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In this paper we shall consider an axionic Chern-Simons-corrected fðRÞ gravity theoretical framework,
and we shall study the chirality of the generated primordial gravitational waves. Particularly, we shall
consider two main axion models, the canonical misalignment axion model and the kinetic axion model,
both of which provide an interesting particle phenomenology, in the presence of R2 terms in the inflationary
Lagrangian. The axion does not affect significantly the background evolution during the inflationary era,
which is solely controlled by R2 gravity. However, due to the presence of the Chern-Simons term, the tensor
perturbations are directly affected, and our aim is to reveal the extent of the effects of the Chern-Simons
term on the gravitational wave modes, for both the axion models. We aim to produce analytical descriptions
of the primordial tensor mode behavior, and thus we solve analytically the evolution equations of the tensor
modes, for a nearly de Sitter primordial evolution controlled by the R2 gravity. We focus the analytical
study on superhorizon and subhorizon modes. For the misalignment model, we were able to produce
analytic solutions for both the subhorizon and superhorizon modes, in which case we find the behavior of
the circular polarization function. Our results indicate that the produced tensor spectrum is strongly chiral.
For the kinetic axion model though, analytic solutions are obtained only for the superhorizon modes.
In order to have a grasp of the behavior of the chirality of the tensor modes, we studied the chirality
of the superhorizon modes, however, a more complete study is needed, which is impossible to do
analytically though.
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I. INTRODUCTION

The next two decades are expected to be fascinating
scientifically, mainly because several interferometer
experiments are going to probe directly the existence or
nonexistence of primordial stochastic gravitational waves
[1–7]. These interferometers will probe directly frequencies
that correspond to stochastic tensor modes which reentered
the Hubble horizon after inflation, during the early stages
of the radiation domination era. Thus these modes will
reveal the physics of the dark era, as the reheating/radiation
domination era is usually dubbed. Indeed the physics of the
dark era is unreachable by terrestrial acceleration experi-
ments, since the frequencies of the aforementioned gravi-
tational wave experiments correspond to temperatures
beyond and far beyond the temperature of the electroweak
phase transition. Apart from the aforementioned interfer-
ometer experiments, there are also two experiments probing
intermediate frequencies, the Square Kilometer Array
(SKA) [8], which will soon start to give data, and the

pulsar timing array–based NANOGrav Collaboration [9,10].
In the literature there exist many theoretical descriptions of
primordial gravitational waves, see for example [11–38]. If
a primordial stochastic tensor background is verified by
the interferometers, this will be a smoking gun for infla-
tion [39–42], which is the most appealing and prominent
scenario for the description of the post-Planck evolution of
our Universe. Traditionally, inflation is described by scalar
fields, however, a viable alternative description comes from
modified gravity theories [43–48]. The most important
modified gravity theory is fðRÞ gravity, which allows in
some cases a unified description of inflation with the
various subsequent evolution eras, like dark energy, see
the pioneering work [49] and also Refs. [50–57] for later
developments along this research line.
In view of the exciting gravitational wave oriented next

two decades, in this article we aim to study the chirality of
primordial tensor modes in the context of an axionic Chern-
Simons-corrected fðRÞ gravity, the inflationary aspects of
which were studied in Ref. [58]. The motivation to study
such axionic inflationary Lagrangians mainly comes from
the fact that the axion, or axionlike particles, are quite
appealing candidates for particle dark matter, see [59,60]
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and also [61–65]. In our opinion, the axion is the last
resort of particle dark matter, but the predicted mass is
too tiny to be measured in the present day. We shall
consider two mainstream axion models, the canonical
misalignment model [60] and the recently developed
kinetic axion model [66–68]. Chern-Simons theories are
possible candidate theories toward describing the primor-
dial era of our Universe, see Refs. [58,69–85] and refer-
ences therein, and see also [86] for Chern-Simons
topological terms. The Chern-Simons corrections in the
inflationary Lagrangian have no direct effect on the back-
ground evolution, however, these do affect the tensor
perturbations, generating a chiral spectrum. For our study
we shall assume that the fðRÞ gravity consists of the R2

model [87], and we shall study the evolution of the
primordial gravitational waves in the presence of a mis-
alignment or kinetic axion with Chern-Simons corrections.
We aim to obtain analytic solutions, so we shall solve
analytically the evolution equation for the tensor modes,
focusing on superhorizon and subhorizon modes. Using the
resulting solutions, we study quantitatively the effect of
the Chern-Simons term by examining the behavior of the
circular polarization function. In both cases we find that the
tensor modes of fðRÞ gravity with Chern-Simons correc-
tions are strongly chiral, as in the ordinary Einstein-Hilbert
case, however, for the kinetic axion we only studied the
superhorizon modes, due to the lack of analyticity.
This article is organized as follows: In Sec. II, we

present the essential features of the Chern-Simons axionic
fðRÞ gravity theoretical framework. We shall derive the
field equations and show explicitly how the Chern-
Simons term affects the evolution of the primordial
tensor perturbations, while it does not affect at all the
background evolution and the scalar perturbations. We
will also present in brief the essential features of the
misalignment and kinetic axion theories, and we will
show how the axion models do not affect the inflationary
era, which is controlled by the R2 gravity. In Sec. III we
thoroughly study in an analytic way the evolution of the
superhorizon and subhorizon modes for both the two
aforementioned axion models, and we will also explicitly
show in a quantitative way that the chirality feature
occurs even in the fðRÞ gravity case. The conclusions of
our study are presented in the last section.
Before we start our analysis, we need to mention that the

geometric background which shall be assumed for the
whole study is a flat Friedmann-Robertson-Walker (FRW),
with line element

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð1Þ

where aðtÞ is the scale factor. Also for the flat FRW
metric, the Hubble rate is H ¼ _a

a and the Ricci scalar
is R ¼ 12H2 þ 6 _H.

