This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Rethinking subthreshold effects in regulatory chemical risk assessments

Journal:	Environmental Science & Technology	
Manuscript ID	es-2022-02896t.R1	
Manuscript Type:	Viewpoint	
Date Submitted by the Author:	n/a	
Complete List of Authors:	Agathokleous, Evgenios; Nanjing University of Information Science and Technology, Department of Ecology Barcelo, Damia; Centre de Investigacio i Desenvolupament Josep Pascual Vila, Environmental Chemistry Department aschner, michael; Albert Einstein College of Medicine, Molecular Pharmacology Azevedo, Ricardo; Universidade de São Paulo, Genética Bhattacharya, Prosun; Kungliga Tekniska Hogskolan, Department of Sustainable Development, Environmnetal Science and Engineering Costantini, David; Museum National d'Histoire Naturelle, Cutler, Christopher; Dalhousie University, De Marco, Alessandra; ENEA, Docea, Anca; University of Medicine and Pharmacy of Craiova Dórea, José; Faculty of Health Sciences, Universidade de Brasilia, Department of Nutrition Duke, Stephen; USDA, ARS, NPURU Efferth, Thomas; Johannes Gutenberg Universitat Mainz, Pharmaceutical Biology Fatta-Kassinos, Despo; University of Cyprus, CEE Fotopoulos, Vasileios; Cyprus University of Technology, DEPARTMENT OF AGRICULTURAL SCIENCES, BIOTECHNOLOGY AND FOOD SCIENCE Ginebreda, Antoni; Centre de Investigacio i Desenvolupament Josep Pascual Vila, Guedes, Raul Narciso C.; University of Vicosa, Department of Entomology Hayes, Wallace; Harvard School of Public Health, Environmental Health Iavicoli, Ivo; University of Naples Federico II, Public Health Kalantzi, Olga-Ioanna; Panepistemio Aigaiou, Department of Environment Koike, Takayoshi; Hokkaido University School of Agriculture Graduate School of Agriculture Research Faculty of Agriculture Kouretas, Demetrios; UNIVERSITY OF THESSALY, BIOCHEMISTRY & BIOTECHNOLOGY Kumar, Manish; University of Petroleum and Energy Studies Manautou, Jose; University of Connecticut, Pharmaceutical Sciences Moore, Michael; Plymouth Marine Laboratory, Paoletti, Elena; National Research Council Penuelas, Josep; CSIC-CREAF, Picó, Yolanda; University of Texas Health Science Center at San Antonio, Dept. of Cellular & Structural Biology	

Rezaee, Ramin ; Mashhad University of Medical Sciences Rinklebe, Jörg; Bergische Universitat Wuppertal, School of Architecture and Civil Engineering Rocha Santos, Teresa; University of Aveiro, Chemistry Sicard, Pierre; ARGANS Sonne, Christian; University of Aarhus, Bioscience Teaf, Christopher ; Florida State University Tsatsakis, Aristides; University of Crete Vardavas, Alexander ; University of Crete Wang, Wenjie; Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, key lab of wetland sciences and environment Zeng, Eddy; Jinan University, School of Environment Calabrese, Edward; University of Massachusetts Amherst, School of Pub. Health

