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Revisiting the physical origin and nature of surface states in inverted-band semiconductors
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We revisit the problem of surface states in semiconductors with inverted-band structures, such as α-Sn and
HgTe. We unravel the confusion that arose over the past decade regarding the origin of the surface states,
their topological nature, and the role of strain. Within a single minimalistic description, we reconcile different
solutions found in the 1980s with the results obtained from modern-day numerical simulations, allowing us
to unambiguously identify all branches of surface states around the � point of the Brillouin zone in different
regimes. We also show that strain is a smooth deformation to the surface states, following the usual continuity
principle of physics, and not leading to any drastic change of the physical properties in these materials, in contrast
to what has recently been advanced in the literature. We consider biaxial in-plane strain that is either tensile or
compressive, leading to different branches of surface states for topological insulators and Dirac semimetals,
respectively. Our model can help in interpreting numerous experiments on topological surface states originating
from inverted-band semiconductors.

DOI: 10.1103/PhysRevB.105.035305

I. INTRODUCTION

Electronic surface states of solids have long been a topic
of interest because of their importance in practical physical
devices. The origin and properties of surface states for many
semiconductor solids have been explained in great detail over
several decades, beginning with Tamm and Shockley [1,2].
More recently, the prediction and discovery of topological
insulators and their surface states have revived interest in
this topic owing to their special properties [3,4]. Present-
day researchers often generate models of surface bands with
sophisticated computational software, but they do not usu-
ally provide insight into the physical origin of these surface
bands, often leading to a misguided treatment. Furthermore,
recent works seem unaware of the foundational analytical
work conducted decades ago that provide similar physical
predictions about surface states though at that time not rec-
ognizing them as having a specific topological character
[5–9].

Topological insulators (TIs) serve as an excellent bridge
between traditional electronic band structure theory and a
more modern approach including topological aspects. TIs
emerge from a class of narrow-gap materials whose strong
spin-orbit coupling leads to an inverted-band structure and
the formation of helical (i.e., spin-momentum locked) states
on their surfaces [5–12] that are protected from nonmagnetic
perturbations. Growing attention to topological insulators is
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fueled by a fundamental interest in solid-state spin physics
and the prospect of designing novel electronic devices [13].
Topological surface states have been observed in a num-
ber of three-dimensional (3D) compounds, such as Bi2Se3,
Bi2Te3, etc. [14,15]. Examples of 2D TIs with 1D heli-
cal channels at the sample edges include HgTe/CdHgTe
[16,17] and InAs/GaSb [18,19] quantum wells of certain
thicknesses. Experimentally, surface states in 3D topological
insulators are usually revealed by the angle- and spin-resolved
photoemission spectroscopy [15,20] and magnetotransport
measurements [21–27].

Strain is frequently present in real films and plays a role
in revealing topological states by breaking crystallographic
symmetries. Several attempts to reveal experimentally the sur-
face states in strained HgTe films (3D topological insulators)
were made in magnetotransport experiments [21,22]. It is in-
teresting that the theoretical interpretation of the experimental
data in these two works are based on very different physical
pictures of the surface states in HgTe material. In particular,
the surface states in Ref. [22] are treated as linear in k-vector
Dirac states that exist in the gap between conduction s band
and light-hole p band when the presence of the heavy-hole
band is totally ignored. In other words, the topological surface
states and bulk heavy-hole states are considered as completely
independent. In an opposing treatment offered in Ref. [21],
strong hybridization between surface states and bulk heavy-
hole states makes the physical picture totally different, where
only the surface states lying within the strain-created gap
between the light-hole and heavy-hole bands have physical
meaning. Such a difference in interpretation requires further
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FIG. 1. Incorrect picture of surface states obtained after neglect-
ing the coupling to the heavy-hole (HH) band. The surface states
are formed in a two-band model consisting of electrons (e) and light
holes (LH) in an inverted-band semiconductor.

examination. As we will explain in this work, we rather
support the physical description of the surface states used in
Ref. [21].

Another material attracting much attention now is α-Sn,
which has a band structure similar to HgTe. Recently pub-
lished research concerning surface states in α-Sn (see, for
example, Refs. [28–34]) clearly demonstrate the confusion
that exists in the community about the role of band struc-
ture and strain. Many authors who treat the surface states
by various numerical methods often ignore the presence of
the heavy-hole band and solve the problem with only the
light-hole and electron s-type bands. As we show below, this
leads to an incorrect physical picture of the surface states, see
Fig. 1. Moreover, application of even a small strain in their
solutions causes a sudden appearence of the Dirac surface
states deeply below the degeneracy point (�8) of the light
and heavy holes, i.e., within the �8 − �6 gap. This manifests
the unphysical character of the obtained solutions. (We mean
here a tensile in-plane strain applied to the inverted-band-gap
semiconductor that opens a gap at the � point between the
light- and heavy-hole bands.) The troubles outlined above
lead, in turn, to difficulties interpreting the experimental data
obtained with the surface states in the materials such as HgTe
and α-Sn.

The goal of this work is to clarify the roles of band struc-
ture, strain, and spin in constructing a physical picture of
surface states consistent with conventional solid-state theory.
The authors of many results obtained solely by numerical
calculation seem completely unaware of previous analytical
works that treated surface states in similar materials (such as
HgTe) decades ago [5–9], making them difficult to relate. We
seek to reconcile these differences and show below that those
older works contain all the essential physics and treat the
band structure of the materials correctly while still describ-
ing the surface states completely. In particular, we describe
the intimate relation of the surface states in HgTe gapless

FIG. 2. Generic band structure variation across an interface be-
tween an inverted-band-gap semiconductor (SC) (left: Eg < 0) and a
SC with a regular band order (right: Eg > 0). A tensile in-plane strain
applied to the inverted-band-gap SC induces a splitting between the
light-hole and heavy-hole states and opens a gap � at the � point.
At certain energies (not shown), the interface supports surface states
with a probability density which exponentially decays into both
regions, thus being localized at the interface (bottom).

semiconductor first predicted within the Luttinger model in
Ref. [5] and surface states obtained within the more general
Kane model that also takes the s band into account. We
demonstrate that these Dyakonov-Khaetskii (DK) states [5]
possess all the essential features of the topological states in
the presence of strain, which induces a gap between the light-
and heavy-hole bands (topological insulator regime). As such,
they should play the most important role in the experiments
that probe the topological properties of the sample when the
Fermi level is located within this strain-induced gap. More-
over, we show that strain does not drastically change the
properties of surface states that form the Dirac cone within the
�8 − �6 gap, which is again in strong contrast to the results
advanced recently in the literature.