II. ESSENTIAL FEATURES OF CHERN-SIMONS
AXION f ðRÞ GRAVITY, THE R2 MODEL

AND TWO AXION MODELS

We shall consider an fðRÞ gravity in the presence of an
axion field with Chern-Simons term in vacuum, since we
are interested in primordial gravitational waves, which
were generated during the inflationary era. Thus we can
safely ignore the radiation fluids, and also any dark matter
perfect fluid components. In all modern axionic models, the
axion field plays the role of dark matter soon after it starts
to oscillate, when its massma satisfiesma ≽ H, whereH is
the Hubble rate. With regard to the axion field, there exist in
the literature two models which yield viable phenomenol-
ogy, the canonical misalignment axion model [59] and the
kinetic axion model [66,67]. Both models may yield
phenomenologically appealing results, and for both mod-
els, when ma ≽ H, the axion field oscillations commence,
beyond which the axion field’s energy density ρa redshifts
as dark matter ρa ∼ a−3. The difference between the two
axion models is the time for which the axion oscillations
commence, and specifically for the case of the kinetic
axion, the time instance for which the axion oscillations
start is significantly delayed compared to the canonical
misalignment model. In the kinetic axion picture, the axion
oscillations commence at some point during the reheating
era, at a lower temperature compared to the canonical
misalignment axion model. We shall discuss these two
axion models more later on in this section.
The whole fðRÞ gravity axion model with Chern-Simons

terms is a sort of fðR;ϕÞ gravity in vacuum, the gravita-
tional action of which is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
fðRÞ − 1

2
∂μϕ∂μϕ

− VðϕÞ þ 1

8
νðϕÞRR̃

�
; ð2Þ

with RR̃ ¼ ϵabcdRef
abRcdef, κ2 ¼ 1

8πG, where G is Newton’s
gravitational constant, and ϵabcd stands for the totally
antisymmetric Levi-Civita tensor. To be precise, the
Chern-Pontryagin density RR̃ is a direct analog of the
term �FμνFμν in principal fiber bundles, which is con-
structed by the curvature Fμν which corresponds to the
connection Aμ of the principal bundle. In the literature
the term νðϕÞR̃R is called the Chern-Simons term, but
this terminology is abused for a simple reason, the
Chern-Pontryagin density νðϕÞR̃R is directly connected
with an actual 3D Chern-Simons term cohomologicaly
νðϕÞR̃R ¼ dðChern-SimonsÞ, via the exterior derivative.
This is the justification of the Chern-Simons terminology,
which we shall also adopt in this paper, complying with the
literature. In the context of the metric formalism, upon
varying the gravitational action (2) with respect to the
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metric tensor and with respect to the scalar field respec-
tively, and for the FRW metric (1), the following equations
of motion are obtained,

3H2F ¼ κ2
1

2
_ϕ2 þ RF − f þ 2Vκ2

2
− 3H _F;

− 3FH2 þ 2 _HF ¼ κ2
1

2
_ϕ2 −

RF − f þ 2V
2

þ F̈ þ 2H _F; ð3Þ

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ð4Þ

with V 0ðϕÞ ¼ ∂V
∂ϕ and also F ¼ ∂f

∂R. Remarkably, the field
equations (3) and (4) remain totally unaffected by the
Chern-Simons term, as is also pointed out in the literature
[69], see also [84]. Basically, the whole background
evolution in the presence of the Chern-Simons term
remains entirely unaffected by the Chern-Simons term,
and only the tensor perturbations and the corresponding
slow-roll indices are affected by the Chern-Simons term
[69] (see also [58]), as we also see in the next section. The
reason for this is the fact it is impossible to have ϵabcd and
scalar derivatives only in any of the following components
of the energy-momentum tensor, T00, T0α, Tαβ [84].
At this point, let us specify the inflationary fðRÞ

gravity model which we shall assume controls the infla-
tionary evolution. Specifically, we shall assume that the
fðRÞ gravity model which governs the evolution is the R2

model [87],

fðRÞ ¼ Rþ 1

36Hi
R2; ð5Þ

where Hi has mass dimensions ½m�2. As was shown in
Ref. [58], the inflationary evolution is governed mainly by
the R2 gravity, because the axion is frozen (it has small
deviations from the vacuum expectation value, a time
average is assumed) in its vacuum expectation value during
inflation, and due to its small mass, for example, the
potential term is of the order

κ2

2ð12H2Þm
2
af2aθ2a ¼ Oð10−39Þ eV; ð6Þ

with H ∼HI ¼ Oð1013Þ GeV, while the R2-related terms
are of the orderOð1038Þ eV. Thus, by substituting the Ricci
scalarR ¼ 12H2 þ 6 _H, its derivative _R ¼ 24H _H þ 6Ḧ and
F ¼ 1þ R

