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92

93 A great number of dose-response studies indicate that hormesis is a common phenomenon, 

94 occurring in numerous organisms exposed to singular or combined environmental stressors, such 

95 as pharmaceuticals, heavy metals, micro/nanoplastics, organic flame retardants, pesticides, and 

96 rare earths 1–6.  While biological responses to low exposure levels are often beneficial, exposure 

97 to doses below the no-observed-adverse-effect-level (NOAEL; hereafter subthreshold doses) 

98 does not always translate to beneficial responses2,4. For example, subthreshold contaminant 

99 doses can enhance the virulence of phytopathogenic microbes and promote the resistance of crop 

100 pests with significant implications for crop production 2,7,8.  Subthreshold contaminant exposures 

101 can also stimulate infectious animal/human pathogens and promote their resistance to antibiotics 

102 and other drugs, threatening long term sustainability.  Importantly, the hormetic function of 

103 common pathways that regulate cancer progress indicate that current regulatory standards may 

104 not protect adequately against cancer risks 9–11.  

105 Current risk assessment frameworks used around the world to assess exposure and effects 

106 are largely based on scientific developments from the mid-to-late 20th century, which frequently 

107 included only very high (often environmentally unrealistic) doses and the broad assumption of 

108 linearity in the response in the absence of evidence of alternative dose-response relationships 

109 (Fig. 1) 12–16.  How representative and realistic this approach is increasingly being challenged, in 

110 a modern era of analytical advances enabling measurement of low doses and hormetic responses. 

111 An expanding scientific literature provides evidence of significant effects of subthreshold 

112 contaminant doses on numerous animals, plants, and microbes 1–6. We opine that regulatory risk 

113 assessments on exposure and effects should not be based upon outdated science and biologically-

114 unsupported assumptions regarding linearity. Instead, subthreshold effects and dose-response 

115 behavior should be included in the regulatory risk assessment. We urge for this approach to be 
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116 adopted as part of a more real-life risk simulation approach 17, especially in the light of the 

117 growing evidence of genotoxicity of chemicals such as fluoride and arsenic 18,19.

118 Currently, subthreshold responses/effects in regulatory frameworks are largely not 

119 considered in worldwide risk assessments, impeding their identification and evaluation 

120 (Supporting Information). In the USA, the US Environmental Protection Agency (EPA) does 

121 permit non-linear approaches where adequate evidence is provided to prove divergence from the 

122 default linear assumption. However, a recent proposal for the inclusion of subthreshold responses 

123 and non-default dose-response models in the risk assessment was not implemented 20.  In 2017 

124 the National Institute for Occupational Safety and Health (NIOSH) acknowledged the dilemma 

125 regarding linear extrapolation and endorsed the consideration of non-linear responses for 

126 carcinogens in recent new guidelines 21. The US Food and Drug Administration (FDA) also 

127 recognized non-linear responses in 2018 in its guidance document on the assessment and control 

128 of mutagenic substances, and permits deviation from the linear-no-threshold (LNT) dose-

129 response model if protective mechanisms exist 22. 

130 In Europe, the European Food Safety Authority (EFSA) has made efforts to evaluate the 

131 relevance of subthreshold effects and non-linear responses in recent years 23.  For example, 

132 EFSA’s scientific committees recently acknowledged subthreshold effects and non-linear 

133 responses for bisphenol A and bis(2-ethylhexyl phthalate) and called for internationally-

134 coordinated efforts to identify and address such responses as part of the risk assessment process 

135 24. The European Chemicals Agency (ECHA) also focuses on threshold and non-threshold 

136 events, but does not clearly acknowledge or consider subthreshold effects in its guidelines. It 

137 does, however, allow the best-fit dose-response model to be used instead of enforcing default 

138 dose-response models 25. In 2019, China’s Ministry of Ecology and Environment published its 

139 trial ‘Framework Guide to the Technology Methods of Environmental Risk Assessment for 
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6

140 Chemical Substances’ 20.  The framework is based on either threshold or linear no-threshold 

141 dose-response models, and does not allow for subthreshold responses/effects  or more relevant 

142 dose-response modeling based on best fit to specific data sets 20. 

