believe it has an impact on
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he performance of type 1 AGN and type 2 AGN classification. 
rom the Chandra Deep Field South surv e y, P aolillo et al. ( 2004 )
eported a widespread intrinsic variability among AGNs, pre v alent 
n the ones unabsorbed in the X-rays. The authors found that the
raction of variable sources decreases with increasing intrinsic X-ray 
bsorption. This kind of variability was explained by the authors as
ue to instabilities in the innermost regions of the nuclei. A very
ifferent scenario is variability of column densities in AGN, which 
nvolves larger scales. Literature reports variable column densities in 
-ray absorbed AGN (Risaliti, Elvis & Nicastro 2002 ) and extreme 

ases have been reported with transitions from an absorbed to 
n unabsorbed phase. For instance Panessa et al. ( 2009 ) found a
ismatch between the optical type 1 and type 2 classification and 

he X-ray absorption that was explained with a clumpy absorbing 
aterial in the torus. These extreme cases may at some extent 

omplicate a type 1/2 classifier based on X-ray features when the 
abels of the training data set are provided from optical spectra. 

 C O N C L U S I O N S  

his paper tests several ML algorithms to classify extragalactic 
ources using samples based on XMM and SDSS. The first classifier
as been constructed to distinguish between AGNs and galaxies and 
nother classifier to divide the AGN class into type 1 (unabsorbed) 
nd type 2 (absorbed). We trained the first classifier using a sample
ith 25 599 AGN and 7262 galaxies. The model to divide AGN into

ype 1 and type 2 is trained o v er a data set that contains 24 029 type
 AGN and 5203 type 2 AGN (using Milliquasar data in addition
o XMM and SDSS). The performance metrics were calculated with 
he cross-validation, and the training data sets were o v ersampled 
uch that the minority class constitutes 50 per cent of the majority
lass. We tested several classifiers which reached accuracy levels 
f 87 per cent in both classification problems (balanced accuracy). 
he maximum difference of balanced accuracy between the ML 

lgorithms adopted in this work is less than 1 per cent, demonstrating
 similar performance. All of them are indeed based on decision trees,
nd converge to reach the best performance achie v able with tree-
ased algorithms. Our conclusions discussed below refer to the per- 
ormance metrics of the AB algorithm obtained with o v ersampling 
nd including spectroscopic redshifts among the features, unless 
tated otherwise. 

Good results are found when identifying AGN (94 per cent 
recision) in a sample of AGN and galaxies (first test case). A similar
erformance is reached when identifying type 1 AGN (96 per cent 
recision) in a sample of type 1 AGN and type 2 AGN (second test
ase). The minority classes represent a major challenge, since the 
recision of identifying galaxies in the first test case is 77 per cent,
imilar to the precision of identifying type 2 AGN in the second test
ase, which reaches 74 per cent. In the first test case, the precision
f galaxies is limited due to a number of sources optically classified
s AGN, but classified as galaxies by the ML algorithm: this is in
art due to many of them having low redshift and low flux, which is
 flux-redshift range where galaxies are preferentially found. These 
ources may be AGN that are intrinsically faint or absorbed in the
-ray band. The performance in the second test case is limited by the
ecay of the type 2 AGN distribution at redshift 0.5–1 in the training
ample: better statistics of type 2 AGN at such redshifts would help
o impro v e the classification performance. 

The ML algorithms were trained with spectroscopic and photo- 
etric redshifts, and we also performed a test without using redshifts

mong the features. The test with photometric redshifts was done for
he sources in common with KiDS (considering the surv e ys of bright
alaxies and quasars). The performance was consistent with that 
btained using spectroscopic redshifts. By contrast, training the ML 

lgorithms without redshifts, the performance is drastically reduced 
or the minority classes (galaxies in the first test case and type 2 AGN
n the second test case). We also noticed that the minority classes
ave a much more limited coverage of the flux-redshift space due to
tronger selection effects. We conclude that the main limitations are 
onnected to the sparse sampling at high redshifts. 

Retraining the model with a reduced features set, which includes 
nly directly source-related features has demonstrated the robustness 
f the results, highlighting the ability of our models to generalize well
eyond the instrumental conditions of the training data sets. 
Concluding, the classifiers trained with the current data can be ap-

lied in the future to identify AGNs and galaxies as well as to distin-
uish between type 1 and type 2 AGNs, for sources that already have
ome distance information. For new and unknown sources without 
uch information, the current methods are suitable to identify AGNs 
n extragalactic surveys and to classify type 1 AGNs in AGN surv e ys;
n the other hand, it cannot be successfully used alone in finding
alaxies and type 2 AGNs. Our expectations are that the current train-
ng sample should be complemented with future surv e ys with better
tatistics of galaxies without active nuclei and with an impro v ed
tatistics of absorbed AGN: retraining the current model would 
ertainly help to achieve an acceptable accuracy for these two classes. 