We take a pedagogical approach, beginning with a simple,
idealized model that captures the essential physics. As such
we consider a variant of the Kane k-P model with infinite mass
of heavy holes in the case of a single abrupt interface between
an inverted material such as HgTe and a direct material such as
CdTe or vacuum. This model takes into account three bands:
an s-type conduction band and p-type light- and heavy-hole
bands, see Fig. 2. The split-off band is relatively far away
in energy (strong spin-orbit coupling) and does not play a
significant role in forming the surface states. By considering
the flat heavy-hole band we deal with the case of a real gap
between hole bands (�8) and electron s band (�6) when the
density of states within this gap is zero. These features of the
model make the physics of the surface states located in the
�8 − �6 gap very simple and reveals their essential features.
We then address the realistic case of finite heavy-hole mass
and show the surface states located within the �8 − �6 gap
overlap the bulk heavy-hole states in energy and are strongly
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hybridized with them, making those surface states marginal in
observable phenomena.

For a detailed description of the surface states that exist
within the projected gap between the light- and heavy-hole
bands (DK states) we use the Luttinger model, which is ap-
plicable for the case of arbitrary masses of light and heavy
holes. We were able to find exact analytical solutions for
the surface states within this model for both signs of the
strain energy �, covering the TI regime (� > 0) and the
Dirac semimetal regime (� < 0). In the latter case, which
is achieved by applying a compressive in-plane strain (hence
tensile in the normal direction), an intersection of the light-
hole and heavy-hole bands occurs forming two Dirac points
with linear bulk dispersion nearby. This Dirac semimetal
phase has been attracting a lot of attention recently both
theoretically and experimentally, see Refs. [33,34]. We show
that the dispersion of surface states, which arise around the
conic point of the bulk projected states crucially depends on
the applied strain, in contrast to the TI regime.

Our simple models allow us to trace the origins of the
incorrect physical picture of the surface states obtained in
many recent publications, namely, neglecting the coupling to
the heavy-hole bands that leads directly to the simple picture
of linear in k-vector Dirac surface states crossing the whole
gap between the conduction and light-hole bands, see Fig. 1.
We stress again that this latter picture does not reflect the true
nature of the surface states.

II. 3 × 3 KANE MODEL: AN ABRUPT INTERFACE OF
TWO MATERIALS WITH INVERTED AND DIRECT BANDS

We consider here the simplest possible problem: the inter-
face between two materials, one of them having an inverted
band structure and the other a direct one. Our description is
quite general and is applicable for many materials, but as a
concrete example one can consider the (HgTe/CdTe) case.
Additionally, we assume a biaxial tensile in-plane strain ap-
plied to the inverted band material as is often accomplished in
practice by epitaxial growth of a thin film on a much thicker
substrate, see Fig. 2. The band structures are described by
the 6 × 6 Kane model that takes into account three bands,
electrons (e) (s-symmetry band), and two p bands: light (lh)
and heavy holes (hh). To simplify the treatment, we can from
the very beginning use the time-reversal character of the prob-
lem and reduce the model to 3 × 3 by choosing the proper
coordinate system [35]. We choose the angular momentum
quantization axis z in the plane of the interface and the di-
rection of the carrier motion along y; x denotes the direction
normal to the interface. Then the two groups of states (e 1/2,
lh −1/2, hh 3/2) and (e −1/2, lh 1/2, hh −3/2) do not mix.
The Hamiltonian matrix for the first group of states is

Ĥ =
⎡
⎣ εc1,2 Pk−/

√
6 Pk+/

√
2

Pk+/
√

6 εv1,2 − �/4
√

3�/4
Pk−/

√
2

√
3�/4 εv1,2 + �/4

⎤
⎦. (1)

[The Hamiltonian matrix that refers to the second group
of states with the opposite sign of the angular momentum
projection on the z axis can be obtained from Eq. (1) by
replacing ky by −ky.] In Eq. (1) P is the Kane matrix element,

which we consider coordinate independent, k̂± = k̂x ± iky,
k̂x = −id/dx, εc1,2, εv1,2 are conduction- and valence-band
center energies in inverted-band semiconductor I and in semi-
conductor II with direct bands, respectively. We assume that
HgTe layer is strained due to the lattice mismatch between
CdTe and HgTe and this tensile in-plane strain opens the gap
� > 0 between the light and heavy-hole bands. If the CdTe
is oriented along (001), then the strain tensor components
are given by εyy = εzz = (aCdTe − aHgTe)/aHgTe > 0 (tensile
in-plane strain), εxx < 0; the nondiagonal components are
equal to zero. Here aCdTe and aHgTe are the lattice constants of
the corresponding materials. The effects of the strain tensor
are incorporated in the Kane model through the Bir-Pikus
Hamiltonian [36], which is easily obtained from the Kane
Hamiltonian with the substitution kik j → εi j . The value of
the strain gap in our case is given by � = 2b(εxx − εyy) > 0,
where b is the uniaxial deformation potential (b = −1.5 eV
for HgTe).

