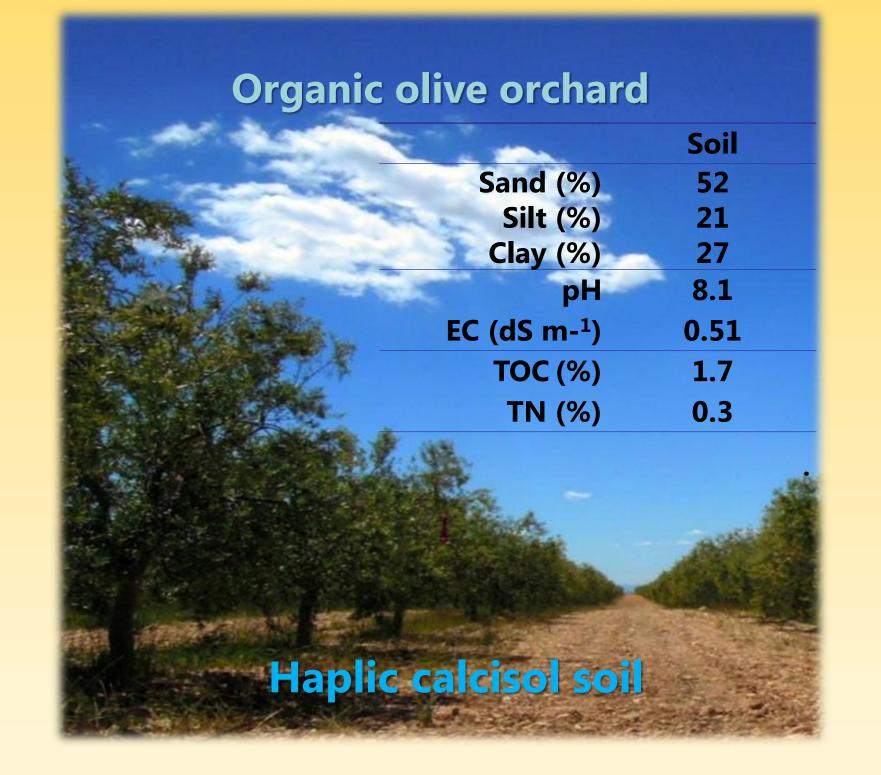




### **BIOCHARS FROM DIFFERENT RESIDUES HAVE A DISTINCT IMPACT ON SOIL N DYNAMICS** I. López-Cano, M. L. Cayuela\* , A. Roig, M. A. Sánchez-Monedero

CEBAS-CSIC. Campus Universitario de Espinardo. 30100. Espinardo. Murcia. Spain

## Introduction


\***Presenting author:** *mlcayuela@cebas.csic.es* 

The use of biochar, a carbonaceous material obtained by pyrolysis of biomass, is known to interact with key processes involved in soil N cycling: mineralization, denitrification, nitrous oxide emissions and N fixation.

#### To study the impact of biochars from different lignocellulosic residues upon the N mineralization dynamics and N availability in an agricultural soil amended with either sheep manure or mineral fertilisation.

## Material and methods

### **Soil description**



| Feedstock and biochar description |               |      |      |      |      |  |  |  |  |  |  |
|-----------------------------------|---------------|------|------|------|------|--|--|--|--|--|--|
|                                   | Raw materials | ОАК  | GHW  | PRE  | CEL  |  |  |  |  |  |  |
| cellulosic<br>ponent              | Lignin (%)    | 31.3 | 24.9 | 13.0 | 24.4 |  |  |  |  |  |  |
|                                   | Cellulose (%) | 52.8 | 56.9 | 22.8 | 55.8 |  |  |  |  |  |  |

14.7

6.5

< 0.5

0.6

Hemicellulose (%)

400°

## **Organic amendment** Sheep manure

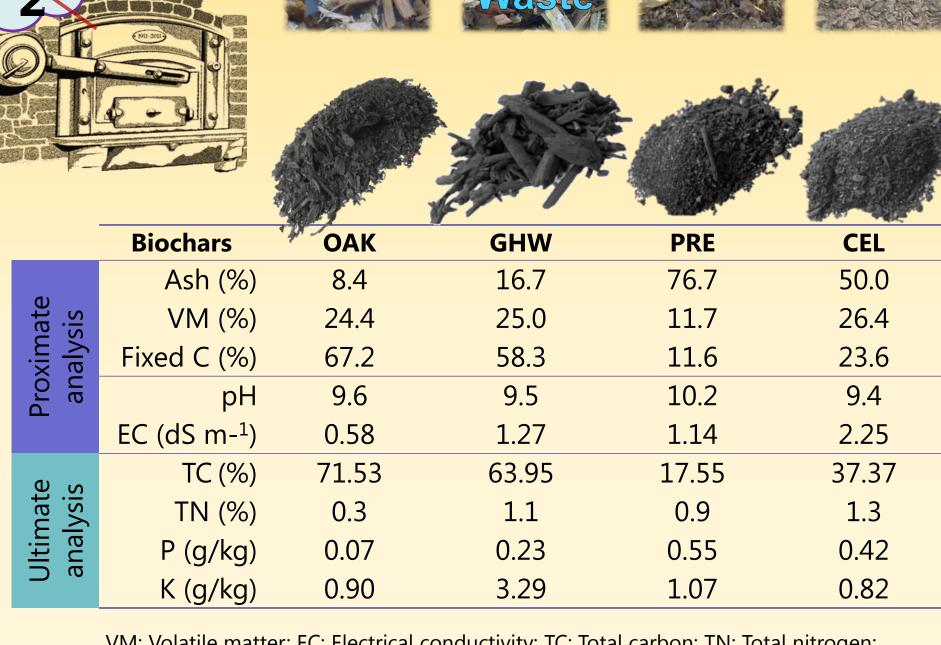
#### **Mineral fertiliser** Diammonium phosphate