Current surv e ys such as eROSITA or those planned to be carried out
ith the Athena mission will expand the known census of AGN by a

actor 100, especially improving the demography of minority classes 
rom low to high redshift (Nandra et al. 2013 ). This will help to
 v ercome the strong sensitivity limits of current surv e ys (including
he training sample used in this work). With an ef fecti ve area of

1 . 4 m 

2 at 1 keV, the Athena surv e y will be sensitive enough to build
 xtra-galactic surv e ys with a v ariety of dif ferent classes, including
eavily absorbed AGN up to z ∼ 3, and LLAGN at low redshifts. 

C K N OW L E D G E M E N T S  

he authors acknowledge the referee for insightful suggestions and 
he careful re vie w of the paper. FJC ackno wledges financial support
rom the Spanish Ministry MCIU under project RTI2018-096686-B- 
21 (MCIU/AEI/FEDER/UE), cofunded by FEDER funds and from 

he Agencia Estatal de Investigaci ́on, Unidad de Excelencia Mar ́ıa
e Maeztu, ref. MDM-2017- 0765. 
Funding for the Sloan Digital Sky Survey IV has been provided

y the Alfred P. Sloan Foundation, the U.S. Department of Energy
ffice of Science, and the Participating Institutions. 
SDSS-IV acknowledges support and resources from the Center for 

igh Performance Computing at the University of Utah. The SDSS 

ebsite is www.sdss.org . 
SDSS-IV is managed by the Astrophysical Research Consor- 

ium for the Participating Institutions of the SDSS Collaboration 
ncluding the Brazilian Participation Group, the Carnegie Institution 
or Science, Carnegie Mellon University, Center for Astrophysics | 
arvard & Smithsonian, the Chilean Participation Group, the French 
articipation Group, Instituto de Astrof ́ısica de Canarias, The Johns 
opkins University, Kavli Institute for the Physics and Mathematics 
f the Universe (IPMU) / University of Tokyo, the Korean Par-
icipation Group, Lawrence Berkeley National Laboratory, Leibniz 
nstitut f ̈ur Astrophysik Potsdam (AIP), Max-Planck-Institut f ̈ur As- 
ronomie (MPIA Heidelberg), Max-Planck-Institut f ̈ur Astrophysik 
MPA Garching), Max-Planck-Institut f ̈ur Extraterrestrische Physik 
MPE), National Astronomical Observatories of China, New Mexico 
tate Uni versity, Ne w York Uni versity, Uni versity of Notre Dame,
MNRAS 510, 161–176 (2022) 

file:www.sdss.org


174 S. Falocco, F. J. Carrera and J. Larsson 

O  

v  

K  

M  

U  

U  

W
 

S  

3  

b  

s  

N  

F

D

T  

a  

t

R

A
B
B
B
B  

 

C  

C  

C  

C  

C  

C
D  

D
D
E  

F  

F
F
F  

F
F
F
G  

H
H
H  

H
H
H

I
J
K
K
L
L  

L
M
M  

M
M
M  

N
N
N
P
P  

P
P
R
R
R  

S
S  

S  

S
S
T  

T
T  

T
W
W
W
W  

W
Y
Z  

Z
Z
Z

S

S

T  

f  

r
T  

s  

r

P  

o  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/161/6445041 by C
onsejo Superior de Investigaciones C

ientificas (C
SIC

) user on 27 Septem
ber 2022
bservat ́ario Nacional / MCTI, The Ohio State University, Pennsyl-
ania State University, Shanghai Astronomical Observatory, United
ingdom Participation Group, Universidad Nacional Aut ́onoma de
 ́exico, University of Arizona, University of Colorado Boulder,
niversity of Oxford, University of Portsmouth, University of Utah,
ni versity of Virginia, Uni versity of Washington, Uni versity of
isconsin, Vanderbilt University, and Yale University. 
Based on observations made with ESO Telescopes at the La

illa Paranal Observatory under programme IDs 177.A-3016, 177.A-
017, 177.A-3018 and 179.A-2004, and on data products produced
y the KiDS consortium. The KiDS production team acknowledges
upport from: Deutsche Forschungsgemeinschaft, ERC, NOVA and
WO-M grants; Target; the University of Padova, and the University
ederico II (Naples). 