18Hi
into the Friedmann equation (3), we obtain

Ḧ −
_H2

2H
þ 3HiH ¼ −3H _H: ð7Þ

Disregarding the first two terms during the slow-roll era, the
differential equation (7) becomes

3HiH ¼ −3H _H; ð8Þ

which yields the solution,

HðtÞ ¼ H0 −Hit; ð9Þ
which is a quasi–de Sitter evolution. The spectral index and
the tensor-to-scalar ratio for the combined axion Chern-
Simons R2 model are [58]

ns ¼ 1 −
2

N
; r ≃

rvs
2

�
1

j1 − κ2x
F j þ

1

j1þ κ2x
F j

�
; ð10Þ

with rvs ¼ 48ϵ21 being the tensor-to-scalar ratio of vacuum
fðRÞ gravity, and ϵ1 is the first slow-roll index, which for the
R2 model is ϵ1 ∼ 1=ð2NÞ. Also the parameter x is defined as
x ¼ 2 _νk

a . As was shown in [58], the term ∼ κ2x
F can potentially

reduce the tensor-to-scalar ratio, for example taking
κ2x
F ¼ Oð3 × 102Þ, the tensor-to-scalar ratio becomes of the
order r ∼Oð10−5Þ. Now let us discuss in brief the two axion
models which we shall consider in this paper. The first is the
canonical misalignment model, which we now present in
brief. In the canonical misalignment model (see [59] for a
review), the preinflationary Peccei-Quinn Uð1Þ symmetry,
which was unbroken preinflationary, is broken during
inflation, and the axion field acquires a nonzero vacuum
expectation value hϕi ¼ θafa, where fa denotes the axion
decay constant, and θa denotes the initial misalignment
angle. The axion vacuum expectation value is quite large
during the inflationary period, of the order of the axion decay
constant∼Oð1010Þ GeV.Weneed to stress that although that
the axion had a vacuum expectation value during the infla-
tionary era, this does not mean that the axion was constant
during inflation, meaning that theChern-Simons term during
inflation should be viewed as a time average hνðϕ̄ÞR̃Ri, and
its effect is nontrivial considering its time averaged values.
The axion potential is

VðϕÞ ¼ m2
af2a

�
1 − cos

�
ϕ

fa

��
: ð11Þ

Now let us discuss how the canonical misalignment model
functions, which schematically appears in Fig. 1. The axion
during inflation has small displacements from its vacuum
expectation value and starts to roll down the hill with initial

speed
_ϕ

ma
≪ 1, so quite small or at nearly zero initial speed.

For small displacements from the vacuum expectation value,
the potential is approximately equal to

VðϕÞ ≃ 1

2
m2

aϕ
2; ð12Þ

when ϕ ≪ fa or equivalently ϕ ≪ hϕi. Hence, the axion
rolls down the hill when H ≫ ma, as is displayed in Fig. 1,
untilH ∼ma atwhich point it starts to oscillate and its energy
density redshifts as dark matter. Hence the misalignment
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model is based on the fact that the initial speed of the axion at
small displacements from its vacuum expectation value on
the hill of the potential, the velocity and the acceleration are
quite small. Hence for the canonical misalignment axion

model we have
_ϕ

ma
≪ 1 and ϕ̈

m2
a
≪ 1. Now the kinetic axion

model [66,67] is based on the fact that initially, when the
axion was on the hill of the potential, for small displacement
from its vacuum expectationvalue, the speedwas not zero, as
is seen in Fig. 2. Thus as the axion rolls down the hill, it does
not start to oscillate as it reaches the minimum of the
potential, but goes uphill, and when it stops it rolls down
to oscillate around the vacuum expectation value, where it
starts to redshift as dark matter. For the kinetic axion case,
initially the speed is quite large, and specifically the axion
kinetic energy dominates over the potential energy [66,67]
_ϕ2 ≫ m2

aϕ
2, thus essentially the equation of state parameter

w for the axion initially, prior to the axion oscillations, and
during the whole inflationary era, is approximately w ∼ 1,

thus the axion velocity redshifts as _ϕ ∼ a−3 so this is a stiff
equation of state. As an effect of this initial kinetic domi-
nation, the axion does not start its oscillations around its
vacuum expectation value, but continues uphill. For the
kinetic axion case, since the kinetic energy term dominates
over the potential, and in conjunction with the fact that
_ϕ2 ∼ a−6, this simplymeans that the background evolution is
solely governed by fðRÞ gravity. Hence, the R2 gravity
controls the background evolution in this case too, as in the
canonical misalignment axion model, thus the evolution is
the quasi–de Sitter one of Eq. (9).
In the next section we shall consider the evolution of

primordial gravitational waves for the axion R2 model, for
both the axion models we discussed in this section, and we
shall explore the chirality of the produced gravitational
waves in a semianalytical way.

