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Abstract— A good understanding of soil moisture spatial 

patterns is useful for assessing the hydrological connectivity and 

runoff generation processes in a catchment. Thus, we have 

applied numerical modelling approaches to investigate the 

spatial patterns of soil moisture at the Nučice experimental 

catchment (0.531 km2) in the Czech Republic. The catchment 

was established in 2011 to observe the rainfall-runoff processes, 

soil erosion and water balance in an agricultural landscape. The 

catchment consists of three fields covering over 95 % of the area. 

Eight field surveys were conducted to capture the soil moisture 

patterns at different scales. Even though the soil management 

and soil properties in the fields of Nučice seem to be nearly 

homogeneous, we have observed spatial variability in topsoil 

moisture. In numerical simulations, a 3D spatially-distributed 

model MIKE-SHE was used to simulate the water movement 

within the catchments. The MIKE-SHE simulation has been 

mainly calibrated with rainfall-runoff observations and point-

scale soil moisture data. In the simulation, we have obtained the 

spatial patterns of soil moisture at each time step. The soil 

moisture spatial patterns from the simulation have been 

compared with the density of the vegetation cover (NDVI), and 

topsoil moisture patterns from field surveys. We found that the 

density of vegetation cover has a good correlation with the soil 

moisture spatial distribution. However, this correlation was not 

captured in the MIKE-SHE simulation. Future research will 

include Cosmic-ray neutron sensing and stable isotope analysis 

to improve the current understanding of the catchment. 
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I. INTRODUCTION  

Soil moisture is an essential parameter in hydrology, as it 
has a crucial influence over the infiltration process. Besides, 
the understanding of soil moisture dynamics is important in 
the field of agriculture for efficient crop and irrigation 
management. Therefore, it is necessary to have well-recorded 
spatially distributed soil moisture measurements in 
agricultural catchments to understand its dynamics. 

There are many methods to monitor soil moisture. 
Conventional time-domain reflectometry (TDR) and time-
domain transmissometry (TDT) in-situ point measurements 
can provide stationary soil moisture dynamics at various 
depths. However, the topsoil is usually highly influenced by 
agricultural activities. Also, the investigation of the soil 
moisture spatial pattern requires numerous sampling points. 
Besides, remote sensing can provide a wide range of soil 

moisture information at a shallow depth (2-5 cm), although 
this technique is limited by vegetation cover and surface 
roughness [1]. It becomes very problematic to monitor soil 
moisture at the high spatial and temporal resolution at the 
catchment scale [2, 3]. Also, observations of topsoil moisture 
content in catchments with intensive agricultural activity are 
more difficult as the sensors need to be removed prior to 
tillage operations [4, 5]. Besides, some studies indicate that 
physically-based hydrological models (e.g., Hydrus, 
HydroGeoSphere, MIKE SHE and ParFlow-CLM) are 
capable of simulating the dynamics of soil moisture at the 
catchment scale [6, 7]. Therefore, hydrological modelling can 
also be a useful tool to analysis soil moisture spatial patterns. 

This study aims to investigate the spatial variability of soil 
moisture at the Nučice catchment. To accomplish this, we 
calibrated the MIKE-SHE model with stream discharge and 
point-scale soil moisture observations. Later, we obtained the 
soil moisture spatial patterns from the simulation. Meanwhile, 
we have conducted eight field surveys to measure the topsoil 
moisture spatial distribution across the catchment. We 
compared the observed and simulated soil moisture data with 
meteorological data to understand the correlation between the 
changes of topsoil moisture content and the variation of 
precipitation and air temperature. Further, we assessed how 
the soil moisture patterns from both the simulation and field 
surveys are correlated with vegetation cover (Normalized 
Difference Vegetation Index (NDVI)) at the catchment. 

