

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Home Dinophyte Seminars Tuesday December 14, 2021, 1 pm GMT+1

Tuesday December 14, 2021, 1 pm GMT+1

Nick YOUNG^{1,2*}, Richard A. SHARPE^{1,2,3}, Rosa BARCIELA^{1,2,4}, Gordon NICHOLS², Keith DAVIDSON⁵, Elisa BERDALET⁶, Lora E. FLEMING^{1,2}

Marine harmful algal blooms and observed human health effects - what is the evidence?

- 1 European Centre for Environment and Human Health, Truro, UK
- ² University of Exeter Medical School, Exeter, UK
- ³ Public Health, Cornwall, Truro, UK
- ⁴ Met Office, Exeter, UK
- ⁵ Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK
- ⁶ Institute of Marine Sciences (CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain
- * <u>Ny252@exeter.ac.uk</u>

Exposure to harmful algal blooms (HABs) can lead to well recognised acute patterns of illness in humans. We carried out a scoping review using established methodology to map the evidence for associations between marine HABs and observed both acute and chronic human health effects. A systematic and reproducible search of publications from 1985 until May 2019 was conducted using diverse electronic databases. Following de-duplication, 5301 records were identified, of which 380 were included in the final qualitative synthesis. Most studies (220; 57.9%) related to Ciguatera Poisoning. Anecdotal and case reports were the most frequent study types (242; 63.7%), whereas there were fewer formal epidemiological studies (35; 9.2%). Only four studies related to chronic exposure to HABs. Few studies reported the use of human specimens for confirmation of the cause of illness (32; 8.4%). This study highlighted gaps in the evidence base including a lack of formal surveillance and epidemiological studies, limited use of toxin measurements in human samples, and a scarcity of studies of chronic exposure. Future research and policy should provide a baseline understanding of the burden of human disease to inform the evaluation of the current and future impacts of climate change and HABs on human health.

Marine harmful algal blooms and human health: A systematic scoping review

Nick Young 14.12.21 ny252@exeter.ac.uk

European Centre for Environment & Human Health

My background

- Natural Environment Research Council and Met Office funded PhD student "Understanding of the connections between weather and climate, Marine Harmful Algal Blooms and Human Health for the UK"
- Part-time epidemiologist (medical doctor) with UK Health Security Agency
- MScs in Epidemiology and Oceanography

Contents

Scoping review

- 1. Aims
- 2. What is a scoping review?
- 3. Methods
- 4. Results
- 5. Limitations and insights
- 6. Recommendations
- 7. Acknowledgements

1. Aims

- Map existing evidence for the associations between exposure to marine HABs and observed human health effects
- Identify existing gaps in the evidence base
- Highlight research and policy directions and priorities.

2. What is a scoping review?

- A comprehensive, systematic and reproducible review
- Establish the range of the evidence
- Address a broad question across varied study types and disciplines
- · Highlight research agenda
- Do not focus on a single research outcome thematic description rather than a formal synthesis

Arksey, H., O'Malley, L., 2005. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8(1), 19-32

Ith Promot Chronic Dis Prev Can. 2017 Jan; 37(1): 1-23.

PMCID: PMC5480297 PMID: <u>28102992</u>

PMCID: PMC3110

PMID: 10381708

Health Promotion and

Chronic Disease Prevention in Canada

Environmental factors associated with autism spectrum disorder: a scoping review for the years 2003–2013

Michelle Ng, MPH,^(1,2) Joanne G. de Montigny, MHA,⁽³⁾ Marianna Ofner, PhD,^(1,2) and Minh T. Docé, PhD^(1,2)

Author information
Copyright and License information
Disclaimer
MJJ 1999 Jun 26; 318(7200): 1730–1737.
doi: 10.1136/bmj.318.7200.1730

β Blockade after myocardial infarction: systematic review and meta regression analysis

<u>Nick Freemantle</u>, senior research fellow,^a <u>John Cleland</u>, professor,^b <u>Philip Young</u>, lecturer in applied statistics,^c <u>James Mason</u>, senior research fellow,^a and <u>Jane Harrison</u>, information officer^a

Author information
Article notes
Copyright and License information
Disclaimer

3. Methods - Step. 2 Where is Step 1?

Arksey, H., O'Malley, L., 2005. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8(1), 19-32

Inclusion and Exclusion criteria (PECO - Population Exclosure Context Outcome)