III. PRIMORDIAL GRAVITATIONAL WAVES
IN CHERN-SIMONS AXION f ðRÞ GRAVITY

In this section, we shall consider the evolution of
primordial gravitational waves in the context of axion
fðRÞ gravity with Chern-Simons corrections. We shall
concentrate on the R2 gravity case, in which case as we
showed earlier, for both the canonical misalignment and the
kinetic axion, the background evolution is governed solely
by the R2 gravity. Let us now consider the evolution of
tensor perturbations, and to start off, we shall consider the
following tensor perturbations of the flat FRW metric,

ds2 ¼ −dt2 þ aðtÞ2ðδij þ hijÞdxidxj; ð13Þ
and by performing the Fourier transform of the tensor
perturbation hij,

hijðx⃗; tÞ ¼
ffiffiffiffi
V

p Z
d3k
ð2πÞ3

X
l

ϵlijhlke
ik⃗ x⃗; ð14Þ

where “l” denotes the polarization of the tensor perturba-
tion, and V is the volume element. The Fourier trans-
formation of the tensor perturbation hij satisfies the
following differential equation [69],

ḧlðkÞ þ ð3þ αMÞH _hlðkÞ þ
k2

a2
hlðkÞ ¼ 0; ð15Þ

where the parameter αM is defined to be

aM ¼
_Qt

QtH
; ð16Þ

and the function Qt for the Chern-Simons axion fðRÞ
gravity is equal to [69]

Qt ¼
1

κ2
df
dR

þ 2λl _νk
a

; ð17Þ

FIG. 1. Canonical misalignment axion physics. The axion starts
uphill from a small deviation from its vacuum expectation value,
with zero velocity, and it finally ends up in the minimum where it
starts oscillating when H ∼ma.

FIG. 2. Kinetic axion physics. The axion starts uphill from a
small deviation from its vacuum expectation value, with nonzero
velocity, and it finally ends up uphill again, from where it again
goes downhill until it ends up in the minimum, where it starts
oscillating when H ∼ma. In this case, the oscillation period is
postponed compared to the canonical misalignment model, and it
occurs at a lower temperature.
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and the parameter λl indicates the polarization of the
gravitational waves and it takes the following values, λR ¼
1 for the right-handed gravitational waves, and λL ¼ −1 for
the left-handed gravitational waves. Also, k denotes the
wave number of each tensor mode. Easily we can evaluate
the exact form of the parameter aM for the Chern-Simons-
corrected axion fðRÞ gravity that has the following form,

aM ¼
1
κ2

d2f
dR2

_Rþ 2λlν̈k
a − 2λl _νkH

a

ð 1
κ2

df
dR þ 2λl _νk

a ÞH : ð18Þ

Basically, the parameter aM quantifies the direct effect of
the modified gravity under study, since in the absence
of this term, the differential equation (15) is identical to
the general relativistic differential equation governing the
primordial tensor perturbations.
For inflationary gravitational waves, there are two cases

of interest, regarding the magnitude of the mode wave-
length compared to the Hubble horizon, the subhorizon and
superhorizon modes. The two modes are equally important
from an experimental perspective. The subhorizon modes
during inflation, and especially the ones with the smallest
wave number, will be the first that will exit the horizon after
inflation and during the early stages of the reheating era.
These subhorizon modes (see Fig. 3), for which their
wavelength is significantly smaller than the Hubble radius,
that is, λ ≪ 1

aH, or equivalently k ≫ aH will directly be
probed in about 15 years from now, in LISA, DECIGO
BBO and other large frequency gravitational wave experi-
ments. Thus the study of these modes even analytically
is of some importance. In this paper we shall mainly be
interested in studying the chirality of these modes, in
order to see quantitatively and firsthand their evolution.
With regard to the superhorizon modes, for these their

wavelength is quite a bit larger than the Hubble radius,
that is, λ ≫ 1

aH, or equivalently k ≪ aH (see Fig. 4). These
modes will not be probed by the space interferometers, but
are relevant because the cosmic microwave background
(CMB)modes are basicallymodes that became superhorizon
very early during the inflationary era, andwere superhorizon
until z ∼ 1100, where they reentered the Hubble horizon.We
shall be interested in CMB superhorizon modes, so basically
for modes with wavelength λ < 10 Mpc, or equivalently
with k < 0.1 Mpc−1. With regard to the subhorizon modes,
we shall be interested inwavelengths larger than λ > 10 Mpc
or equivalently for 0.1 < k < 1016 Mpc−1. The modes with
0.1 < k < 1016 Mpc−1 correspond to post-CMB and rel-
evant to future primordial gravitational wave experiments,
especially the modes with k > 1010 Mpc−1. The modes with
104 < k < 108 Mpc−1 will be probed by the SKA or
NANOGrav collaborations. For the above reasons, in this work
we shall analytically check in a quantitativeway the chirality
of both subhorizon and superhorizon modes for both the
axion R2 gravity models.
Before we specify our analysis using the two axion R2

models we discussed previously, let us consider the general
behavior of the superhorizon modes in a model-indepen-
dent way. For the superhorizon modes, the differential
equation (15) can be greatly simplified, since for these
modes, their wavelengths are significantly larger compared
to the Hubble horizon, that is, k ≪ Ha, so basically the
third term in the differential equation (15) can be safely
omitted, thus it reads

ḧlðkÞ þ ð3þ αMÞH _hlðkÞ ¼ 0: ð19Þ
We can find a general solution of the above differential
equation, which reads

hlðkÞ ¼ ClðkÞ

þDlðkÞ
Z

t

1

exp

�Z
η

1

ð−aMðτÞ − 3HðτÞÞdτ
�
dη;

ð20Þ

FIG. 3. Subhorizon inflationary modes. During inflation these
are at subhorizon scales, and the ones with the smallest wave
number will be the first that will exit the horizon after the
inflationary era ends and during the early stages of the reheating
era. These modes will be probed in the next years by space laser
interferometers, like LISA.