ATA  AVAILABILITY  

he surv e ys used to build the training samples are available in the
rchi ves. The deri ved data and models will be shared upon request
o the first author. 

E FERENCES  

guado D. S. et al., 2019, ApJS , 240, 23 
ilicki M. et al., 2021, A&A , 653, A82 
randt W. N., 2005, New Astron. Rev. , 49, 430 
reiman L., 2001, Mach. Learn. , 45, 5 
reiman L., Friedman J. H., Olshen R. A., Stone C. J., 1984, Classification

and Regression Trees. Wadsworth Publishing Company, Belmont CA,
USA 

accianiga A., Severgnini P., Della Ceca R., Maccacaro T., Carrera F. J., Page
M. J., 2007, A&A , 470, 557 

astell ́o-Mor N., Barcons X., Ballo L., Carrera F. J., Ward M. J., Jin C., 2012,
A&A , 544, A48 

avuoti S., Brescia M., D’Abrusco R., Longo G., Paolillo M., 2014, MNRAS ,
437, 968 

hawla N. V., Bowyer K. W., Hall L. O., Ke gelme yer W. P., 2002, Journal of
Artificial Intelligence Research, 16, 321 

onnolly S. D., McHardy I. M., Skipper C. J., Emmanoulopoulos D., 2016,
MNRAS , 459, 3963 

rammer K., Singer Y., 2001, J. Mach. Learn. Res., 2, 265 
’Isanto A., Cavuoti S., Brescia M., Donalek C., Longo G., Riccio G.,

Djorgovski S. G., 2016, MNRAS , 457, 3119 
e Cicco D. et al., 2019, A&A , 627, A33 
e Cicco D. et al., 2021, A&A , 645, A103 
l ́ıas-Ch ́avez M., Longinotti A. L., Krongold Y., Vignali C., Nicastro F.,

Rosa-Gonz ́alez D., Mayya Y. D., Mathur S., 2021, ApJ , 919, 18 
alocco S., Carrera F. J., Barcons X., Miniutti G., Corral A., 2014, A&A ,

568, A15 
alocco S. et al., 2015, A&A , 579, A115 
arrell S. A., Murphy T., Lo K. K., 2015, ApJ , 813, 28 
lesch E. W., 2019, Publications of the Astronomical Society of Australia,

32, 10 
reund Y., Schapire R. E., 1997, J. Comput. Syst. Sci. , 55, 119 
riedman J. H., 1977, IEEE Trans. Comput., C-26, 404 
riedman J. H., 2001, Ann. Stat. , 29, 1189 
uainazzi M., Oosterbroek T., Antonelli L. A., Matt G., 2000, A&A, 364,

L80 
a T., Bunke H., 1997, IEEE Trans. Pattern Anal. Mach. Intell. , 19, 535 
asinger G., 2008, A&A , 490, 905 
asinger G., Freyberg M., Hu E. M., Waters C. Z., Capak P., Moneti A.,

McCracken H. J., 2021, A&A , 645, A95 
o T. K., 1998, IEEE Trans. Pattern Anal. Machine Intell. , 20, 832 
o L. C., 2008, ARA&A , 46, 475 
unter J. D., 2007, Comput. Sci. Eng. , 9, 90 
NRAS 510, 161–176 (2022) 
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Figure A1. Sample composition in the two test cases: test case 1 with red 
background and test case 2 with orange background. In the fourth line of 
the diagram, Milli and non-Milli refer to sources included or not included in 
Milliquas, respectively. 
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Table B1. Performance metrics for AGN–galaxy classification with features 
including source related properties and more instrumental related parameters. 
Spectroscopic redshifts are included in the top table, photometric redshifts in 
the middle table, no redshifts are included in the bottom table. SM indicates 
that the training sample has been built with o v ersampling of the minority 
class (see the text). Obs indicates that the training sample only includes 
observed data. P AGN = precision calculated with respect to the AGN class. 
P g = precision for galaxies class. R AGN = recall of AGN. R g = recall 
of galaxies. F 1 AGN = F1 score of AGN. F 1 g = F1 score of galaxies. ba 
= balanced accuracy. RF, Tree, AB, grad, and vote are defined in Section 3.2. 