II. STUDY AREA 

 The study was conducted at the Nučice experimental 
catchment in the Czech Republic. The catchment (0.531 km2) 
has the average elevation of 401 m a.s.l. (ranging from 382 to 
417 m a.s.l.) and the average slope of 3.9 % (varying between 
1 % and 12 %). A gauging station was installed in 2011 at the 
catchment’s outlet (49°57'49.230"N, 14°52'13.242"E). Since 
then the metrological and hydrological characteristics of the 
catchment have been monitored. The climate condition at the 
catchment is humid continental: the average air temperature is 
6 °C, with an annual mean precipitation of 630 mm and annual 
mean evapotranspiration of 500 mm. A homogenous land use 
pattern covers the whole catchment: more than 95 % is arable 
land, while the remaining parts are covered by the 
watercourse, riparian trees and shrubs, and paved roads.  The 
soil is tilled to depth of approximately 12 cm and a plough pan 
is well-developed under the tilled topsoil. The topsoil has 



 

 

loamy texture with content of 9 % clay, 58 % silt, and 33 % 
sand. The bedrock is located at depths from 6 to 20 m based 
on geophysical monitoring. The catchment (Fig 1) is divided 
into 3 separate agricultural fields (1: the upper field, 2: the left 
field, and 3: the right field) with slightly different agricultural 
operations conducted during the soil moisture surveys [8, 9]. 

 

Fig 1.Location of the Nučice experimental catchment 

III. HYDROLOGICAL MODELLING 

MIKE-SHE is a fully-distributed, physically based, 
integrated hydrological modelling system [10–12]. MIKE-
SHE covers the major processes in the hydrologic cycle, 
which includes evapotranspiration, infiltration, overland flow, 
unsaturated flow, groundwater flow, channel flow and their 
interactions [13]. Since the MIKE-SHE modelling system is 
user-friendly and well documented, many studies have applied 
MIKE-SHE to analyse hydrological processes (e.g. water 
balance, soil moisture) at the catchment scale [6, 14, 15]. 

TABLE 1. THE RESOLUTION OF THE NUČICE MODEL. (OL STANDS 
FOR THE OVERLAND FLOW, SZ REFERS TO THE SATURATED 
ZONE AND THE UZ TO THE UNSATURATED ZONE.) 

Area 0.531 km2 

Grid size 10 × 10 m2 

Number of grid cells in each layer 5317 

Number of layers in UZ 26 

Number of layers in SZ 1 

Depth of the SZ 5 m 

Time steps in OL and UZ 1 hour 

Time step in SZ 12 hours 

The MIKE-SHE model at the Nučice catchment was 
simulated from 2013 to 2020 in hourly timestep with one-year 
warm-up period. The grid size in the horizontal plane is 10 m 
based on the DEM input. More detailed description of the 
resolution of the model in each module can be found in 
TABLE 1. The physical processes of the model are based on 
the following description: 1-D channel flow is assumed and 
based on Saint-venant equations. 2-D overland flow routing is 
based on the diffusive wave approximation of the Saint-venant 
equations, and 1D unsaturated flow is assumed and based on 
the Richard’s equation. 2-D groundwater flow is assumed and 
simulated by one computational layer with the depth of 5 m in 
the saturated zone. The outer boundary condition of the 
saturated zone is defined as no-flow boundary and the lower 
boundary of the unsaturated zone is a pressure boundary 
which is determined by the water table elevation. To reduce 
the numerical errors, the bottom of the unsaturated zone is 
extended to the bottom of the saturated zone. An agricultural 

drainage system is defined by the underground drainage flow 
in the saturated zone occurring when the groundwater table 
exceeds the drain level. The level of drainage is set at the depth 
of 0.7-1 m.  

The evapotranspiration mainly consists of soil evaporation 
and crop transpiration which depends on soil moisture in the 
unsaturated root zone. The plant indices are defined based on 
the leaf area index and root depth and are spatially distributed 
in the model based on the land-use: the crops in the three fields 
are set as winter wheat with similar growth circles. The bushes 
close to the stream are defined with the constant leaf area 
index and root depth. No vegetation is assigned to the paved 
roads.  

The soil spatial distribution is based on the land-use and 
point-scale soil moisture observations. The tilled topsoil (the 
top 12 cm) is homogenously distributed across the three fields 
while the paved roads between the fields are set as compacted 
layers with low permeability. The subsoil (below the 12 cm 
depth) of the upper field are slightly different from the rest of 
the fields discovered due to the different behaviors of point-
scale soil moisture found between the upper and lower fields 
(Fig 1).  

The temporal resolution differs between modules: the 
maximum allowed time step specified for overland flow and 
unsaturated flow is 1 hour, and 12 hours for saturated flow 
(TABLE 1).  

TABLE 2. THE SELECTED PARAMETERS FOR MODEL 

CALIBRATION. 