FIG. 4. Superhorizon modes, for which λ ≫ 1
aH, or equivalently

k ≪ aH. The CMB modes were superhorizon very early during
the inflationary era. Our interest is in CMB superhorizon modes,
so for λ < 10 Mpc, or equivalently with k < 0.1 Mpc−1.
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thus the solution describes clearly a time-independent
frozen term ClðkÞ and an exponentially decaying mode,
which is the second term in Eq. (20). We shall explicitly
verify this behavior for both the canonical misalignment
and kinetic axion R2 models later on in this section.
Now our analysis will be to reveal in an analytic way the

amount of chirality of the primordial gravitational waves
relevant for both the CMB and future gravitational wave
experiments, thus both for superhorizon and subhorizon
modes, where analytical results can be obtained of course.
Our strategy will be the following: since we are interested
in the inflationary gravitational waves for the axion R2

gravity models, we shall solve analytically the evolution
differential equation (15), for both the left-handed and
right-handed polarizations, considering both the superhor-
izon and subhorizon modes. Suppose the solutions are
hLðkÞ and hRðkÞ, and these solutions contain two integra-
tion constants each. When analytic results can be obtained,
in order to determine the integration constants, we shall
assume that both solutions asymptotically in the past satisfy
the Bunch-Davies initial condition, and we shall find the rest
of the constants in an easy way by taking the asymptotic
expansions of the solutions in two regimes, the subhorizon
and superhorizon regimes, so the solutions would be
hLðkÞk≪aH, hLðkÞk≫aH, hRðkÞk≪aH and hRðkÞk≪aH. Then
the integration constants can be obtained by matching the
solutions for each polarization at an intermediate transition
time t ¼ ttrans, as follows,

hLðkÞk≪aHjt¼ttrans ¼ hLðkÞk≫aHjt¼ttrans ;

_hLðkÞk≪aHjt¼ttrans ¼ _hLðkÞk≫aHjt¼ttrans ;

hRðkÞk≪aHjt¼ttrans ¼ hRðkÞk≫aHjt¼ttrans ;

_hRðkÞk≪aHjt¼ttrans ¼ _hRðkÞk≫aHjt¼ttrans : ð21Þ

With the above initial conditions [Eq. (21)], the integra-
tion constants can be obtained when both the super-
horizon and subhorizon modes can be obtained. As we
shall see, for the canonical misalignment axion R2 model,
this is possible, however, for the kinetic axion R2 model,
analytic solutions can be obtained only for the super-
horizon modes. Thus for the sake of the argument, we
shall use arbitrary integration constants only for this case,
just to see the behavior of the solutions as functions of the
wave number of the modes, and also in order to reveal
quantitatively the chirality between the left- and right-
handed modes. For the analysis of the chirality between
the left- and right-handed modes, which quantifies the
difference in the propagation between left-handed and
right-handed modes, we shall share the circular polariza-
tion function ΠðkÞ from electromagnetic studies, defined
as ΠðkÞ ¼ Q

I , where Q and I are the Stokes parameters
for electromagnetic waves, defined as I ¼ jExj2 þ jEyj2,
Q ¼ jExj2 − jEyj2 [88]. Thus for the gravitational waves,

the circular polarization function ΠðkÞ is defined as
follows [82],

Πk≫aHðkÞ ¼
jhk≫aH

L ðkÞj2 − jhk≫aH
R ðkÞj2

jhk≫aH
L ðkÞj2 þ jhk≫aH

R ðkÞj2 ; ð22Þ

for the case of subhorizon modes, while for superhorizon
modes, we have

Πk≪aHðkÞ ¼
jhk≪aH

L ðkÞj2 − jhk≪aH
R ðkÞj2

jhk≪aH
L ðkÞj2 þ jhk≪aH

R ðkÞj2 : ð23Þ

Our aim in the rest of this section is to reveal the behavior
of the circular polarization functions Πk≫aHðkÞ and
Πk≪aHðkÞ for both the kinetic and canonical misalignment
axion R2 gravity, when this is possible.
Let us start with the canonical misalignment axion R2

gravity. In this scenario, as we mentioned earlier, the kinetic
energy and the acceleration of the axion field, namely _ϕ and

ϕ̈, are insignificant, that is,
_ϕ

ma
≪ 1, ϕ̈

m2
a
≪ 1, and also note

that during the inflationary era ma ≪ H. Thus we can
fix these to have significantly small values compared to
the axion mass, which we shall assume is of the order
ma ∼Oð10−12Þ eV for the canonical misalignment case. In
view of the above considerations, by also taking into
account that ϕ̈ ≪ H _ϕ for the misalignment axion, we shall
take _ϕ ∼Oð10−5ma and ϕ̈ ∼Oð10−5m2

aÞ. Also for the rest
of this paper, we shall assume that the Chern-Simons
coupling function νðϕÞ has the form