Algorithm P AGN P g R AGN R g F 1 AGN F 1 g ba 

Spectroscopic redshifts 
SM 

RF 0 .983 0 .733 0 .971 0 .832 0 .977 0 .778 0 .901 
Tree 0 .983 0 .663 0 .959 0 .83 0 .971 0 .736 0 .895 
AB 0 .985 0 .653 0 .956 0 .849 0 .97 0 .738 0 .902 
grad 0 .984 0 .676 0 .961 0 .837 0 .972 0 .747 0 .899 
vote 0 .985 0 .703 0 .965 0 .848 0 .975 0 .768 0 .907 

obs 
RF 0 .976 0 .838 0 .986 0 .751 0 .981 0 .791 0 .868 
Tree 0 .975 0 .788 0 .981 0 .738 0 .978 0 .761 0 .859 
AB 0 .974 0 .797 0 .982 0 .736 0 .978 0 .765 0 .859 
grad 0 .979 0 .642 0 .957 0 .793 0 .968 0 .709 0 .875 
vote 0 .979 0 .644 0 .958 0 .793 0 .968 0 .71 0 .875 

No redshifts 
SM 

RF 0 .935 0 .353 0 .942 0 .325 0 .939 0 .338 0 .634 
Tree 0 .938 0 .292 0 .91 0 .381 0 .924 0 .330 0 .646 
AB 0 .937 0 .34 0 .934 0 .350 0 .935 0 .344 0 .642 
grad 0 .935 0 .337 0 .936 0 .337 0 .936 0 .336 0 .636 
vote 0 .937 0 .365 0 .942 0 .346 0 .935 0 .355 0 .644 

obs 
RF 0 .92 0 .517 0 .99 0 .115 0 .954 0 .187 0 .552 
Tree 0 .922 0 .407 0 .979 0 .148 0 .95 0 .216 0 .564 
AB 0 .916 0 .555 0 .995 0 .065 0 .954 0 .116 0 .530 
grad 0 .918 0 .550 0 .993 0 .083 0 .954 0 .143 0 .538 
vote 0 .918 0 .550 0 .993 0 .089 0 .954 0 .147 0 .540 
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PPENDIX  A :  DETA ILS  O F  SAMPLE  

E LECTION  

he steps made to build the samples are shown in Fig. A1 , which
ndicate the number of sources of different classes. The test case 1,
lassifying AGN and galaxies, is done with the sample represented 
ith red background in the figure. The test case 2 which classifies

ype 1 and type 2 AGNs is instead based on the sample with orange
ackground. The boxes represent the sources excluded from this 
tudy, while the ovals show the different steps and the final samples.

PPENDIX  B:  E X PA N D I N G  AG N  SAMPLE  WI TH  

E W  TYPE  2  C A N D I DAT E S  

e have redefined the training sample of the AGN–galaxy classifier 
aking into account the presence of the 4355 new type 2 AGN
andidates defined in Section 2.3. Specifically, we switched the labels 
f these 4355 sources from galaxies to AGN to account for a possible
bscured nucleus. The sample is therefore composed by 29954 AGN 

nd 2907 galaxies. 
We then retrained the model to classify AGNs and galaxies and 

he results are reported in Table B1 . This model does not show
 strong impro v ement in the galaxy classification, which raises
ts recall by only 3 per cent with respect to the previous training
escribed in Section 4, focusing on our reference algorithm, AB 

ith SMOTE and including redshifts. The impro v ement in the 
GN classification is also around 3 per cent with the reference 
lgorithm. Without including redshifts in the features, we notice 
hat, while the AGN classification impro v es with this newly defined
ata set, the galaxy classification degrades, especially without the 
MOTE simulations, i.e. the recall is 7 per cent for the classifier
ithout redshifts and trained with the observed sample only (see 
B algorithm in last section of table B1). This strong degradation 

n galaxies recall clearly reflects the increased imbalance between 
alaxies (which result in a very poor performance) and AGN (with
 very good performance), where galaxies represent only 9 per cent
f the training sample. The SMOTE simulations impro v e the galaxy
ecall up to levels similar to those discussed in Section 4: the recall
s around 35 per cent for the AB algorithm in the SMOTE section
f Table B1 without redshifts and 40 per cent in the same line of
able 2 . 