Parameters Units Lower Upper Module 

Manning m s-1 0.01 10 OL 

Horizontal hydrualic 

conductivity 
m s-1 1e-7 1e-5 SZ 

Vertical hydrualic 

conductivity 
m s-1 1e-7 1e-5 SZ 

Drainage depth m -1 -0.7 SZ 

Drainage time 

constant 
s-1 1e-9 1e-6 SZ 

Hydrualic 

conductivity (topsoil) 
m s-1 1e-7 1e-5 UZ 

Hydrualic 

conductivity (subsoil) 
m s-1 1e-8 1e-5 UZ 

Alpha (topsoil) cm-1 0.01 0.035 UZ 

Alpha (subsoil) cm-1 0.01 0.035 UZ 

The calibration period is mainly in 2014 and 2020 was 
selected for validation period. During the model calibration, 
the soil parameters in the unsaturated zone always influence 
the soil moisture dynamic in the MIKE-SHE output [6]. Also, 
the drainage parameters play an important role in agricultural 
catchments [15]. Therefore, the saturated hydraulic 
conductivity in the unsaturated zone (UZ) and drainage 
parameters have been mainly selected for the calibration of the 
Nučice model (TABLE 2). All the sensitive parameters are 
calibrated using the MIKE calibration tool AUTOCAL. As 
calibration data we use the hourly runoff observation at the 
catchment outlet, and the hourly output from the soil moisture 
sensors at two different locations (Fig 1) and at each depth. 

IV. SOIL MOISTURE FIELD MEASUREMENT 

In this study, we used point-scale soil moisture 
measurement to evaluate the MIKE-SHE simulation. Besides, 
we conducted eight measurements with two Hydrosense II 
probes (Campbell Sci., UK) at the Nučice catchment during 
the winter and spring seasons (when the topsoil was not 

 



 

 

covered by crops and less influenced by agricultural 
activities). The Hydrosense II probe is a handheld TDT soil 
moisture sensor with 12 cm rods, which records the real-time 
soil moisture content with GPS location. The calibration 
functions were calculated for both Hydrosense II probes via 
gravimetric analysis of disturbed soil samples from the Nučice 
catchment.  

The eight field surveys were conducted to cover the soil 
moisture distribution (TABLE 3). Two of the surveys covered 
the whole catchment while the rest were restricted to the upper 
filed or its hill-slope. The upper field covers a much larger 
portion of the catchment compared to the other two fields and 
contains only one homogenous farmland cultivated by one 
farmer using the same cultivation method.  

The NDVI values were calculated from satellite images 
[16] during the field measurement campaigns with a spatial 
resolution of 3m. 

TABLE 3. SUMMARY OF FIELD SURVEYS 

Date 
No. of 

points 
scale 

7 days 

antecedent 

rainfall 

(mm) 

mean 

temperature 

(°C) 

2019-10-01 1011 Field 8.8 15.28 

2019-10-09 1274 Catchment 24.4 8.28 

2019-11-06 159 Hillslope 5.5 5.77 

2019-11-20 93 Hillslope 9.1 6.08 

2020-01-16 1168 Field 1.1 2.17 

2020-03-19 2043 Field 2.6 7.29 

2020-03-27 936 Catchment 2 1.13 

2020-05-12 186 Field 33.8 11.13 

V. RESULTS AND DISCUSSION 

The model overall showed a good agreement with both 

the soil moisture dynamics at each depth (with Nash-Sutcliffe 

efficiency (NSE) above 0.7) and the stream discharge (with 

the NSE above 0.45) during the calibration (Fig 3). 

 

Fig 2. The time series of observation and simulation during the calibration 

period. 

However, according to the NSE, the model performance 
on soil moisture dynamics were considerably better than the 
performance on the stream discharge. We have observed that 
the runoff at the Nučice catchment often reacts rapidly to 
rainfall events. Also, a previous study [17] suggests that the 
simulated runoff fits better with the flow during the vegetated 
seasons (approximately from April to October) than the 
discharge during the winter seasons. The runoff calibration 
result shows that the model can capture the fast runoff events 
during the vegetated season while it fails to fit the fast runoff 
events in the autumn and winter seasons and the baseflow in 
general (Fig 2). The reason for this could be that the model 
has overestimated the evapotranspiration during the autumn 
and the uncertainty of runoff measurement during the winter 
due to the frozen of the sensors.  