νðϕÞ ¼ γeβϕκ; ð24Þ

where, recall, κ ¼ 1
Mp
, where Mp is the reduced Planck

mass. The values of the dimensionless free parameters
γ and β are determined by using the rule to have a viable
inflationary phenomenology. We shall return to this issue
later on, but now let us simplify the evolution equation (15)
as much as possible in order to have a concrete quantita-
tive idea on the behavior of the circular polarization
functions Πk≫aHðkÞ and Πk≪aHðkÞ for both the subhorizon
and superhorizon modes respectively. In both cases, since
the modes are inflationary modes, the derivative of the
fðRÞ gravity can be simplified as FðRÞ ∼ αR, where
α ¼ 1

18Hi
, and also the Ricci scalar is approximately

R ∼ 12H2
0. In addition, since the evolution is quasi–de

Sitter, we assume that it is exactly a de Sitter evolution.
Using these simplifications, and due to the fact that ν̈κ ≪ _ν,
the simplified evolution equation (15) for the left-handed
polarization subhorizon modes reads

üLðtÞþ _uLðtÞ
�

k _aðtÞ _νðtÞ
12αH2

0aðtÞ2
þ 3H0

�
þ k2uLðtÞ

aðtÞ2 ¼ 0; ð25Þ
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while the right-handed polarization subhorizon modes
satisfy

üRðtÞ þ _uRðtÞ
�
−

k _aðtÞ _νðtÞ
12αH2

0aðtÞ2
þ 3H0

�
þ k2uRðtÞ

aðtÞ2 ¼ 0:

ð26Þ

The two equations can be solved analytically by
simply taking into account the slowly varying form
of _ν we discussed earlier. By taking a constant value for
_ϕ ¼ _ϕν0ðϕÞ ¼ δ, whose values we shall consider later on,
by solving the differential equation (25) the left-handed
evolution function uLðtÞ has the following form,

uLðtÞ ¼ C1U
�
−
−δ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p ; 4;
e−H0tk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p
12H2

0α

�

× exp

�
72αH2

0 logðe−H0tÞ − ke−H0tð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p
− δÞ

24αH2
0

�

þ C2L3
n

�
ke−H0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p
12αH2

0

�
exp

�
72αH2

0 logðe−H0tÞ − ke−H0tð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p
− δÞ

24αH2
0

�
; ð27Þ

where Uða; b; zÞ is the confluent hypergeometric function and La
nðxÞ is the generalized Laguerre polynomial, and

n ¼ −δ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2−576α2H2

0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2−576α2H2

0

p . Also C1 and C2 are integration constants that will be determined by the initial conditions (21), after

which we will obtain the superhorizon solutions. Accordingly, by solving the right-handed mode equation (26), we obtain
the right-handed evolution function uRðtÞ, which has the following form,

uRðtÞ ¼ C3U
�
−
δ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p ; 4;
e−H0tk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576H2

0α
2

p
12H2

0α

�

× exp

�
72αH2

0 logðe−H0tÞ − ke−H0tðδþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p Þ
24αH2

0

�

þ C4L3
b

�
ke−H0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p
12αH2

0

�
exp

�
72αH2

0 logðe−H0tÞ − ke−H0tðδþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 576α2H2

0

p
Þ

24αH2
0

�
; ð28Þ

with b ¼ δ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2−576α2H2

0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2−576α2H2

0

p . Also C3 and C4 are integration

constants that in this case too will be determined by the
initial conditions (21). Now let us turn our focus to
superhorizon modes. Regarding these modes, the evolution
differential equation can easily be solved analytically, just
as in the previous case. These modes are relevant for CMB
observations, and we now will measure the polarization of
the superhorizon modes for small values of k, in the range
10−4 ≤ k ≤ 10 Mpc−1. From the beginning though, we
know that superhorizon modes do freeze once they become
superhorizon, so we expect a decay of the functions uLðtÞ
and uRðtÞ after the horizon crossing, as functions of time,
and in fact an exponential decay. We shall present a detailed
study of the superhorizon modes here, so regarding the left-
handed polarization superhorizon modes, the differential
equation governing their evolution is basically the same as
in Eq. (25) by simply omitting the last term, so in this case
the superhorizon function uLðtÞ, which we shall denote as
usLðtÞ, has the following form,

usLðtÞ ¼ C5 þ C6e
δke−H0t

12αH2
0

�
−
3456α3H5

0

δ3k3
þ 288α2H3

0e
−H0t

δ2k2

−
12αH0e−2H0t

δk

�
; ð29Þ

where C5 and C6 are integration constants that in this case
too will be determined by the initial conditions (21). As
expected, the superhorizon left-handed modes essentially
freeze after the horizon crossing and they also exponen-
tially decay as functions of the cosmic time. Also for the
righthanded polarization modes, the corresponding solu-
tion usRðtÞ reads