With the proper unitary transformation one can bring the
Hamiltonian Eq. (1) to the following form:

Ĥ =

⎡
⎢⎢⎣

εc1,2
(2k̂x+iky )P√

6
iPky/

√
2

(2k̂x−iky )P√
6

εv1,2 + �/2 0

−iPky/
√

2 0 εv1,2 − �/2

⎤
⎥⎥⎦. (2)

A. No coupling to the heavy-hole band

Before proceeding further we can make here the following
important note, which explains the origin of the wrong phys-
ical picture of the surface states obtained in Refs. [28–31].
If one neglects altogether the interaction of the �6 band
with the heavy-hole band, given by elements H13 and H31

in Eq. (2), then one obtains the anisotropic Dirac model,
which describes the interaction of the two bands, electrons
and light holes, as described by the 2 × 2 block in the top
left corner of the matrix in Eq. (2). Let us find the energy
dispersion of the surface states for this reduced case, con-
sidering semi-infinite sample of HgTe located at x < 0 and
CdTe sample located at x > 0. The wave functions decay
in the left-hand region as exp(κ1x) and in the right-hand
region as exp(−κ2x) (i.e., kx1 = −iκ1, kx2 = iκ2, with posi-
tive κ1,2); the dependence along the y coordinate is given by
exp(ikyy). For simplicity we consider here the symmetric case
� = 0, εv1 − εc1 = εc2 − εv2 = εg > 0. Then from the bulk
energy dispersion ε2

b = ε2
g/4 + (P2/6)(k2

y + 4k2
x ) we easily

find κ1 = κ2 = κ = (1/2)
√

k2
y + (6/P2)(ε2

g/4 − ε2), where ε

is the energy of the surface state obtained from the boundary
conditions. As the boundary conditions we use the continuity
of both components of the two-component spinors found in
regions I and II. For our symmetric case it gives the following
equation: −4κε = kyεg. Using the expression for the κ , we
finally obtain the equation for the surface states energy

ε

√
k2

y + 6

P2

(
ε2

g

4
− ε2

)
= −ky

2
εg. (3)

This equation has the exact solution ε = −Pky/
√

6. (The sec-
ond branch of surface states is obtained by changing the sign
of ky.) Note that the surface curve ε = Pky/

√
6 asymptotically
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approaches the bulk light-hole dispersion curve at large ky and
kx = 0. Thus we see that the Dirac solution for the surface
states is obtained by total neglect of the interaction with the
heavy-hole band.

B. Full treatment

Let us now find the correct energy spectrum of the surface
states for the same problem with heavy-hole interactions in-
cluded. As it follows from Hamiltonian (2), an interaction of
the �6 band with the heavy-hole band is given by the ikyP/

√
2

element, which does not depend on d/dx. For that reason we
can exclude the heavy-hole component of the wave function
and still work with the two-band model, i.e., electrons and
light holes. It is easy to work out from Eq. (2) that this
procedure leads to the system of two equations in each region:
Ĥeff χ = 0, χtr = (u, v) with the effective Hamiltonian (see
also Ref. [9]):

Ĥeff =
⎡
⎣εc1,2 − ε − P2k2

y

2(εv1,2−ε−�/2)
(2k̂x+iky )P√

6
(2k̂x−iky )P√

6
εv1,2 − ε + �/2

⎤
⎦. (4)

We assume that strain is zero in region II and � is positive in
region I, i.e., a gap is open between the light- and heavy-hole
bands (see Fig. 2). From Eq. (4) we find the equation for the
energy dispersions of the bulk materials:[

εv1,2 − ε − �

2

]
·
[

(εc1,2 − ε)

(
εv1,2 − ε + �

2

)

−2

3
P2

(
k2

x + k2
y

)] = P2k2
y

�

2
. (5)

We see that in the absence of strain the spectrum of heavy
holes with infinite mass is simple: εh = εv1,2. Strain mixes the
light and heavy holes, the heavy holes acquire finite mass in
the y direction (within the plane), and the spectrum becomes
complicated. In the x direction, however, when ky = 0, the
spectra of light and heavy particles remain simple:

(εc1,2 − ε(kx ))

(
εv1,2 − ε(kx ) + �

2

)
= 2

3
P2k2

x (6)

εh1,2(kx ) = εv1,2 − �

2
. (7)

Equation (6) gives the bulk spectrum of the light particles—
electrons and light holes with dispersions εe(kx ) and εl (kx ),
respectively.

We seek the surface state that is localized at the interface
(x = 0) and decays in the left-hand region as exp(κ1x) and
in the right-hand region as exp(−κ2x)(κ1,2 > 0). The corre-
sponding expressions for the κ1,2 can be found from Eq. (5):

κ2
1 = k2

y + 3(ε − εc1)
(
εv1 − ε + �

2

)
2P2

+ 3�k2
y

4
(
εv1 − ε − �

2

) ; (8)

κ2
2 = k2

y + 3(εc2 − ε)(ε − εv2)

2P2
. (9)

The spinors in both regions (I) and (II) can be easily found
with the help of Eq. (4); then from the continuity conditions
of both components of the wave functions at x = 0 we find:(

εv1 − ε + �

2

)
(2κ2 − ky) = (ε − εv2)(2κ1 + ky). (10)

The surface states spectra are determined by the solution of
the system of equations (8), (9), (10).

1. Symmetric case, � = 0, |εg1| = εg2 = εg

The discussion of the solution for the surface states
within the full treatment starts with the symmetric case
[Fig. 3(a)] � = 0, εv1 = −εc1 = εc2 = −εv2 = εg/2 > 0 so
we may compare it with the results obtained in Sec. II A. In

this case we have κ1 = κ2 = κ =
√

k2
y + (3/2P2)(ε2

g/4 − ε2),

and from Eq. (10) one has the same equation as before,
−4κε = kyεg, therefore finally we obtain

ε

√
4k2

y + 6

P2

(
ε2

g

4
− ε2

)
= −ky

2
εg. (11)

[The time-reversed solutions can be obtained by changing
the sign of ky in Eq. (11).] Despite the fact that Eq. (3) and
Eq. (11) are nearly the same (except for the coefficient of the
first term under the radical), they have completely different
solutions, see Fig. 3(b). For |ky| � εg/P Eq. (11) has the same
behavior: ε = −Pky/

√
6; however, at large |ky| � εg/P the

surface branch saturates at +εg/4 (at negative ky) and at −εg/4
(at positive ky). Similar behavior was found in Refs. [7–9].
This behavior is due to an interaction with the heavy-hole
band, which has the character of repulsion.