SCHOLARONE[™] Manuscripts

1	Rethinking subthreshold effects in regulatory chemical risk assessments
	Evgenios Agathokleous ^{1,2*} , Damià Barceló ^{3,4} , Michael Aschner ⁵ , Ricardo Antunes Azevedo ⁶ ,
	Prosun Bhattacharya ⁷ , David Costantini ⁸ , G. Christopher Cutler ⁹ , Alessandra De Marco ¹⁰ , Anca Oana Docea ¹¹ , José G. Dórea ¹² , Stephen O. Duke ¹³ , Thomas Efferth ¹⁴ , Despo Fatta-Kassinos ¹⁵ ,
	Vasileios Fotopoulos ¹⁶ , Antonio Ginebreda ¹⁷ , Raul Narciso C. Guedes ¹⁸ , A. Wallace Hayes ^{19,20} ,
	Ivo Iavicoli ²¹ , Olga-Ioanna Kalantzi ²² , Takayoshi Koike ²³ , Demetrios Kouretas ²⁴ , Manish
	Kumar ²⁵ , José E. Manautou ²⁶ , Michael N. Moore ^{27,28,29} , Elena Paoletti ³⁰ , Josep Peñuelas ^{31,32} ,
	Yolanda Picó ³³ , Russel J. Reiter ³⁴ , Ramin Rezaee ^{35,36} , Jörg Rinklebe ³⁷ , Teresa Rocha-Santos ³⁸ ,
9	Pierre Sicard ³⁹ , Christian Sonne ^{40,41} , Christopher Teaf ⁴² , Aristidis Tsatsakis ⁴³ , Alexander I.
10	Vardavas ⁴³ , Wenjie Wang ^{44,45} , Eddy Y. Zeng ⁴⁶ , Edward J. Calabrese ⁴⁷
11	¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
12	(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044,
13	Jiangsu, China.
14	² Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation,
15	School of Applied Meteorology, Nanjing University of Information Science & Technology,
16	Nanjing 210044, Jiangsu, China.
	³ Institute of Environmental Assessment and Water Research, IDAEA-CSIC; Barcelona, Spain.
10	-
19	⁴ Catalan Institute for Water Research, ICRA-CERCA; Girona, Spain.
20	⁵ Department of Molecular Pharmacology, Albert Einstein College of Medicine; Bronx, NY,
21	USA.
22	⁶ Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade
23	de São Paulo (ESALQ/USP); SP, Brazil.
24	⁷ KTH-international Groundwater Arsenic Research Group, Department of Sustainable
25	Development, Environmental Science and Engineering, KTH Royal Institute of Technology;
26	Stockholm, Sweden.
7	⁸ Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National
	d'Histoire Naturelle; Paris, France.
	⁹ Department of Plant, Food, and Environmental Sciences, Agricultural Campus, Dalhousie University; Truro, NS, Canada.
50	
31	¹⁰ ENEA, CR Casaccia, SSPT-PVS; Rome, Italy.
32	¹¹ Department of Toxicology, University of Medicine and Pharmacy of Craiova; Craiova,
33	Romania.
34	¹² Faculdade de Ciências da Saúde, Universidade de Brasília; Brasília, Brazil.
	¹³ National Center for Natural Products Research, School of Pharmacy, University of
	Mississippi; Mississippi, USA.
	¹⁴ Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical
	Biology, Johannes Gutenberg University; Mainz, Germany.
	Diology, volumes Guenoorg Oniversity, Muniz, Germany.
	1
	ACS Paragon Plus Environment
	0 1 2 3 4 5 6 7 8 9 20 21 22 3 24 25 26 27 28 29 30 31 32 33

1				
2 3 4	39 40	¹⁵ Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus; Nicosia, Cyprus.		
5 6 7	41 42	¹⁶ Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus Unive of Technology; Lemesos, Cyprus.		
8 9	43	¹⁷ Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona 18-26, Barcelona 08034, Spain		
10	44	¹⁸ Departamento de Entomologia, Universidade Federal de Viçosa; Viçosa, Brazil.		
11 12 13	45 46	¹⁹ Center for Environmental/Occupational Risk Analysis & Management, University of South Florida, College of Public Health; Tampa, FL, USA.		
14 15	47	²⁰ Michigan State University; East Lansing, MI, USA.		
16 17	48 49	²¹ Department of Public Health, Section of Occupational Medicine, University of Naples Federico II; Naples, Italy.		
18 19	50	²² Department of Environment, University of the Aegean; Mytilene, Greece.		
20 21	51	²³ Research Faculty of Agriculture, Hokkaido University; Sapporo, Hokkaido, Japan.		
22	52	²⁴ Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece.		
23 24	53	²⁵ School of Engineering, University of Petroleum and Energy Studies; Dehradun, India.		
25	54	²⁶ Pharmaceutical Science, University of Connecticut, Storrs, CT, USA.		
26 27	55	²⁷ European Centre for Environment & Human Health (ECEHH), University of Exeter		
28	56	Medical School, Knowledge Spa, Royal Cornwall Hospital; Truro, UK.		
29 30	57	²⁸ Plymouth Marine Laboratory; Plymouth, Devon, UK.		
31 32	58	²⁹ School of Biological & Marine Sciences, University of Plymouth; Plymouth, UK.		
33 34 35	59 60	³⁰ Institute of Research on Terrestrial Ecosystems, National Research Council; Sesto Fiorentino, Italy.		
	61	³¹ CSIC, Global Ecology Unit CREAF-CSIC-UAB; Bellaterra, Catalonia, Spain.		
37 38	62	³² CREAF; Cerdanyola del Vallès, Catalonia, Spain.		
39 40 41	63 64	³³ Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV; Valencia, Spain.		
42 43	65 66	³⁴ Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio; San Antonio, TX, USA.		
44 45	67	³⁵ International UNESCO Center for Health-Related Basic Sciences and Human Nutrition,		
46 47	68	Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.		
48	69	³⁶ Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad,		
49 50	70	Iran.		
50 51 52 53	71 72 73	³⁷ University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management; Wuppertal, Germany.		
54 55 56	74 75	³⁸ Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro; Aveiro, Portugal.		
57 58		2		
59 60		ACS Paragon Plus Environment		