usRðtÞ ¼ C7 þ C8e
−δke−H0t

12αH2
0

�
3456α3H5

0

δ3k3
þ 288α2H3

0e
−H0t

δ2k2

þ 12αH0e−2H0t

δk

�
; ð30Þ
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where in this case too C5 and C6 are integration constants
that will be determined by the initial conditions (21).
Also, the right-handed solution decays exponentially in
time too. Now by using the initial conditions (21) and the
Bunch-Davies initial condition for each mode we can find
the constants of integration, which we omit for brevity.
In a previous section we saw that for the model under
consideration, a viable phenomenology is achieved for
κ2x
F ¼ Oð3 × 102Þ. This can be easily arranged for various
values of the free parameters, for both the superhorizon and
subhorizon modes, at the first horizon crossing though. By
taking these into account, and also the values of the
integration constants, and finally by considering infla-
tionary times of the order t ∼ 10−30 sec, in Fig. 5 we
present the behavior of the circular polarization function
Πk≫aHðkÞ for modes that were subhorizon during the
first stages of inflation. These subhorizon modes are
directly relevant to future gravitational wave experiments,
so the wave number should be from k ¼ 10 Mpc−1 to
k ¼ 107 Mpc−1, however, we plotted the behavior from
zero just to see the behavior. As can be seen in the left plot
of Fig. 5 the circular polarization function Πk≫aHðkÞ is
nonzero from quite small k while from k ¼ 0.08 Mpc−1 it
becomes constant and equal to Πk≫aHðkÞ ¼ −1, however,
we omitted the rest of the plot, because after k ¼
0.08 Mpc−1 the circular polarization function is constant.
Thus the subhorizon modes are highly polarized, since
Πk≫aHðkÞ ≠ 0. The same applies for the superhorizon
modes, and in the right plot of Fig. 5 we present the
behavior of the circular polarization function Πk≪aHðkÞ for
modes that were superhorizon during the first stages of
inflation. As can be seen these modes are highly polarized
too, but for these modes, the wave number must not exceed
k ≃ 0.08 Mpc−1, because these modes are relevant only to
CMB experiments.

Now, let us turn our focus on the kinetic axion R2 model.
In this case, analytic calculations are not possible for
the subhorizon case, thus even though we can obtain the
superhorizon solutions, we are not able to determine the
integration constants. However, just for the sake of com-
pleteness, we shall derive the analytic solutions for super-
horizon modes, and by using arbitrary values for the
constants of the integration, we shall demonstrate that
indeed the circular polarization function ΠðkÞ is nontrivial
in this case too. Recall that in the kinetic axion model,
_ϕ ∼ a−3, and also ϕ̈ ≃H _ϕ. Hence it is apparent that
different terms of the derivatives of the Chern-Simons
coupling function νðϕÞ dominate the evolution eventually,
as we now demonstrate. Let us quote the evolution differ-
ential equations for the left- and right-handed polarization
modes at this point, and we show how these are simplified
eventually. With regard to the left-handed modes, the
evolution equation of the superhorizon modes is

üLðtÞ þ _uLðtÞ
�

k _aðtÞ _νðtÞ − kaðtÞν̈ðtÞ
12αH2

0aðtÞ2 − kaðtÞ _νðtÞ þ 3H0

�
¼ 0;

ð31Þ

while the right-handed modes satisfy

üRðtÞ þ _uRðtÞ
�
−k _aðtÞ _νðtÞ þ kaðtÞν̈ðtÞ
12αH2

0aðtÞ2 − kaðtÞ _νðtÞ þ 3H0

�
¼ 0:

ð32Þ

Now regarding the term in the denominator of the second
term in both the evolution equations, the term 12αH2

0aðtÞ2
is dominant over kaðtÞ _νðtÞ for the values of k correspond-
ing to superhorizon modes during inflation. Also, due to the
fact that for the kinetic axion we have ϕ̈ ≃H _ϕ, the term

FIG. 5. Circular polarization function Πk≫aHðkÞ ¼ juk≫aH
L ðkÞj2−juk≫aH

R ðkÞj2
juk≫aH

L ðkÞj2þjuk≫aH
R ðkÞj2 for the subhorizon modes (left plot), for the canonical

misalignment axion model, as a function of the wave number of the modes. The right plot represents the circular polarization function

Πk≪aHðkÞ ¼ juk≪aH
L ðkÞj2−juk≪aH

R ðkÞj2
juk≪aH

L ðkÞj2þjuk≪aH
R ðkÞj2 for the superhorizon modes, as a function of the wave number of the modes.
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kaðtÞν̈ðtÞ in the numerator of the second term in both the
evolution equations is subdominant compared to the term
kaðtÞν̈ðtÞ, thus the evolution equations for the left-handed
modes becomes

üLðtÞ þ _uLðtÞ
�
−kaðtÞν̈ðtÞ
12αH2

0aðtÞ2
þ 3H0

�
¼ 0; ð33Þ

while the evolution equation for the right-handed modes is
simplified as follows,