PECO criteria		Include		Exclude	PECO criteria		Include		Exclude
					Outcomes	√	Adverse health effects	×	Economic impacts
Population	\checkmark	Human	×	Human Cell lines			including but not	×	Wider societal impacts -
			× In vitro	In vitro			exclusively: Death, ASP,		tourism/beach closure
							NSP, PSP, DSP, CP, AZP,		
Exposure	✓	Direct or indirect	×	Tetrodotoxin,			Effects of Palytoxin-like	×	Haff disease
		exposure to microalgae or micro-algal derived toxins		cyanobacteria			toxins or "Ostreopsis spp.	.,	European determine
			× Chelonitoxin			algal syndrome,	x	Exposure data only	
							gastrointestinal illness,		
			×	Scombroid			respiratory illness,		
	\checkmark	Bloom event not-	×	Exposure via desalinated			neurological illness,		
		required		water			hospital admissions		
	\checkmark	Exposure routes include:	×	Experimental exposure			Wallbaing impact if		
		ingestion; inhalation; skin contact; sexual transmission; eye contact; other Routes include	× Food supplements		v	weildeing impact – if			
						estimates of adverse			
			×	Lyngbya			wennenng		
			~	Dfiastaria		\checkmark	Treatment if cases		
	1		Ŷ	Exposure to palytoxin via			reported		
	·		~						
		voctor such as soafood		coral/cindanans/zoantind	Study type	\checkmark	English language	×	Non-English language
		vector such as searood		5		\checkmark	1985 – search date	×	Pre-1985
Context	1	Marine/Estuarine/Coasta	×	Freshwater including		\checkmark	Case reports	×	Editorials
	•				\checkmark	Epidemiological studies	×	Review papers	
	1	ı Worldwide		lakes		\checkmark	Surveys	×	"No illness reported"
	•	Wondwide				\checkmark	Published surveillance	×	Conference abstracts
							data		
						\checkmark	Incidence studies		
						\checkmark	Modelling studies		
							estimating incidence		

Where is Step 1, 3 or ...?

Methods - Step. 2

Step 2. Identifying relevant studies

12th May 2019 search of:

- ✓ MEDLINE
- ✓ PubMed
- ✓ Global Health
- ✓ SCOPUS
- ✓ Environment Complete
- \checkmark Web of Science

Search Strategy

Exposure

[[Amnesic Shellfish Poisoning OR Pseudo-nitzschia OR Azaspiracid shellfish poisoning OR amphidoma* OR Ciguat* OR Gambierdiscus OR Diarrhetic shellfish poisoning OR dinophysis* OR Neurotoxic shellfish poisoning OR Karenia OR ostreopsis OR Paralytic shellfish poisoning OR alexandrium OR algal bloom* OR red tide* OR dinoflag* OR phytoplankton bloom* OR marine biotoxin* OR toxic microalga*]

OR

[[algal bloom* OR red tide* OR dinoflag* OR phytoplankton bloom* OR marine biotoxin* OR toxic microalga* OR shellfish OR mussels OR bivalve* OR clam OR scallop OR oyster OR gastropod*OR crustacean OR crab OR mollusc* OR Fish OR consum* OR seafood]

AND

[Pectenotoxin* OR Yessotoxin* OR Cyclic Imine* OR Spirolide* OR Gymnodin*OR Pinnatoxin* OR pteriatoxin* OR saxitoxin* OR Domoic acid OR Azaspiracid* OR Brevetox* OR palytox* OR okadaic acid*]]]

AND

Outcome

[[epidem* OR outbreak* OR inciden* OR admission* OR admitted* OR hospitalisation* OR hospitalization* OR fatal* OR case report* OR case-control OR cohort]

OR

[[Case* OR man OR woman OR men OR women OR individual* OR resident* OR consumer* OR Asthmatic* OR patient* OR child* OR neonate* OR lifeguard* OR occupational OR population*]

AND

[Death* OR illness* OR intoxication* OR poisoning* OR respiratory OR gastrointestinal OR neurological OR neurodegen* OR ocular OR eye OR derma* OR skin OR paraly* OR cardiovascular OR symptom* OR sexually transm* OR sexual transm*]]]

Deduplication – The Bramer method

• Bramer, W.M., Giustini, D., de Jonge, G.B., Holland, L., Bekhuis, T., 2016. De-duplication of database search results for systematic reviews in EndNote. J. Med. Libr. Assoc. 104(3), 240.

Methods - Step. 2

Backwards and Forwards citation searching

• **Backwards** - hand search reference lists from *included* papers

- European Commission. Regulation (EC) No. 853/2004 of the European Parliament and of the Council 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. 30.4.2004: L 139/55. [Accessed 7 Aug 2019]. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0055:0205:en:PDF
- 3. Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs. 2013;11(11):4328-49. https://doi.org/10.3390/md11114328 PMID: 24184795

 Hossen V, Jourdan-da Silva N, Guillois-Bécel Y, Marchal J, Krys S. Food poisoning outbreaks linked to mussels contaminated with okadaic acid and ester dinophysistoxin-3 in France, June 2009. Euro Surveill. 2011;16(46):20020. https://doi.org/10.2807/ese.16.46.20020-en PMID: 22115047