1		
2 3	76	³⁹ ARGANS, 260 route du Pin Montard, Biot, France.
4 5 6	77 78	⁴⁰ Aarhus University, Department of Bioscience, Arctic Research Centre (ARC); Roskilde, Denmark.
7 8 9	79 80	⁴¹ Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University; Zhengzhou, China.
9 10	81	⁴² Institute of Science & Public Affairs, Florida State University; Tallahassee, FL, USA.
11 12	82	⁴³ Laboratory of Toxicology, Medical School, University of Crete; Heraklion, Greece.
13	83	⁴⁴ Key Laboratory of Forest Plant Ecology, Northeast Forestry University; Harbin, China.
14 15 16	84 85	⁴⁵ Northeast Institute of Geography and Agroecology, Chinese Academy of Science; Changchun, China.
17 18 19	86 87	⁴⁶ Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University; Guangzhou, China.
20 21 22	88 89	⁴⁷ Department of Environmental Health Sciences, University of Massachusetts; Amherst, MA, USA.
23 23 24 25 26 27 28 29 30 32 33 34 35 367 38 40 42 43 44 45 46 47 48 50 51 52 53	90	*Corresponding author. Email: evgenios@nuist.edu.en
54 55 56 57		

Page 5 of 12

60

A great number of dose-response studies indicate that hormesis is a common phenomenon, occurring in numerous organisms exposed to singular or combined environmental stressors, such as pharmaceuticals, heavy metals, micro/nanoplastics, organic flame retardants, pesticides, and rare earths ^{1–6}. While biological responses to low exposure levels are often beneficial, exposure to doses below the no-observed-adverse-effect-level (NOAEL; hereafter subthreshold doses) does not always translate to beneficial responses^{2,4}. For example, subthreshold contaminant doses can enhance the virulence of phytopathogenic microbes and promote the resistance of crop pests with significant implications for crop production ^{2,7,8}. Subthreshold contaminant exposures can also stimulate infectious animal/human pathogens and promote their resistance to antibiotics and other drugs, threatening long term sustainability. Importantly, the hormetic function of common pathways that regulate cancer progress indicate that current regulatory standards may not protect adequately against cancer risks ^{9–11}.

Current risk assessment frameworks used around the world to assess exposure and effects are largely based on scientific developments from the mid-to-late 20th century, which frequently included only very high (often environmentally unrealistic) doses and the broad assumption of linearity in the response in the absence of evidence of alternative dose-response relationships (Fig. 1) ^{12–16}. How representative and realistic this approach is increasingly being challenged, in a modern era of analytical advances enabling measurement of low doses and hormetic responses. An expanding scientific literature provides evidence of significant effects of subthreshold contaminant doses on numerous animals, plants, and microbes ^{1–6}. We opine that regulatory risk assessments on exposure and effects should not be based upon outdated science and biologicallyunsupported assumptions regarding linearity. Instead, subthreshold effects and dose-response behavior should be included in the regulatory risk assessment. We urge for this approach to be

adopted as part of a more real-life risk simulation approach ¹⁷, especially in the light of the 116 growing evidence of genotoxicity of chemicals such as fluoride and arsenic ^{18,19}. 117