Besides the surface states that lie within the fundamental
gap, Eq. (11) has the solutions which start from the heavy-
hole bands (ε = εg/2, ε = −εg/2), see Fig. 3(b). For the first
of those additional solutions, for example, we obtain at small
|ky|P � εg

εs1 = εg

2
+ P2k2

y

2εg
. (12)

This solution follows from Eq. (11) at ky < 0. [For ky > 0
the solution with this energy does not exist since the left-
hand side of Eq. (11) is strictly positive.] The same energy
dispersion for ky > 0 follows from the time-reversed Hamil-
tonian and corresponds to the opposite spin direction. It means
that there is a momentum-spin locking for these solutions,
and back scattering is strictly forbidden. We will discuss
this issue in more detail below. The effective mass of this
surface state, Eq. (12), is by the factor of 4/3 larger than
the effective mass of the light hole ml . [The latter is found
from the bulk dispersion equation for the light holes: εl (ky) =√

ε2
g/4 + (2/3)P2k2

y .] This new surface branch was predicted

theoretically for HgTe for the first time in Ref. [5]. The
effective mass of this surface state depends on the ratio β

of the bulk effective masses of light and heavy holes and
approaches the value (4/3)ml (see Ref. [5]) in the limit β → 0
considered here. As it follows from Eq. (11) (and from the
time-reversed one), at large |ky| � εg/P the surface branch in
question asymptotically approaches the bulk light-hole band:
εs1 → √

2/3P|ky| + (3
√

3/32
√

2)(ε2
g/P|ky|).

2. Evolution of surface states with the strength of interaction
between �6 and heavy-hole band

To better understand the origin of different branches of
surface states presented in Fig. 3(b), it is instructive to follow

035305-4



REVISITING THE PHYSICAL ORIGIN AND NATURE OF … PHYSICAL REVIEW B 105, 035305 (2022)

FIG. 3. (a) An interface with an antisymmetric variation of the bulk band structure. For simplicity, the strain is omitted here and the
heavy-hole mass is set to infinity. (b) The surface states arising from the band alignment in (a), showing two types of states near the center of
the Brillouin zone: linear Dirac states and quadratic Dyakonov-Khaetskii (DK) states. The projected bulk spectrum is shown by the shaded gray
regions. All surface states are singly degenerate with a distinct spinor structure originating from one of the two time-reversal-related blocks
of the Hamiltonian as shown by the spin-up and spin-down arrows. The asymptote of the Dirac states at small in-plane momenta (dashed line
a) differs strongly from the asymptote of the DK states at large momenta (dot-and-dashed line b), refuting the picture of a narrow-in-energy
interruption of the Dirac states by the heavy-hole band.

the evolution of these states as a function of the strength of the
interaction of the �6 band with the heavy-hole band. To this
end we multiply the corresponding matrix elements in Eq. (2)
by the factor α, where α can take the values in the interval
between 0 and 1, obtaining the Hamiltonian

Ĥα =

⎡
⎢⎢⎣

εc1,2
(2k̂x+iky )P√

6
iαPky/

√
2

(2k̂x−iky )P√
6

εv1,2 + �/2 0

−iαPky/
√

2 0 εv1,2 − �/2

⎤
⎥⎥⎦. (13)

Then for the symmetric case we obtain the following equation,
which describes the surface energy spectrum:

ε

√
(1 + 3α2)k2

y + 6

P2

(
ε2

g

4
− ε2

)
= −ky

2
εg. (14)

This equation reproduces Eq. (3) and Eq. (11) in the limits
α → 0 and α → 1, correspondingly. It is useful to take the
square of this equation to obtain(

ε2
g

4
− ε2

)(
k2

y − 6ε2

P2

)
= 3α2k2

y ε
2. (15)

Let us investigate the solutions in the α → 0 limit. There are
two of them with the anticrossing point k̃y = √

3/2(εg/P),
see Fig. 4(b). The first solution has the dispersion ε = εg/2 +
(α2P2k2

y /2εg) at small ky. [Note that this dispersion coincides
with the one given by Eq. (12) at α = 1.] At large ky this
branch is close to the Dirac solution Pky/

√
6. The second

solution coincides with the Dirac one at small ky and is
close to the heavy-hole band (εg/2) at large ky. These two
branches repel each other with increasing α and eventually
approach the configuration shown in Fig. 3(b) (red curves).
For example, the asymptote of the DK state at large ky is
Pky

√
(1 + 3α2)/6|α=1 = Pky

√
2/3 [asymptote b in Fig. 3(b)].

Thus we see that the surface states presented in Fig. 3 (see
also Fig. 5 below) are intimately related to the Dirac states. In
particular, DK surface state [5] predicted within the Luttinger
model is the result of strong hybridization of the Dirac state
with the heavy-hole states (see also Ref. [37]). The authors
of Ref. [21] claimed the same, though they referred to the
states only as special rather than identify them as the DK states
previously established in Ref. [5].