143 We strongly advocate the consideration of potential subthreshold effects in chemical risk 

144 assessment should no longer be postponed. We opine there is an urgent need for regulatory 

145 authorities around the world to be inclusive of the most up-to-date science by (re)considering (i) 

146 potential subthreshold responses, (ii) non-linear dose-response models able to detect 

147 subthreshold responses, and (iii) abandoning the default use of linear dose-response models for 

148 all risk assessments. The current lack of subthreshold responses inclusion in the risk assessment 

149 of chemicals undermines the accuracy of the risk assessment process, and consequent 

150 remediation practices and actions applied. As a recent example, the hormetic model can predict 

151 potential subthreshold effects of disinfectants widely introduced into the environment during the 

152 COVID-19 pandemic, unlike the linear-no-threshold and threshold models 5. 

153 This article does not suggest that toxicity thresholds are overly conservative and that risk 

154 necessarily exists below current limits, but that subthreshold positive or negative effects exist 

155 that are not captured by current threshold and LNT models and need to be part of the evaluation 

156 and assessment process. Hence, instead of assuming a specific dose-response model a priori, the 

157 most suitable/effective model to fit or describe the actual data would be selected ad hoc. Such a 

158 policy would prevent enforcing the exclusion of subthreshold doses and would allow 

159 identification of subthreshold effects, as applicable. Furthermore, as lead regulatory agencies 

160 increasingly acknowledge subthreshold responses/effects and non-linear dose responses, 

161 scientific research should shift the focus to the effects of lower and environmentally realistic 

162 doses to facilitate the development of more accurate risk assessments in the future.

163

Page 7 of 12

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

164 Acknowledgments:

165 The authors are grateful to Dr. Patrick H. Brown, Distinguished Professor of Plant Science at the 

166 University of California, Davis, USA, and Dr. Adrian Covaci, Professor of Environmental 

167 Toxicology and Chemistry at the University of Antwerp, Belgium, for comments and 

168 suggestions on an early draft of the paper.

169

170 Conflict of Interest Disclosure: This study did not receive a specific grant from funding 

171 agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges support from 

172 the National Natural Science Foundation of China (No. 4210070867), The Startup Foundation 

173 for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), 

174 Nanjing, China (No. 003080), and the Jiangsu Distinguished Professor program of the People's 

175 Government of Jiangsu Province. E.J.C. acknowledges longtime support from the US Air Force 

176 (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The sponsors 

177 were not involved in the study design; the collection, analysis or interpretation of the data; the 

178 preparation of the manuscript or the decision where to submit the manuscript for publication. All 

179 authors hold senior editorial positions in various scientific journals. The views presented herein 

180 are those of the authors and do not represent views of journals' editorial board as a unit, journals' 

181 editorial office, journals themselves or their publishers, authors' institutions, or scientific 

182 societies where authors hold senior positions. The authors declare no competing financial 

183 interest.

184

Page 8 of 12

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

185 Supporting Information: Additional text detailing regulatory risk assessment situations in the 

186 US (Supporting Text 1), the EU (Supporting Text 2), and China (Supporting Text 3).
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266

267 Figure & caption

268 Figure 1. Common dose-response relationships. Linear-no-threshold (LNT) excludes 

269 biological repair mechanisms, toxicological threshold, and significant sub-NOAEL (no-

270 observed-adverse-effect-level) responses. Threshold excludes significant sub-NOAEL responses, 

271 while after NOAEL predicting effects similarly to LNT. Hormesis acknowledges significant sub- 

272 and super-NOAEL effects. The dashed line indicates the control response. The relationship’s 

273 direction is endpoint-specific. 
274  
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