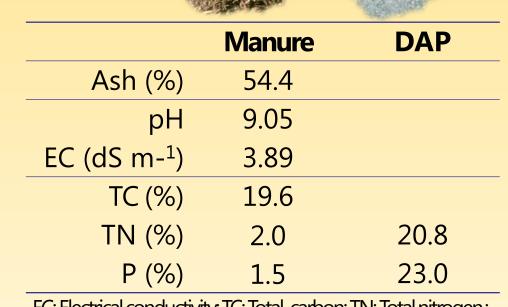
### **Treatments**

Soil






### With/without soil amendments


Manure (1% w/w) Fertiliser (same amount to N provided by manure, 198 mg N kg<sup>-1</sup> soil)

#### With/without biochar 4 biochars (1% w/w)

## **Results and Discussion**

**Biochar-coil** 





**Amendment/fertiliser description** 

EC: Electrical conductivity, TC: Total carbon; TN: Total nitrogen; P: phosphate

### **Incubation experiments**

100 mL glass container

VM: Volatile matter; EC: Electrical conductivity; TC: Total carbon; TN: Total nitrogen;

x1 Soil treatment

x3 Amendment treatments

x5 Biochar treatments

x3 Replicates



/kg

S

250

200

**NO3-N** 

NH4-N

T= 25 °C; WHC: 40%; 40 gr sample (w/w) Preincubation t= 7 days

Aerobic incubation t= 30 days

Ammonium and nitrate analysis(t=3 and 30 days)

| Biochar-soil<br>interaction          | t= 3 days  | - No differences on soil ammonium and nitrate content.                                                                                                                                                                                                                                                                   | day        | z 200 -<br>z 150 -                                | - |                          |                        |                          |       |                          |
|--------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|---|--------------------------|------------------------|--------------------------|-------|--------------------------|
|                                      |            | The levels of soil NH <sub>4</sub> <sup>+</sup> -N were not affected by the addition of biochar.                                                                                                                                                                                                                         | ter 3      | <u><u> </u></u>                                   |   |                          |                        |                          |       |                          |
|                                      | t= 30 days | <ul> <li>Interaddition of blochar prepared from fich lighocellulosic feedstock (OAK and GHW) did not alter soil N dynamics after 30 days of incubation.</li> <li>High ash content biochars (PRE or CEL) significantly increased soil available N.</li> <li>N dynamics at the beginning of the incubation were</li> </ul> | 30 days Af | 0 -<br>300 -<br>% 250 -<br>100 -<br>100 -<br>50 - | S | CEL<br>CEL<br>CEL        | S+M                    | CEL PRE<br>GHW<br>S+B+W  | S+F   | ANH<br>S+B+F             |
| Biochar- amended soil<br>interaction | t= 3 days  |                                                                                                                                                                                                                                                                                                                          |            |                                                   |   |                          |                        |                          |       |                          |
|                                      |            | concentration in the amended soils.                                                                                                                                                                                                                                                                                      | After      | 0 -                                               |   | OAK<br>GHW<br>PRE<br>CEL |                        | OAK<br>GHW<br>PRE<br>CEL |       | OAK<br>GHW<br>PRE<br>CFI |
|                                      | t= 30 days | At the end of incubation all treatments showed similar $NO_3^-$ -N levels.                                                                                                                                                                                                                                               |            |                                                   | S | S+B<br>Tr                | S+M                    | S+B+M                    | S+F   | S+B+F                    |
|                                      |            |                                                                                                                                                                                                                                                                                                                          |            | Mineral                                           |   | .+-N and NO              | )_ <sup>-</sup> -N) ir | the soils a              | mende | d with the               |

# Conclusions

The different lignocellulosic composition of the feedstock used for the preparation of the biochar affected the initial N dynamics in the agricultural soil amended with either an organic amendment or mineral fertiliser. However, the levels of NO<sub>3<sup>-</sup></sub>-N were similar or slightly lower than the control

**Fig. 1.** Mineral N (NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>-</sup>-N) in the soils amended with the different treatments after 3 and 30 days of incubation.

# Acknowledgments

This work was supported by the EU project FP7 KBBE.2011.1.2-02 FERTIPLUS "Reducing



#### These observations suggest a reduction of soil mineral N in biochar soils, which can reduce the risk



mineral fertilisers and agro-chemicals by recycling treated organic waste as compost

and bio-char" project nr. 289853 co-funded by the European Commission, Directorate

#### General for Research & Innovation, within the 7th Framework Program of RTD, Theme 2

-Biotechnologies, Agriculture & Food.