FIG. 4. Dirac cone influenced by a weak coupling to the heavy-
hole band. (a) The widening of the light-hole (LH) and electron (e)
branches in the in-plane momentum direction upon weakening of the
coupling to the heavy-hole branch. The coupling to the heavy-hole
branch is full for α = 1 (solid lines), corresponding to a pristine
semiconductor, and absent for α = 0 (dashed lines), when dispensing
with the heavy-hole branch. The asymptotes a and b delimit the
bands for α = 0 and 1, respectively. (b) The surface states obtained
in the limit α � 1, showing an avoided crossing of the Dirac cone
with the heavy-hole bands. Here, we consider the symmetric case of
Fig. 3 for a small α introduced alike for the inverted-band-gap and
regular semiconductors.
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FIG. 5. Effect of a high barrier on the surface states. (a) An in-
terface between an inverted-band-gap SC (Eg < 0) and a regular SC
with a large fundamental gap (Eg → +∞). (b) Similar to Fig. 3, two
types of surface states occur in the limit of small in-plane momenta,
namely the linear Dirac states and the quadratic DK states. At large
momenta, the lower cone of the Dirac states becomes sharper than
the original low-momentum asymptote a, whereas the upper cone
reverses slope and becomes blunter. The DK states terminate at a
critical value of momentum ky ∼ εg/P (see solid circles), at which
the localization length diverges (κ1 → 0) and the surface state flows
tangentially into the bulk continuum.

3. High barrier between inverted and direct materials

The surface states spectra depend strongly on the height
of the barrier between inverted and direct materials. If the
fundamental gap in the direct material εg2 is much larger than
the modulus of the gap in the inverted one, then Eq. (10) (and
time-reversed one) reads

εg1

2
− ε −

√(
εg1

2

)2

− ε2 + 2

3
P2k2

y = ±Pky√
6

. (16)

As before, we first consider here � = 0 case and symmet-
ric energy diagram: εv1 = −εc1 = εg1/2 > 0; εc2 = −εv2 =
εg2/2 → ∞. Equation (16) can be easily solved analytically
and surface curves are presented in Fig. 5. We see that the sur-
face branches, which pass through the center of the gap (Dirac
point) do not saturate at large |ky| but go downward. This
happens because the heavy-hole band in the barrier region
is located deeply below in energy, which strongly suppresses
repulsion from it. These two surface branches have the fol-
lowing exact dispersions:

ε↓ = εg1

4
+ Pky

2
√

6
−

√(
εg1

4

)2

− Pkyεg1

4
√

6
+ 7

24
P2k2

y

ε↑ = εg1

4
− Pky

2
√

6
−

√(
εg1

4

)2

+ Pkyεg1

4
√

6
+ 7

24
P2k2

y . (17)

As for the DK surface branch, it has the quadratic dispersion
for small kyP � εg1 with the same effective mass as it was
for the case of equal gaps of direct and inverted materials, see
Eq. (12). The behavior of this branch at larger ky can be traced
with the exact solution of Eq. (16) (for positive ky we take
the minus sign in the right-hand side of this equation). This

solution reads

εs1 = εg1

4
+ Pky

2
√

6
+

√(εg1

4

)2
− Pkyεg1

4
√

6
+ 7

24
P2k2

y ; ky � 0.

(18)

It can be easily checked from Eq. (16) that this solution is only
valid at Pky �

√
2/3εg1. At this critical ky the DK surface state

merges with the light-hole band at the energy value, which is
equal to (5/6)εg1, see Fig. 5(b).

4. Finite effective mass of the heavy-hole band

So far we have been considering the case when an effective
mass of the heavy-hole (HH) band is infinite. It is important
to realize that in this limit there is a true gap (i.e., density of
states is zero) between the valence �8 bands and conduction
�6 band, Figs. 3, 5. When effective mass of heavy holes is
finite, their energy starts to depend on the kx-wave vector
component perpendicular to the interface. This means that
the surface states located within the �8 − �6 gap lie on top
of the continuum of the heavy-hole states corresponding to
different kx and strong hybridization between them and sur-
face states will occur. As a result, the electrons occupying the
surface states located within the �8 − �6 gap will not show in
transport measurements the properties exclusive for topolog-
ical surface states not hybridized with any bulk states. Thus,
they cannot be distinguished as a separate group of carriers.
(We should mention, however, that at small ky, at which the
overlap of these states with heavy holes is weak, they can
be detected with the ARPES experiments, see Refs. [31,38].)
On the other hand, the surface states lying in the projected
gap between the light-hole and heavy-hole bands found in
Ref. [5] have true physical meaning. (The similar ideas about
the hybridization and its effect on the surface states were
developed in Ref. [21].) Now we will study how these states
are transformed in the presence of the strain, which opens a
true gap between the light-hole and heavy-hole bands.

C. Strain applied to the inverted region

We now analyze the same surface-states problem with
strain applied to the inverted region, thereby opening the gap
� between light-hole and heavy-hole bands, see Fig. 2. We
consider the case � � εg1, which is of practical importance,
and will assume first the symmetric case, εv1 = −εc1 = εc2 =
−εv2 = εg/2 > 0. Clearly, the physical picture of the states
lying within a �8 − �6 gap cannot change appreciably with
application of strain, see Figs. (3), (5). Indeed, the perturba-
tion theory with respect to the parameter �/εg � 1 shows
that the dispersion curves within the �8 − �6 gap shift only
slightly (for example, the Dirac point shifts from the middle of
the gap by the value of the order of �). The only strong change
of the spectrum occurs in the energy interval of the order of
� near the top of the valence band of HgTe. Strain opens a
gap; therefore, when the Fermi level is located within this gap,
there is no conductivity (at low temperature) in the bulk and no
elastic scattering between surface and bulk states. We stress,
however, that the topological character of this surface state,
Eq. (12), exists even in the absence of the strain (as we have
already mentioned above). In particular, all the characteristic
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FIG. 6. Effect of a tensile in-plane strain on the surface states
studied in two models. (a) Kane model with heavy-hole flat band:
The strain splits and intermixes the bulk light-hole and heavy-hole
bands, opening a global gap of magnitude �/4 and inducing a
dispersion in the heavy-hole band. The DK states depart from the
heavy-hole band at zero momentum and merge with the light-hole
band at large momenta. (b) Luttinger model (finite heavy-hole mass
but no conduction bands): Qualitatively, the same result as in (a),
except that the DK states depart from the heavy-hole band at finite
momenta.

features of the topological state, such as a spin-momentum
locking and absence of the back scattering, exist already for
the solution, Eq. (12), obtained without strain.