PPENDI X  C :  I M PAC T  O F  FEATURES  

ELECTI ON  

n this section, we further investigate the impact of features in the
erformance of the ML algorithms in both test cases. Given that
he permutation method does not highlight the importance of the 
eatures beyond the first most rele v ant one (redshifts), we explore
his in more detail with an additional experiment which consists 
f reducing the list of features. The models constructed for the
GN–galaxy classification problem were initially trained using the 
3 features listed in Table 1 . The performance of the model has
een tested by removing all instrumental features in order to see
heir genuine importance. We therefore trained a new model with the
irectly source-related features only and checked its performance 
etrics. The results, shown in Table C1 , are very similar to the

nes obtained with the larger list of features (reported in Table 2 ).
MNRAS 510, 161–176 (2022) 
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Table C1. Performance metrics for AGN–galaxy classification with di- 
rectly source-related features only. Spectroscopic redshifts were included 
in top table, photometric redshift in the middle table, no redshifts were 
included in bottom table. SM indicates that the training sample was built 
with o v ersampling of the minority class (see the te xt). Obs indicates that the 
training sample only includes observed data. P AGN = precision calculated 
with respect to the AGN class. P g = precision for galaxies class. R AGN 

= recall of AGN. R g = recall of galaxies. F 1 AGN = F1 score of AGN. F 1 g 
= F1 score of galaxies. ba = balanced accuracy. RF, Tree, AB, grad, and 
vote are defined in Section 3.2. 

Algorithm P AGN P g R AGN R g F 1 AGN F 1 g ba 

Spectroscopic redshifts 
SM 

RF 0 .948 0 .739 0 .917 0 .823 0 .933 0 .779 0 .87 
Tree 0 .95 0 .725 0 .910 0 .830 0 .93 0 .774 0 .87 
AB 0 .952 0 .739 0 .916 0 .838 0 .934 0 .785 0 .877 
grad 0 .953 0 .738 0 .915 0 .841 0 .934 0 .786 0 .878 
vote 0 .953 0 .741 0 .916 0 .841 0 .934 0 .788 0 .878 

obs 
RF 0 .933 0 .788 0 .942 0 .761 0 .937 0 .774 0 .852 
Tree 0 .933 0 .769 0 .935 0 .765 0 .934 0 .766 0 .85 
AB 0 .932 0 .791 0 .943 0 .758 0 .938 0 .774 0 .851 
grad 0 .933 0 .788 0 .942 0 .762 0 .938 0 .775 0 .852 
vote 0 .933 0 .792 0 .944 0 .765 0 .938 0 .779 0 .854 

Photometric redshifts 
SM 

RF 0 .96 0 .834 0 .937 0 .893 0 .948 0 .860 0 .915 
Tree 0 .959 0 .797 0 .918 0 .887 0 .938 0 .837 0 .902 
AB 0 .956 0 .811 0 .927 0 .885 0 .941 0 .844 0 .906 
grad 0 .96 0 .814 0 .927 0 .903 0 .943 0 .853 0 .915 
vote 0 .960 0 .822 0 .93 0 .920 0 .945 0 .870 0 .920 

obs 
RF 0 .952 0 .838 0 .941 0 .869 0 .946 0 .851 0 .905 
Tree 0 .966 0 .796 0 .916 0 .910 0 .940 0 .846 0 .913 
AB 0 .948 0 .814 0 .933 0 .854 0 .940 0 .832 0 .893 
grad 0 .949 0 .825 0 .936 0 .866 0 .942 0 .842 0 .901 
vote 0 .962 0 .830 0 .937 0 .890 0 .949 0 .862 0 .915 

No redshifts 
SM 

RF 0 .841 0 .510 0 .888 0 .408 0 .864 0 .453 0 .648 
Tree 0 .842 0 .540 0 .903 0 .400 0 .871 0 .459 0 .652 
AB 0 .845 0 .587 0 .919 0 .405 0 .880 0 .479 0 .662 
grad 0 .846 0 .583 0 .916 0 .413 0 .880 0 .483 0 .664 
vote 0 .841 0 .590 0 .920 0 .400 0 .881 0 .468 0 .657 

obs 
RF 0 .831 0 .604 0 .939 0 .329 0 .882 0 .426 0 .634 
Tree 0 .827 0 .669 0 .959 0 .294 0 .888 0 .408 0 .626 
AB 0 .822 0 .774 0 .979 0 .250 0 .893 0 .378 0 .615 
grad 0 .823 0 .758 0 .977 0 .258 0 .893 0 .384 0 .617 
vote 0 .826 0 .734 0 .971 0 .278 0 .893 0 .403 0 .624 

his demonstrates that a good model training can be achieved
ith source-related features only, since the others more connected

o instrumental conditions can be remo v ed, still obtaining good
esults. 