 

Fig 3. The comparison between the observed and simulated soil moisture and 

discharge during the calibration period. 

During model validation, we compared the simulated 
runoff with the stream discharge at the outlet in 2020 (Fig 4). 
Further, because of the data gap and damage to the old soil 
moisture sensors, only the new soil moisture sensors at the 
upper field were used for the validation of the soil moisture 
dynamic (Fig 5).  

 

Fig 4. The rainfall (upper panel) and simulated runoff with observation 

during the validation period (lower panel). 

Although the model performance is poorer during the 
validation period, the simulated soil moisture dynamic 
maintained relatively good performance during the validation 
period. Especially the top layer (10 cm depth) had the best fit 
result with an NSE of 0.56. For the soil moisture variation in 
the deeper layers (depth from 20 to 60 cm), the model 
overestimated the soil moisture during dry conditions while 

 

 

 



 

 

it underestimated the soil moisture value in the wet season. 
Hence, we need to increase the variation of the soil moisture 
in the subsoil to improve the model performance. 

 

Fig 5. The comparison between the observed soil moisture dynamics from 

the sensors at the upper field and simulated soil moisture during the 

validation period. 

In contrast to the soil moisture dynamics, the simulated 
runoff had poor performance during the validation period 
(Fig 4). Overall, the model underestimated the fast runoff 
events and the baseflow. Especially after July, the observed 
baseflow is much higher than the simulated runoff. The 
reason could be the model was trained during the relatively 
dry period with low baseflow conditions. Thus, the 
parameters need to be redefined under wet conditions for the 
future simulations.  

TABLE 4. THE WATER BALANCE OF THE WHOLE SIMULATION 

PERIOD. (P REFERS TO PRECIPITAION, E TO EVAPORATION AND T 

TO TRANSPIRATION, AND Q STANDS FOR RUNOFF, Δ IS THE 

CHANGE OF THE SUBSURFACE STORAGE.) 

Year P (mm) E (mm) T (mm) Q (mm) Δ 

2013 571 220 170 102 74 

2014 573 298 232 61 -18 

2015 455 179 279 44 -49 

2016 529 221 273 44 -9 

2017 295 151 245 25 -126 

2018 388 167 239 9 -27 

2019 546 198 277 13 56 

2020 666 308 227 30 100 

Also, the model was running continuously from 2013 to 
2020, the gap of rainfall observation in 2017 significantly 
affected the storage in the subsurface (TABLE 4) which 
could further deteriorate the model performance during the 
validation period. Noticeably, the simulated discharge in 
2020 is lower than 2014 while the precipitation in 2020 is 
about 100 mm higher than 2014. Therefore, future studies 
need to take this into account and use modified precipitation 
data in 2017, which should be filled with the neighboring 
weather stations or the average values from the other years. 
Besides, future simulations could also be conducted in two 

separate periods: 2013-2016, and 2018-2020 to avoid the data 
gap. 

TABLE 5. THE RUNOFF COMPONENTS IN EACH YEAR. DRAIN 

REFERS TO THE SUBSURFACE DRAINAGE, OL IS THE OVERLAND 

FLOW. 

Year Drain (mm) OL (mm) Baseflow (mm) 

2013 63 27 12 

2014 44 5 12 

2015 31 3 9 

2016 32 2 10 

2017 18 1 6 

2018 5 0 4 

2019 8 0 5 

2020 21 2 7 

In TABLE 5, the simulated runoff is mainly attributed to 
the subsurface drainage in the model while the overland flow 
contributed the least to the runoff. Besides, the subsurface 
storage changes (TABLE 4) influences the amount of 
baseflow which contributes to the stream discharge. In the 
model, the fast runoff reaction is mainly attributed to the 
subsurface drainage, whereas the baseflow contributes to the 
discharge in low flow conditions. Clearly, the groundwater 
level in the simulation plays an important role in controlling 
the amount of discharge because both the subsurface drainage 
and the baseflow are directly affected by the changes of the 
groundwater level. Thus, it is necessary to further investigate 
the subsurface condition at the catchment and then include 
the groundwater observations into the calibration process. 

 

Fig 6. The comparison between the NDVI, the soil moisture survey and the 

topsoil moisture output from the MIKE-SHE model: (A) is the NDVI values 

obtained from the satellite image taken on the date close to the field survey; 
(B) is the soil moisture distribution at the catchment from the field survey on 

2020-03-27; (C) is the soil moisture at the top 2 cm layer from the MIKE-

SHE model on the same as the field survey. 