Let us find the energy spectrum of the DK surface state
in the presence of strain. From the system of equations (8),
(9), (10) it is easy to find that at ky → 0 the solution has
the form ε = εv1 − �/2 + δP2k2

y with κ2
1 = (3�/2P2)[εg −

�/2 − 1/(2δ)] and κ2
2 = (3�/4P2)(εg − �/2). Then from

Eq. (10) we can calculate δ and, finally, the surface-state
spectrum at ky → 0 reads

ε = εv1 − �

2
+ P2k2

y

2εg − � − 2�2

(2εg−�)

. (19)

We note that Eq. (19) is valid at arbitrary values of strain gap
�, not necessarily much smaller than εg.

For the case of a very large gap of the direct material
(εg2 → ∞), we obtain a similar equation for the surface-state
dispersion at ky → 0

ε = εv1 − �

2
+ P2k2

y

2εg1 − 3�
. (20)

At large ky when the energy of the surface branch becomes
much larger than �, the surface curve coincides with the one
obtained without any strain.

Thus, the surface branch starts at the top of the heavy-
hole band and at large ky approaches the light-hole band, see
Fig. 6(a) and similar picture in the Supplementary Material of
Ref. [21].

The results of the k-P model agree very well with the
results obtained from more sophisticated methods, such as the
ab initio calculations, for Hg-terminated HgTe (001) surface.
For Te-terminated surface it is not necessarily the case, see
Refs. [39,40].

III. SURFACE STATES WITHIN LUTTINGER MODEL
WITH STRAIN

As we have demonstrated, the surface states that lie within
the gap opened by strain between light- and heavy-hole bands
are of special importance. These states can be studied in more
detail within the Luttinger model, which describes the valence
�8 light- and heavy-hole bands. This model allows exact ana-
lytical results for the spectrum and spinors of the surface states
for an arbitrary ratio between the effective masses of light
and heavy holes, and represents a more accurate description
compared to the model we used above. In Ref. [5] the solution
for those states was found in the absence of strain.

The Luttinger Hamiltonian for HgTe, which describes the
group of states |lh − 1/2, hh + 3/2 > has the form

ĤL =
[

k2(γ − γ̃ ) − �/4
√

3γ̃ k2
+ + √

3�/4√
3γ̃ k2

− + √
3�/4 k2(γ + γ̃ ) + �/4

]
. (21)

The energy is counted from the degeneracy point of light-hole and heavy-hole bands in the HgTe region in the absence of strain
(εv1 = 0), � > 0 is the gap value due to strain, k̂± = k̂x ± iky, k̂x = −id/dx, k̂2 = k2

y + k̂2
x , and wave vector within the boundary

is again directed along the y axis, γ , γ̃ are the Luttinger constants, which determine the bulk spectra of light and heavy holes
in the absence of strain: εl,h = k2(γ ± 2γ̃ ). We assume that γ , γ̃ > 0 and (γ − 2γ̃ ) < 0, (γ + 2γ̃ ) > 0 (gapless material). As
before, the Hamiltonian describing the time-reversed solutions is obtained from Eq. (21) by replacing ky by −ky.

We consider the HgTe sample, which occupies the x > 0 space and x = 0 is the boundary with the vacuum or wide gap direct
material (infinite barrier). We then seek for the surface states located within the gap created by strain. The x components of
the wave vectors corresponding to the light and heavy holes for a given energy ε of the surface state are given by kl,x = iκl ,
kh,x = iκh, κl,h > 0, and the state exponentially decays towards the bulk of HgTe region. The expressions for κl,h are

k2
y − κ2

l,h =
γ ε + γ̃ � ∓

√
(γ�/2 + 2γ̃ ε)2 + 3γ̃ �k2

y (4γ̃ 2 − γ 2)

(γ 2 − 4γ̃ 2)
. (22)

Here − corresponds to κl and + to κh. The corresponding two-
component spinor wave functions look like

�l,h(x) ∝ eikyye−κl,hx

( √
3�/4 − √

3γ̃ (ky + κl,h)2

ε + �/4 − (γ − γ̃ )
(
k2

y − κ2
l,h

) )
. (23)

A. Boundary condition and solution

The wave function of the surface state is the superposi-
tion of the functions Eq. (23): �s(x) = a�l (x) + b�h(x). For
an infinite barrier we use zero boundary conditions at x =
0: �s(x = 0) = 0, obtaining the following equation for the
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energy ε of the surface state:[
ε + �/4 − (γ − γ̃ )

(
k2

y − κ2
h

)]
[�/4 − γ̃ (ky + κl )

2]

= [
ε + �/4 − (γ − γ̃ )

(
k2

y − κ2
l

)]
× [�/4 − γ̃ (ky + κh)2]. (24)

Positive real values of κl,h found from Eq. (22) should be used
while solving Eq. (24).

The exact solution for the surface-state dispersion reads:

ε = −
(

γ

2γ̃

)
�

2
+ k2

y (γ + 2γ̃ )

[
1 − (1 + √

3β )2

4

]
, (25)

where β = (2γ̃ − γ )/(γ + 2γ̃ ) > 0 is the ratio of the bulk
effective masses of the light and heavy holes. The solution
Eq. (25) (we call it further as DK 1 branch) coincides at � = 0
with the solution obtained in Ref. [5]. It is interesting that the
spectrum in the presence of the strain differs from the one
at � = 0 only by the constant shift proportional to the strain
value. Using this dispersion we can find from Eq. (22) the
values of κl,h:

κl,h = (1 + β )
√

3

4
√

β
ky∓ ky√

3β

√√√√[
1 − (1 + √

3β )2

4

]2

+ 3β�

4γ̃ k2
y

.