1 2

3 4

5

6 7

8 9

34

36

38 39

41

43

45

48

50

52

54 55

57 58

59

60

Currently, subthreshold responses/effects in regulatory frameworks are largely not 118 10 ¹¹⁹ considered in worldwide risk assessments, impeding their identification and evaluation 11 (Supporting Information). In the USA, the US Environmental Protection Agency (EPA) does 12 120 13 14 121 permit non-linear approaches where adequate evidence is provided to prove divergence from the 15 16 122 default linear assumption. However, a recent proposal for the inclusion of subthreshold responses 17 18 and non-default dose-response models in the risk assessment was not implemented ²⁰. In 2017 19 123 20 21 124 the National Institute for Occupational Safety and Health (NIOSH) acknowledged the dilemma 22 ²³ 125 regarding linear extrapolation and endorsed the consideration of non-linear responses for 24 25 26 126 carcinogens in recent new guidelines ²¹. The US Food and Drug Administration (FDA) also 27 28 127 recognized non-linear responses in 2018 in its guidance document on the assessment and control 29 30 ₁₂₈ of mutagenic substances, and permits deviation from the linear-no-threshold (LNT) dose-31 32 33¹²⁹ response model if protective mechanisms exist ²².

In Europe, the European Food Safety Authority (EFSA) has made efforts to evaluate the 35 130 37 ₁₃₁ relevance of subthreshold effects and non-linear responses in recent years ²³. For example, 40¹³² EFSA's scientific committees recently acknowledged subthreshold effects and non-linear responses for bisphenol A and bis(2-ethylhexyl phthalate) and called for internationally-42 133 44 134 coordinated efforts to identify and address such responses as part of the risk assessment process 46 135 ²⁴. The European Chemicals Agency (ECHA) also focuses on threshold and non-threshold events, but does not clearly acknowledge or consider subthreshold effects in its guidelines. It 49 136 51 137 does, however, allow the best-fit dose-response model to be used instead of enforcing default ⁵³ 138 dose-response models ²⁵. In 2019, China's Ministry of Ecology and Environment published its 56 ¹³⁹ trial 'Framework Guide to the Technology Methods of Environmental Risk Assessment for

Page 7 of 12

Environmental Science & Technology

1	
2 3 140 4	Chemical Substances' ²⁰ . The framework is based on either threshold or linear no-threshold
5 141 6	dose-response models, and does not allow for subthreshold responses/effects or more relevant
7 142 8	dose-response modeling based on best fit to specific data sets ²⁰ .
9 10 ¹⁴³	We strongly advocate the consideration of potential subthreshold effects in chemical risk
11 12 144	assessment should no longer be postponed. We opine there is an urgent need for regulatory
13 14 ₁₄₅ 15	authorities around the world to be inclusive of the most up-to-date science by (re)considering (i)
16 17 ¹⁴⁶	potential subthreshold responses, (ii) non-linear dose-response models able to detect
18 19 147	subthreshold responses, and (iii) abandoning the default use of linear dose-response models for
20 21 148	all risk assessments. The current lack of subthreshold responses inclusion in the risk assessment
22 23 ₁₄₉ 24	of chemicals undermines the accuracy of the risk assessment process, and consequent
25 26 ¹⁵⁰	remediation practices and actions applied. As a recent example, the hormetic model can predict
27 28 151	potential subthreshold effects of disinfectants widely introduced into the environment during the
29 ³⁰ 152 31	COVID-19 pandemic, unlike the linear-no-threshold and threshold models ⁵ .
31 32 33 ¹⁵³	This article does not suggest that toxicity thresholds are overly conservative and that risk
34 35 154	necessarily exists below current limits, but that subthreshold positive or negative effects exist
36 37 ₁₅₅	that are not captured by current threshold and LNT models and need to be part of the evaluation
38 39 40 ¹⁵⁶	and assessment process. Hence, instead of assuming a specific dose-response model <i>a priori</i> , the
40 ¹⁵⁰ 41 42 157	most suitable/effective model to fit or describe the actual data would be selected <i>ad hoc</i> . Such a
42 157 43 44 158	policy would prevent enforcing the exclusion of subthreshold doses and would allow
45 46 ₁₅₀	identification of subthreshold effects, as applicable. Furthermore, as lead regulatory agencies
48	
49 160 50	increasingly acknowledge subthreshold responses/effects and non-linear dose responses,
51 161 52	scientific research should shift the focus to the effects of lower and environmentally realistic

doses to facilitate the development of more accurate risk assessments in the future.