üRðtÞ þ _uRðtÞ
�
_νðtÞ þ kaðtÞν̈ðtÞ
12αH2

0aðtÞ2
þ 3H0

�
¼ 0: ð34Þ

Regarding the conventions for the form of the Chern-
Simons coupling function νðϕÞ, a complete study of the
Chern-Simons extended axion R2 gravity is lacking for the
kinetic axion case, we intend to do this in a future work.
Thus we shall use for simplicity the conventions of the
misaligned axion case, for the sake of the argument. The
qualitative picture is not expected to dramatically change
when the conventions on the free parameters are changed
though, and this justifies our qualitative approach here.
Thus, using the conventions of the canonical misalignment
axion case, for a de Sitter background evolution, the
differential equations above can be solved analytically,
with the left-handed solution being

uLðtÞ ¼ C1 þ
12αC2H0e

−δke−3H0t

36αH2
0

δk
; ð35Þ

while the right-handed solution is

uRðtÞ ¼ C3 þ
12αC4H0e

−δke−3H0t

36αH2
0

δk
; ð36Þ

where C1, C2, C3 and C4 are arbitrary integration constants.
As can be seen, the solutions (35) and (36) both describe
constant modes after horizon crossing, and both contain an
exponentially decaying part. For this case, it is not possible
to obtain the analytic values for these constants, because we
do not know the analytic solutions for the subhorizon
modes. Thus, just to see the qualitative behavior of the
circular polarization function ΠðkÞ, we shall take these to
be of the order of unity. We expect the overall qualitative
behavior of the circular polarization function will not be
affected dramatically by the actual values of the integration
constants, however, a formal treatment of the problem
requires the exact values of the constants. Thus, using the
same numerical conventions as in the canonical misalign-
ment axion case, in Fig. 6 we plot the circular polarization

function Πk≪aHðkÞ ¼ juk≪aH
L ðkÞj2−juk≪aH

R ðkÞj2
juk≪aH

L ðkÞj2þjuk≪aH
R ðkÞj2 for the superhor-

izon modes, in the R2 kinetic misalignment axion case.

As can be seen in Fig. 6, the circular polarization function is
nontrivial in the kinetic axion R2 model, regarding the
superhorizon modes. However, the behavior obtained for
the kinetic axion R2 model is only a qualitative one,
because the correct treatment requires the analytic solutions
for the subhorizon modes, in order to correctly evaluate
the arbitrary integration constants. However, we do not
expect that the overall qualitative picture will dramatically
change. The overall conclusion for both the kinetic and
canonical misalignment R2 axion models is that the tensor
modes, both subhorizon and superhorizon modes, are
highly polarized. Thus if in future gravitational wave
experiments two signals of the stochastic gravitational
wave background are found, for the same frequency range,
this will be a smoking gun for the presence of Chern-
Simons terms in the inflationary Lagrangian. The axion R2

models we studied in this paper are quite appealing
phenomenologically, since, apart from the remnant chiral-
ity these generate, and the viable inflationary era, they also
provide a refined solution for the dark matter problem. This
is because the axion starts to oscillate whenma ∼H and for
all eras for which ma ≫ H, and its energy density redshifts
as ρa ∼ a−3, thus it redshifts as dark matter. The difference
between the two models is the time at which the oscillations
begin, but beyond that difference, during the postreheating
era, the two models are basically the same. Before the
reheating, the kinetic axion R2 model might be more
interesting because this model might lead to a lower
reheating temperature. The physics of this model shall
be studied elsewhere.

IV. CONCLUSIONS

In this paper we studied the chirality of primordial
gravitational waves in the context of Chern-Simons axion
fðRÞ gravity. Specifically, the fðRÞ gravity was chosen to
be the R2 model, and we considered two mainstream axion

FIG. 6. The circular polarization function Πk≪aHðkÞ ¼
jhk≪aH

L ðkÞj2−jhk≪aH
R ðkÞj2

jhk≪aH
L ðkÞj2þjhk≪aH

R ðkÞj2 for the superhorizon modes, as a function

of the wave number of the modes for the kinetic axion R2 model.
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field theory models, the canonical misalignment axion
model and the kinetic axion model. The presence of the
Chern-Simons term in the context of Einstein-Hilbert
gravity ensures the chirality of the primordial gravitational
waves, and this was the focus of this work, to check
whether this remains true in the case of Chern-Simons fðRÞ
gravity, with the scalar field being the axion. As we
showed, since the axion and the corresponding Chern-
Simons term do not significantly affect the background
evolution, the R2 model completely determines the back-
ground evolution. However, the Chern-Simons term affects
the tensor perturbations explicitly, and it modifies the
evolution of the two distinct polarization modes. Since
we were interested in quantifying the chirality modifica-
tions caused by the Chern-Simons term we aimed to solve
analytically the evolution equations of each polarization
modes for each of the axion models. We considered
subhorizon modes and superhorizon modes, each of which
are probed or will be probed distinctly by the future
gravitational wave experiments and the current and future
CMB-based experiments. For the case of the misalignment

axion we were able to find analytic expressions for both the
superhorizon and subhorizon modes, and we were able to
find all the integration constants.Accordingly,we calculated
the circular polarization function for each of the subhorizon
and superhorizon modes as a function of the wave number,
and as we showed the modes are strongly chiral. In the case
of the kinetic axion, the analytical study of the subhorizon
modeswas impossible, thus for the sake of the argument, we
used the conventions of the misalignment axion case and we
also showed that the spectrum is also chiral. However, the
essential features of the kinetic axion fðRÞ gravity and its
Chern-Simons extension are needed,which are lacking from
the literature, and we aim to address in a future work.
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