(26)

This solution is valid at ky > 0. Moreover, from the condition
that κl > 0 we get the critical value of k�

y , thus the surface state
actually exists at |ky| > k�

y , see Fig. 6(b).

k�
y =

√√√√ �

γ̃
[
2 +

√
3
β

(1 − β )
] . (27)

It is easy to see that at this critical ky the surface state
curve merges with the bulk heavy-hole band (corresponding
to kx = 0). In accordance with the results obtained above, in
the limit β = 0 (infinite mass of the heavy holes) the critical
value k�

y → 0. Moreover, since k�
y must be real, we obtain the

following condition: β < 3. It coincides with the one obtained
in Ref. [5] for the case � = 0. As we know from Ref. [5], in
the case � = 0 there are two solutions for the surface states.
This is true also in the presence of the strain. For the case
of � � 0 the second solution (DK 2 branch) exists only at
β > 1/3. Since this case does not correspond to real HgTe
or α-Sn materials, we do not consider it here. However, in the
case of � < 0, which corresponds to the compressive in-plane
strain, the situation is qualitatively different. This latter Dirac
semimetal case is considered in Sec. IV.

B. Spin structure of the surface state

Let us describe the spin structure of the solution obtained
in this section. We have mentioned already that even with-
out strain the DK surface state [5] has all the features of
a topological surface state for a 3D topological insulator:
momentum-spin locking and absence of back scattering. In-
deed, from Eqs. (23), (25) at � = 0 we find the following
wave function at kz = 0, ky > 0:

�↓(x) = (e−κl x − e−κhx ) · 1

2
√

1 + β

(√
3 + √

β√
3β − 1

)
. (28)

Let us calculate the average value of the different compo-
nents of spin using this function. While doing so we should
remember that the upper coefficient of the spinor Eq. (28)
corresponds to −1/2 projection over the z axis and the lower
coefficient to the +3/2 projection. Coefficients corresponding
to +1/2,−3/2 projections are equal to zero. Then using 4 × 4
matrices Ĵx, Ĵy, Ĵz corresponding to the angular momentum
3/2, we obtain 〈Jx〉 = 0, 〈Jy〉 = 0, and

〈Jz〉 = 1

4(1 + β )

[
3

2
(
√

3β − 1)2 − 1

2
(
√

3 +
√

β )2

]

= β − √
3β

(1 + β )
. (29)

Thus, the average spin is parallel to the boundary and directed
perpendicular to the electron momentum. For the opposite
momentum direction within the plane one obtains the average
spin, which is the opposite sign of the value given by Eq. (29);
therefore, one has the momentum-spin locking for this surface
state.

Finally, we present here the result obtained within the
Luttinger model for the average spin of the surface electron
in the presence of strain, � > 0. At the conditions

√
β � 1

and �/(γ̃ k2
y ) <

√
3/β, we obtain

〈Jz〉 = −
√

3β
1

1 − �/
(
9γ̃ k2

y

) . (30)

As before, 〈Jx〉 = 0, 〈Jy〉 = 0, i.e., spin is parallel to the
boundary and perpendicular to the momentum direction. [At
� = 0 and β � 1 the result Eq. (30) coincides with the one
given by Eq. (29).] It is interesting that in contrast to the
case without strain, the average spin now increases with the
lowering of energy, getting near the k�

y , Eq. (27), the maximum
value, which is of order of unity even for β � 1.

We consider the case of isotropic Luttinger model; there-
fore, the spin-momentum locking is an exact characteristic
of the surface states, which can be probed experimentally.
By adding higher-order terms one can create some warping.
(In practice, it can be done by growing film of topological
material on the substrate material with the proper symmetry.)
In the particular case of the hexagonal warping, Ref. [41], the
component of the spin normal to the plane appears; however,
the component of the spin parallel to the plane still strongly
correlates with the momentum direction. Therefore, in a sense,
complete breaking of the locking does not happen.

IV. SURFACE STATES IN THE DIRAC SEMIMETAL
REGIME (LUTTINGER MODEL)

So far we have considered the case of tensile in-plane
strain (� > 0), which opens the gap between the light- and
heavy-hole bands, creating the topological insulator in the
material such as HgTe. In the opposite case, � < 0, one
has the situation of the Dirac semimetal where the light-hole
band and the heavy-hole band overlap, forming two Dirac
points. The bulk energy dispersion near those points is a linear
function of the in-plane wave vector, see Fig. 7. The case of
the Dirac semimetal has received much less attention in the
literature, especially its analytical treatment. We consider here
the problem of surface states in the Dirac semimetal regime
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FIG. 7. Case of compressive in-plane strain (� < 0). Two
parabolic surface-state branches (DK 1 and DK 2) arise around
the conic point of the bulk projected states located at the energy
εD = (γ |�|/4γ̃ ). The DK 2 branch flows into the bulk spectrum at
the value of in-plane momenta given by Eq. (36). At � = 0, the DK
2 branch arises only for β > 1/3, see Ref. [5].

within the Luttinger model. Similar to the � > 0 case, it is
possible to find an exact analytical solution for the spectrum
and wave functions of the surface states within the Luttinger
model (i.e., for energies smaller than the �8 − �6 gap). This
presents a comprehensive analytical solution for this problem.
Note, that we do not study here the surface states located
within the �8 − �6 gap. It is clear, however, that similar to
the previous cases considered in this paper, those states lie
on top of the continuum of the heavy-hole states and are
strongly hybridized with them. Therefore, there are no linear
in k-vector surface states going from s band to the light-hole
band across the �8 − �6 gap, i.e., the popular picture is again
incorrect.