The spatial patterns of the simulated soil moisture at the 
topsoil has been further investigated. We compared the 
simulated soil moisture with the NDVI and one soil moisture 
survey on 2020-03-27 (Fig 6). The spatial pattern of the 
simulated soil moisture on 2020-03-27 showed that the 
spatial variations in the model are mainly dominated by the 
topography, land use and soil types. On the other hand, the 
soil moisture from the field survey (2020-03-27) showed 

 

 



 

 

similar spatial patterns as the NDVI map from the satellite 
image which was taken one day after the field survey (Fig 6). 
Notably the soil moisture is higher when the field is covered 
by vegetation with relative higher NDVI values on the right 
field. Whereas the topsoil is dryer when there is no vegetation 
cover with relative lower NDVI values on the left field. The 
reason could be that the vegetation cover can reduce the 
evaporation in the topsoil layer caused by wind and solar 
radiation. Moreover, the roots of the vegetation may “lift” the 
water from the subsoil to the rootzone which increases the 
moisture content in the topsoil.  

 

Fig 7. The comparison of the field measurements (2020-03-27) with the 

modelling output (left) and the NDVI (right). 

To further demonstrate the relationship between the field 
surveys, the modelling output, and the vegetation density, we 
plotted the field survey results with the modelling output and 
the NDVI values, respectively (Fig 7). Subsequently, the 
Pearson correlation coefficient was calculated for the field 
survey against both the modelling output and the NDVI 
values (Fig 7). We noticed that the soil moisture from the 
field survey had a good correlation with the density of 
vegetation cover (NDVI values) while the simulated results 
failed to align with the observed soil moisture. In the MIKE-
SHE simulation, the vegetation and the root water up take 
only contribute the transpiration function which reduced the 
water in the subsurface. In other words, the reduction of the 
soil evaporation ascribable to the vegetation cover is not 
considered in the MIKE-SHE modelling processes. 
Consequently, the MIKE-SHE model is not able to capture 
the spatial variation of the moisture content in the topsoil due 
to the differences in the density of vegetation cover. 
Therefore, the future studies should focus on the comparison 
of the MIKE-SHE modelling output and the soil moisture 
spatial patterns from the field surveys with homogenous 
vegetation cover or no vegetation cover. Additionally, the 
topographic indexes (e.g. elevation, slope, and TWI) need to 
be included in the comparison. 

VI. SUMMARY 

In this study, we applied numerical modelling to assess 
the soil moisture dynamics at the Nučice catchment. The 
MIKE-SHE model is calibrated and validated with soil 
moisture dynamics at point sensors in two different fields and 
the discharge measurements. In general, the model had good 
agreement with the observed soil moisture dynamics, 
especially in the topsoil. However, the model had relatively 
poor performance on the runoff simulation, especially during 
the validation period. Therefore, we need to analyze the 
rainfall runoff regime in both wet and dry period to improve 
the model outcomes. In addition, the groundwater levels at 
the catchment should be investigated and included into the 
model calibration processes to enhance the reliability of the 

model. Moreover, eight field surveys were conducted to 
capture the soil moisture patterns at different scales. Based on 
the field surveys, we found the topsoil moisture content at the 
catchment is highly dynamic even with homogenous land-use 
patterns. In this paper, we compared the soil moisture spatial 
patterns from the modelling output with the field surveys and 
vegetation covers. We found a good correlation between the 
density of vegetation cover and the variation on the moisture 
content in the topsoil from the field survey. Nonetheless, 
there is less similarity found between the modelling output 
and field survey of the moisture content in the topsoil. We 
believe that the physical description of the MIKE-SHE model 
cannot capture the spatial variation of the topsoil moisture 
caused by the differences in the density of vegetation cover. 
Thus, we suggest comparing the simulated soil moisture 
spatial patterns with the topographic indexes (e.g., elevation, 
slope, and TWI) and the field surveys during the season with 
homogenous vegetation cover or no vegetation cover in 
future studies. Also, any future work should include other 
datasets (e.g., CRNS, stable isotope analysis) to further 
understand the soil moisture dynamics and runoff generation 
processes at the catchment. 
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