Forwards

 Any study that has cited an included paper was considered using Web of Science

6 Citations 38

References

Methods - Step. 2

Methods - Step. 2

Charting the data

Clinical Syndrome	HAB toxin*	Notes
Amnesic Shellfish Poisoning	Domoic acid	
(ASP)		
Azaspiracid Shellfish Poisoning	Azaspiracid	
(AZP)		
Ciguatera Poisoning (CP)	Ciguatoxin	
Diarrhetic (Diarrheic) Shellfish	Okadaic acid (dinophysistoxins)	
Poisoning (DSP)		
Neurotoxic Shellfish Poisoning	Brevetoxins	
(NSP) and brevetoxin		
associated respiratory irritation		
Palytoxicosis	Palytoxin	Refers to seafood intoxication
		only
Effects of Palytoxin-like toxins	Attributed to Palytoxin-	Respiratory and cutaneous
or "Ostreopsis spp. algal	analogues.	irritation after postulated
syndrome"		exposure to seawater and/or
		aerosol during Ostreopsis spp.
		blooms
Paralytic Shellfish Poisoning (PSP)	Saxitoxin	

Exposure and outcome -Acute versus chronic

Charting the data – study types

- anecdotal mention of cases
- case reports
- routine surveillance data,
- formal epidemiologic studies designs
- auxiliary studies
- trials of treatment
- biological marker/genomic

Charting the data - Confirmation

Toxin detected in <u>remnants</u> of food consumed.	Toxin detected in <u>same</u> <u>batch f</u> ood consumed.	<u>Toxin</u> in <u>same area</u> of food production/exposure <u>within one week</u> of harvesting/exposure.	Harmful algal <u>species</u> in <u>same area</u> of food production/exposure <u>within one week</u> of harvesting/exposure.	<u>Toxin</u> in <u>same area</u> of food production/exposure <u>outside of one week</u> of harvesting/exposure.
Harmful algal <u>species</u> in <u>same area</u> of food production/exposure <u>outside of one week</u> of harvesting/exposure.	<u>Direct measure of</u> <u>exposure</u> – for example personal or ambient air monitoring.	Based on <u>clinical</u> <u>symptoms only</u> .	Toxin or metabolites detected in <u>human</u> <u>specimens</u> .	<u>Human samples</u> <u>negative</u> for toxin or metabolites.

Adapted from Tubaro, A., Durando, P., Del Favero, G., Ansaldi, F., Icardi, G., Deeds, J., Sosa, S., 2011. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57(3), 478-495.

Results

Results (PRISMA)

Number of studies per year

Number of studies

Number of Studies by clinical outcome

Acute vs Chronic

Study characteristic (number of studie	Count* (%)	
Exposure	Acute	340 (89.5)
	Chronic	4 (1.1)
	Not-specified	36 (9.5)
Health Outcome	Acute	233 (61.3)
	Both acute and chronic	69 (18.2)
	Chronic	18 (4.7)
	Not-specified	60 (15.8)

Author; year	Syndrome	Country	Exposure	Outcome
Grattan, 2016	ASP	USA	Razor clam	Memory
			consumption	
Grattan, 2018	ASP	USA	Domoic acid	Memory
			exposure [as	
			razor clam	
			consumption]	
Cordier, 2000	DSP	France	Mussel	Digestive cancer
			harvesting	mortality rates
			closures	
Lopez-Rodas,	DSP	Spain	Mollusc	Colonrectal
2006			consumption	cancer

Chronic exposure studies

 Paralytic Shellfish Poisoning (PSP) CFP NOT INCLUDED

Number of studies by exposure route

- Ingestion 3 356 5 29 2 2 **4**
- Airborne/Inhalational
 - Breast feeding
 - Direct Water Contact
 - Placental transfer
 - Sexual transmission

Confirmation

Study characteristic (number of studies)		Count* (%)
Confirmation**	Toxin detected in food consumed	97 (25.5)
	Toxin detected in same batch	13 (3.4)
	Toxin detected same area within ± one week	68 (17.9)
	HAB species detected same area within ± one week	50 (13.2)
	Toxin detected same area > one week	7 (1.8)
	HAB species detected same area > one week	5 (1.3)
	Direct measure of exposure	7 (1.8)
	Clinical signs/symptoms only	120 (31.6)
	Toxin/metabolites in human specimens	27 (7.1)
	Human samples negative for Toxin/metabolites	5 (1.3)
	Not reported	73 (19.2)

5. Conclusions

lack of formal surveillance and epidemiological studies

Inadequate methods of exposure assessment and diagnosis

Lack of studies of chronic exposure

An interdisciplinary focus on determining the true burden disease, following acute and chronic exposures, is required to provide a baseline to facilitate the measurement and the understanding of variations in response to current and predicted climate and other environmental change. [to amend]

Limitations

- No hand searching of key journals and newsletters
- Marine cyanobacteria not included
- No searches for surveillance reports from public health agencies
- Full-texts not always obtained

Reflections

Terminology – "outbreak"

Lack of case definitions

Lack of detail in case reporting

7. Acknowledgements

Review Team & Supervisors Professor Lora Fleming – ECEHH Dr Richard Sharpe – ECEHH/Cornwall Council Professor Rosa Barciela - Met Office/ECEHH/University of Exeter Professor Keith Davidson - Scottish Association of Marine Sciences Prof Gordon Nichols – UKHSA/University of Exeter Dr Elisa Berdalet - Institute of Marine Sciences (ICM-CSIC) Alison Bethel - Information Specialist – University of Exeter