58

59

60

Acknowledgments:

1 2

6 ¹⁶⁵ 7

11 12 168

23 ¹⁷² 24

31

35 36 178

37 38

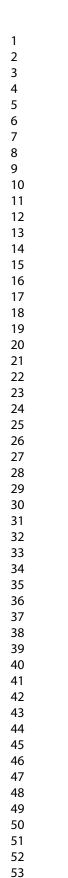
39 179 40

41 180

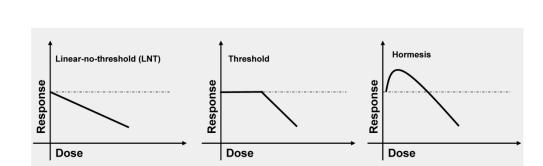
21 22 The authors are grateful to Dr. Patrick H. Brown, Distinguished Professor of Plant Science at the University of California, Davis, USA, and Dr. Adrian Covaci, Professor of Environmental Toxicology and Chemistry at the University of Antwerp, Belgium, for comments and suggestions on an early draft of the paper.

Conflict of Interest Disclosure: This study did not receive a specific grant from funding agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges support from the National Natural Science Foundation of China (No. 4210070867), The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080), and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. E.J.C. acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S1820000000256). The sponsors were not involved in the study design; the collection, analysis or interpretation of the data; the preparation of the manuscript or the decision where to submit the manuscript for publication. All authors hold senior editorial positions in various scientific journals. The views presented herein are those of the authors and do not represent views of journals' editorial board as a unit, journals' editorial office, journals themselves or their publishers, authors' institutions, or scientific societies where authors hold senior positions. The authors declare no competing financial interest.

- 42 43 181 44 45 46 182 47 48 183 49 50 51 184 52 53
- 54 55
- 56
- 57
- 58
- 59


1 2						
2 3 4	185	Supp	orting Information: Additional text detailing regulatory risk assessment situations in the			
5 6	186	US (Supporting Text 1), the EU (Supporting Text 2), and China (Supporting Text 3).				
7 8	187					
9 10						
11	188	Refer	ences			
	189	(1)	Sun, T.; Ji, C.; Li, F.; Wu, H. Hormetic Dose Responses Induced by Organic Flame			
	190		Retardants in Aquatic Animals: Occurrence and Quantification. Sci. Total Environ. 2022,			
	191		820, 153295. https://doi.org/10.1016/j.scitotenv.2022.153295.			
19 20 21	192	(2)	Agathokleous, E.; Barceló, D.; Rinklebe, J.; Sonne, C.; Calabrese, E. J.; Koike, T.			
	193		Hormesis Induced by Silver Iodide, Hydrocarbons, Microplastics, Pesticides, and			
24 25			Pharmaceuticals: Implications for Agroforestry Ecosystems Health. Sci. Total Environ.			
	195		2022, 820, 153116. https://doi.org/10.1016/j.scitotenv.2022.153116.			
28 29 30	196	(3)	Erofeeva, E. A. Hormesis in Plants: Its Common Occurrence across Stresses. Curr. Opin.			
31 32	107		Toxicol. 2022, 30, 100333. https://doi.org/10.1016/j.cotox.2022.02.006.			
	198	(4)	Agathokleous, E.; Calabrese, E. J. A Global Environmental Health Perspective and			
	199		Optimisation of Stress. Sci. Total Environ. 2020, 704, 135263.			
37 38 39	200		https://doi.org/10.1016/j.scitotenv.2019.135263.			
40 41	201	(5)	Agathokleous, E.; Barceló, D.; Iavicoli, I.; Tsatsakis, A.; Calabrese, E. J. Disinfectant-			
	202		Induced Hormesis: An Unknown Environmental Threat of the Application of			
44 45 46	203		Disinfectants to Prevent SARS-CoV-2 Infection during the COVID-19 Pandemic?			
	204		Environ. Pollut. 2021, 292, 118429. https://doi.org/10.1016/j.envpol.2021.118429.			
49 50		(6)	Rix, R. R.; Cutler, G. C. Review of Molecular and Biochemical Responses during Stress			
	206		Induced Stimulation and Hormesis in Insects. Sci. Total Environ. 2022, 154085.			
53 54 55	207		https://doi.org/10.1016/j.scitotenv.2022.154085.			
56	208	(7)	Guedes, R. N. C.; Benelli, G.; Agathokleous, E. Arthropod Outbreaks, Stressors and	2		
59 60			8 ACS Paragon Plus Environment)		