We start with the bulk spectrum near the Dirac point at
� < 0. Again the x axis is perpendicular to the boundary, and
the wave vector along the boundary is equal to ky. From the
expression for the dispersions of the light and heavy holes

εl,h = γ (k2
x + k2

y )

± 2γ̃

√(
�

4γ̃
+ k2

x

)2

+ k2
y

(
k2

y + 2k2
x − �

4γ̃

)
(31)

one can easily see that at k2
x = |�|/4γ̃ (Dirac point) the bulk

spectrum is linear

εb(ky) = γ |�|
4γ̃

± ky

√
3γ̃ |�|; |ky| �

√
|�|/γ̃ . (32)

We consider now the surface states. We will show that the two
branches of parabolic surface states start from the bulk Dirac
point. It is easy to realize that we can use the same Eq. (24) for
the dispersion of the surface states. The only difference now
is that the strain is negative: � < 0. Therefore, the solutions
Eqs. (25), (26) are still valid. We see that the first (DK 1)
branch, Eq. (25), starts at the energy of the bulk Dirac point:
γ |�|/4γ̃ , see Fig. 7, and has the same mass in the absence of
strain. The expressions for the κl,h are still given by Eq. (26),

the only difference from the case � > 0 is that now quantities
κl,h become complex at small enough values of ky. Consider
the positive ky, the character of the surface wave function is
different depending on whether ky is smaller or bigger than
ky1, where

ky1 = 2

√
β|�|

γ̃
· 1

|1 − √
3β|(√3 + √

β )
. (33)

If ky < ky1, then κl = κ�
h = a − ib, and the surface function

has the form �s(x) ∝ sin(bx) · exp(−ax) with a, b to be found
from Eq. (26). In the case ky > ky1 both κl,h are real and
positive, and the surface wave function has the form �s(x) ∝
(e−κl x − e−κhx ), with κl,h given by Eq. (26) at β < 3.

The interesting feature of the problem is that there is a great
difference in the number of DK surface branches, which exist
at positive or negative �. In the case of � > 0, at β < 1/3
(which is the case of HgTe and α-Sn materials) there is only
one branch DK 1 of surface states. We will show now that
in the case of � < 0, considered here, there are always two
DK surface branches (even for β < 1/3). Thus, in the case of
Dirac semimetal, one always has two DK surface branches,
which for the unstrained sample were found in the original
work Ref. [5]. We should mention that the authors of Ref. [42]
found only one DK branch in the regime of a Dirac semimetal.
Moreover, these two branches continue until the ky = 0 point,
in strong contrast to the conclusion made in Ref. [42].

Let us discuss the second surface branch, which exists at
� < 0. It is the solution of Eq. (24) where the change ky →
−ky is made, i.e., for positive ky it is obtained from the second
block of basis states and has an opposite spin compared to the
first (DK 1) solution. The exact solution for the dispersion of
the second surface branch (DK 2) reads:

ε =
(

γ

2γ̃

) |�|
2

+ k2
y (γ + 2γ̃ )

[
1 − (1 − √

3β )2

4

]
. (34)

The corresponding values of κl,h are

κl,h = (1 + β )
√

3

4
√

β
ky ∓ ky√

3β

√√√√[
1 − (1 − √

3β )2

4

]2

+ 3β�

4γ̃ k2
y

.

(35)

This solution is valid at ky > 0. For small enough ky the
quantities κl,h are complex again, and one can have a localized
state even at β < 1/3, in strong contrast to the cases � � 0.
At large enough ky, however, when both κl,h are real, from
the condition that κl > 0 we get the critical value ky = k̃y,
after which the second surface branch ceases to exist (it
merges with the bulk band), see Fig. 7. The expression for k̃y

reads

γ̃ k̃2
y =

√
β|�|

(1 − √
3β )(

√
3 + √

β )
; β < 1/3. (36)

Thus we see that the dispersions of the surface states found
by us here are very much different from the ones usually used,
see, for example, Refs. [33,34]. The authors of Refs. [33,34]
came to the conclusions that the effects they observe are due
to the Dirac semimetal surface states of α-Sn layer rather than
due to the bulk states of this material. One of the effects is
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the switching of a magnet by spin-orbit torque from a Dirac
semimetal by a charge current at room temperature, without
an external magnetic field. This shows that the topological
Dirac semimetal α-Sn is a promising material for the spin-
tronic applications. In that respect, the results obtained by us
are potentially important for the correct interpretation of the
current and future experiments.

V. CONCLUSIONS

We have reconsidered the physical origin of surface states
in inverted-band semiconductors, such as HgTe and α-Sn.
By considering analytically two simple and exactly solvable
models we have clarified several important issues concerning
the nature of the states, among them the role of band struc-
ture and the role of strain. In particular, we have shown that
neglecting the coupling to the heavy-hole band leads to the in-
correct physical picture of the surface states obtained in many
recent publications. Such a procedure results in the simple
picture of linear in k-vector Dirac surface states crossing the
whole gap between the conduction and light-hole bands, see
Fig. 1. This latter picture does not reflect the true nature of
the surface states. We have also shown that in a topological
insulator regime an applied strain is a smooth deformation
to the surface states that does not lead to any drastic change
of the physical properties in these materials, in contrast to
what has recently been published in the literature. In the Dirac
semimetal regime, however, the physics of surface states,
which arises around the conic point of the bulk projected states
crucially depends on the applied strain.

We have reconciled different analytical solutions found in
the 1980s with the results obtained recently by many groups
using numerical simulations. In particular, we have demon-
strated that the DK surface state [5] predicted for HgTe within
the Luttinger model is the result of strong hybridization of the
Dirac state with the heavy-hole states. We have also shown
that these states [5] possess all the essential features of the
topological states in the presence of strain that induces a
gap between the light- and heavy-hole bands. As such, they
should play the most important role in the experiments that
probe the topological properties of the sample when the Fermi
level is located within this strain-induced gap. In contrast, the
surface states located within the �8 − �6 gap lie on top of the
continuum of the heavy-hole states and strong hybridization
with them makes those surface states marginal in observable
phenomena. They still can be detected with the ARPES ex-
periments at small 2D momenta along the interface where
the overlap of these states with heavy holes is weak, see
Refs. [31,38]. The results obtained by us can be used for the
correct interpretation of the current and future experiments
with materials such as α-Sn and HgTe.
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