For test case 2, we made the same experiment to further investigate
he importance of features used to train the ML algorithms. The
NRAS 510, 161–176 (2022) 
Table C2. Performance metrics for type 1/2 classifier with directly source- 
related features. Spectroscopic redshifts are included in the top table, 
photometric redshifts in the middle table, no redshifts are included in 
the bottom table. SM indicates that the training sample was built with 
o v ersampling of the minority class (see the text). Obs indicates that the 
training sample only includes observed data. P type1 = precision calculated 
with respect to the type 1 AGN class. P type 2 = precision for type 2 AGN 

class. R type1 = recall of type 1 AGN class. R type2 = recall of type 2 
AGN class. F 1 type1 = F1 score of type 1. F 1 type2 = F1 score of type 2. ba 
= balanced accuracy. RF, Tree, AB, grad, and vote are defined in Section 3.2. 

Algorithm P type1 P t y pe2 R type1 R type2 F 1 type1 F 1 type2 ba 

Spectroscopic redshifts 
SM 

RF 0 .955 0 .706 0 .928 0 .799 0 .941 0 .749 0 .864 
Tree 0 .959 0 .681 0 .917 0 .816 0 .937 0 .742 0 .867 
AB 0 .962 0 .688 0 .918 0 .832 0 .94 0 .753 0 .875 
grad 0 .963 0 .685 0 .917 0 .836 0 .939 0 .753 0 .876 
vote 0 .961 0 .698 0 .922 0 .830 0 .940 0 .754 0 .873 

obs 
RF 0 .938 0 .77 0 .954 0 .71 0 .946 0 .738 0 .832 
Tree 0 .94 0 .762 0 .952 0 .717 0 .946 0 .739 0 .835 
AB 0 .939 0 .779 0 .956 0 .712 0 .947 0 .744 0 .834 
grad 0 .939 0 .78 0 .957 0 .71 0 .947 0 .743 0 .834 
vote 0 .941 0 .782 0 .956 0 .723 0 .949 0 .751 0 .84 

Photometric redshifts 
SM 

RF 0 .971 0 .804 0 .952 0 .864 0 .961 0 .826 0 .908 
Tree 0 .965 0 .767 0 .944 0 .845 0 .954 0 .796 0 .895 
AB 0 .965 0 .771 0 .942 0 .850 0 .953 0 .797 0 .896 
grad 0 .969 0 .770 0 .944 0 .866 0 .956 0 .809 0 .905 
vote 0 .970 0 .772 0 .944 0 .870 0 .955 0 .813 0 .907 

obs 
RF 0 .967 0 .825 0 .961 0 .844 0 .964 0 .83 0 .902 
Tree 0 .962 0 .796 0 .953 0 .838 0 .957 0 .805 0 .896 
AB 0 .95 0 .782 0 .954 0 .772 0 .951 0 .767 0 .863 
grad 0 .958 0 .785 0 .952 0 .812 0 .955 0 .791 0 .882 
vote 0 .964 0 .805 0 .955 0 .840 0 .959 0 .817 0 .898 

No redshifts 
SM 

RF 0 .861 0 .426 0 .905 0 .326 0 .882 0 .369 0 .615 
Tree 0 .858 0 .54 0 .949 0 .275 0 .901 0 .364 0 .612 
AB 0 .859 0 .623 0 .965 0 .265 0 .909 0 .372 0 .615 
grad 0 .859 0 .606 0 .962 0 .269 0 .907 0 .372 0 .615 
vote 0 .858 0 .580 0 .955 0 .265 0 .907 0 .367 0 .613 

obs 
RF 0 .854 0 .648 0 .972 0 .235 0 .910 0 .344 0 .603 
Tree 0 .851 0 .762 0 .986 0 .203 0 .914 0 .320 0 .595 
AB 0 .849 0 .861 0 .993 0 .184 0 .916 0 .303 0 .589 
grad 0 .849 0 .859 0 .993 0 .184 0 .916 0 .303 0 .589 
vote 0 .851 0 .830 0 .992 0 .199 0 .915 0 .323 0 .596 

esults are still very similar to the ones shown for the full set
f features (comparing Table C2 with Table 4 ). This pro v es that
he model is able to generalize beyond the specific instrumental
onditions of our training data set. 
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