59


1		
2 3 209		Sublethal Stress. Curr. Opin. Environ. Sci. Heal. 2022, 28, 100371.
4 5 210		https://doi.org/10.1016/j.coesh.2022.100371.
6 7 ₂₁₁ 8	(8)	Belz, R. G.; Carbonari, C. A.; Duke, S. O. The Potential Influence of Hormesis on
9 10 ²¹²		Evolution of Resistance to Herbicides. Curr. Opin. Environ. Sci. Heal. 2022, 27, 100360.
11 12 213		https://doi.org/10.1016/j.coesh.2022.100360.
13 14 ₂₁₄ 15	(9)	Agathokleous, E.; Calabrese, E. J. Formaldehyde: Another Hormesis-Inducing Chemical.
16 17 ²¹⁵		Environ. Res. 2021, 199, 111395. https://doi.org/10.1016/j.envres.2021.111395.
18 19 216	(10)	Bhakta-Guha, D.; Efferth, T. Hormesis: Decoding Two Sides of the Same Coin.
20 21 217		Pharmaceuticals 2015, 8, 865-883. https://doi.org/10.3390/ph8040865.
22 23 ₂₁₈ 24	(11)	Calabrese, E. J.; Kozumbo, W. J. The Hormetic Dose-Response Mechanism: Nrf2
25 26 ²¹⁹		Activation. Pharmacol. Res. 2021, 167, 105526.
27 28 220		https://doi.org/10.1016/j.phrs.2021.105526.
29 30 ₂₂₁ 31	(12)	Calabrese, E. J. The Linear No-Threshold (LNT) Dose Response Model: A
32 33 ²²²		Comprehensive Assessment of Its Historical and Scientific Foundations. Chem. Biol.
34 35 223		Interact. 2019, 301, 6-25. https://doi.org/10.1016/j.cbi.2018.11.020.
36 37 ₂₂₄	(13)	Bus, J. "The Dose Makes the Poison": Key Implications for Mode of Action
38 39 40 ²²⁵		(Mechanistic) Research in a 21st Century Toxicology Paradigm. Curr. Opin. Toxicol.
41 42 226		2017 , <i>3</i> , 87–91. https://doi.org/10.1016/j.cotox.2017.06.013.
43 44 227	(14)	Ricci, P. F.; Calabrese, E. J. Resolving an Open Science-Policy Question: Should the LNT
45 46 47 ²²⁸		Still Be an Omnibus Regulatory Assumption? Sci. Total Environ. 2022, 825, 153917.
48 49 ²²⁹		https://doi.org/10.1016/j.scitotenv.2022.153917.
50 51 230	(15)	Doss, M. Are We Approaching the End of the Linear No-Threshold Era? J. Nucl. Med.
52 53 ₂₃₁ 54		2018, 59, 1786–1793. https://doi.org/10.2967/jnumed.118.217182.
55 56 ²³²	(16)	Bogen, K. T. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic
57 58		9
F0		

1			
2 3 233		Cancer Risks: A Mathematical and Biological Critique. Risk Anal. 2016, 36, 589-604.	
4 5 234 6		https://doi.org/10.1111/risa.12460.	
7 235 8	(17)) Hernández, A. F.; Docea, A. O.; Goumenou, M.; Sarigiannis, D.; Aschner, M.; Tsatsakis,	
9 10 ²³⁶		A. Application of Novel Technologies and Mechanistic Data for Risk Assessment under	
11 12 237		the Real-Life Risk Simulation (RLRS) Approach. Food Chem. Toxicol. 2020, 137,	
13 14 ₂₃₈ 15		111123. https://doi.org/10.1016/j.fct.2020.111123.	
16 17 ²³⁹	(18)	Ahmad, A.; Bhattacharya, P. Arsenic in Drinking Water: Is 10 Mg/L a Safe Limit? Curr.	
18 19 240		Pollut. Reports 2019, 5, 1-3. https://doi.org/10.1007/s40726-019-0102-7.	
20 21 ₂₄₁ 22	(19)	Ahmad, A.; van der Wens, P.; Baken, K.; de Waal, L.; Bhattacharya, P.; Stuyfzand, P.	
23 24 ²⁴²		Arsenic Reduction to <1 µg/L in Dutch Drinking Water. Environ. Int. 2020, 134, 105253.	
25 26 ²⁴³		https://doi.org/10.1016/j.envint.2019.105253.	
27 28 244 29	(20)	Agathokleous, E.; Barceló, D.; Calabrese, E. J. US EPA: Is There Room to Open a New	
³⁰ ₂₄₅ 31		Window for Evaluating Potential Sub-Threshold Effects and Ecological Risks? Environ.	
32 33 ²⁴⁶		Pollut. 2021, 284, 117372. https://doi.org/10.1016/j.envpol.2021.117372.	
34 35 247	(21)	Whittaker, C.; Rice, F.; McKernan, L.; Dankovic, D.; Lentz, T. J.; MacMahon, K.;	
36 37 ₂₄₈ 38		Kuempel, E.; Zumwalde, R.; Schulte, P.; on behalf of the NIOSH Carcinogen and RELs	
39 40 ²⁴⁹		Policy Update Committee. Current Intelligence Bulletin 68: NIOSH Chemical Carcinogen	
41 42 250		Policy. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for	
43 44 251 45		Disease Control and Prevention, National Institute for Occupational Safety and Health,	
46 47 ²⁵²		DHHS (NIOSH) Publication No. 2017-100, 2017.	
48 49 253	(22)	Food and Drug Administration. M7(R1) Assessment and Control of DNA Reactive	
50 51 254		(Mutagenic) Impurities in Pharmaceuticals To Limit Potential Carcinogenic Risk:	
52 53 ₂₅₅ 54		Guidance for Industry; 2018.	
55 56 ²⁵⁶	(23)	EFSA (European Food Safety Authority). EFSA's 17th Scientific Colloquium on Low	
57 58		10	
59 60		ACS Paragon Plus Environment	

275 276			1	1		
	Response	Linear-no-threshold (LNT)	Threshold	Hormesis Buodsay Dose		
273 274	direction is endpoint-specific.					
272	and s	nd super-NOAEL effects. The dashed line indicates the control response. The relationship's				
271	while	e after NOAEL predicting effect	s similarly to LNT. Hormesis	s acknowledges significant sub-		
270	obser	rved-adverse-effect-level) respon	nses. Threshold excludes sigr	nificant sub-NOAEL responses,		
269	biolog	gical repair mechanisms, toxico	logical threshold, and signific	cant sub-NOAEL (no-		
268	Figu	re 1. Common dose-response r	elationships. Linear-no-thre	shold (LNT) excludes		
267	Figu	re & caption				
266						
265		R.10: Characterisation of Dos	e [Concentration]-Response	for Environment; 2008.		
264	(25)	ECHA. Guidance on Informat	ion Requirements and Chemi	ical Safety Assessment. Chapter		
263		Assessments. EFSA J. 2021, 1		-		
		-	-			
262		the Impact of Non-monotonic	Dose Responses on EFSA's l	Human Health Risk		
261		Nielsen, S. S.; Schlatter, J.; Sc	hrenk, D.; Turck, D.; Tarazo	na, J.; Younes, M. Opinion on		
260		T.; Hernandez-Jerez, A.; Koutsoumanis, K.; Lambré, C.; Machera, K.; Mullins, E.;				
259	(24)	4) More, S.; Benford, D.; Hougaard Bennekou, S.; Bampidis, V.; Bragard, C.; Halldorsson,				
258		https://doi.org/10.2903/sp.efsa	.2012.en-353.			
257		Dose Response in Toxicology	and Risk Assessment. EFSA	Support. Publ. 2012, 9, 64.		

60

Common dose-response relationships. Linear-no-threshold (LNT) excludes biological repair mechanisms, toxicological threshold, and significant sub-NOAEL (no-observed-adverse-effect-level) responses. Threshold excludes significant sub-NOAEL responses, while after NOAEL predicting effects similarly to LNT. Hormesis acknowledges significant sub- and super-NOAEL effects. The dashed line indicates the control response. The relationship's direction is endpoint-specific.

248x74mm (300 x 300 DPI)