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ABSTRACT: Understanding how the surface dynamics of the ocean influence the spawning and
larval ecology of many large pelagic species, in particular tuna species, is a major challenge. For
temperate tunas, the selection of geographically restricted spawning grounds is influenced by
environmental conditions, but the influence of surface mixing properties on the early life stages of
these species remains poorly understood. Here, based on ichthyoplankton samples collected over
4 yr and satellite-derived finite size Lyapunov exponents (FSLEs), we examined how horizontal
mixing activity drives the probability of presence of Atlantic bluefin tuna Thunnus thynnus larvae.
We further analyzed the spatial and temporal scales of the FSLE variability at which the relation-
ship between larval presence and mesoscale activity is maximized. We found that moderate mixing
activity strongly favors the spatial-temporal distribution of larval habitats, evidencing an optimal
environmental window of bluefin tuna spawning and early life development within the mesoscale
dynamics. During the spawning season, the Balearic Sea presents a unique spatial and temporal
hydrodynamic scenario within the Western Mediterranean. These results can be used for devel-
oping oceanographic indicators and improving larval abundance indices that are currently used

in Atlantic bluefin tuna stock assessments.
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1. INTRODUCTION

Tuna species with restricted spawning grounds
travel long distances from the foraging areas to reach
geographical locations with particular environmental
conditions that may favor the survival and growth of
early life stages (Muhling et al. 2013, Ciannelli et al.
2015). This is the case for Atlantic bluefin tuna Thun-
nus thynnus that spends most of its annual cycle in
productive regions of the North Atlantic and other
areas, but in the beginning of spring travels long dis-
tances to aggregate in particular reproductive areas.

*Corresponding author: lara.diaz.barroso@gmail.com

Understanding the reasons for the selection of specific
areas for reproduction is one main focus of researchers
investigating the ecology of this emblematic species,
which also has implications for its adequate manage-
ment (Porch et al. 2019).

One key approach is to identify the particular envi-
ronmental characteristics that make these spawning
regions adequate for the early life stages of this
species. The characterization of these environmental
particularities is relevant from 2 different perspec-
tives. Firstly, it identifies cues related to ecological
processes behind the selection of these reproductive
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areas, and secondly, it allows the design of ocean
indicators used to properly monitor interannual
changes potentially affecting the species of interest.
Previous studies within the Balearic Sea (Western
Mediterranean), one of the most relevant spawning
grounds of bluefin tuna (Rooker et al. 2007, Alemany
et al. 2010), have shown that during the spawning
season these areas present temperature ranges favor-
ing egg survival and larval growth (Reglero et al.
2018), low levels of primary production (Alvarez-
Berastegui et al. 2016, Druon et al. 2016), association
with the presence of oceanic density fronts (Alvarez-
Berastegui et al. 2014) and a spatial-temporal segre-
gation with main predators such Pelagia noctiluca
ephyrae (Ottmann et al. 2021). Some of these charac-
teristics are similar in other important spawning
grounds (Muhling et al. 2017).

Recent research highlights the need to consider the
environmental drivers influencing distribution and
production of marine resources across life stages and
spatial scales (Twiname et al. 2020), which are highly
relevant for spawning and early life survival of tuna
species. The integration of information relating the
ecology of the bluefin tuna to environmental variabil-
ity has had a positive impact on the estimation of
different parameters used for fisheries assessment
processes (Ingram et al. 2017, Reglero et al. 2019,
Alvarez-Berastegui 2020). However, there are still
different aspects of the local mesoscale oceanogra-
phy that could play a key role in defining the optimal
environmental window (OEW; Cury & Roy 1989) that
characterizes spawning and larval survival of the
Atlantic bluefin tuna that have not yet been studied
and that could provide valuable knowledge for under-
standing the clues that make this species select spe-
cific areas as spawning grounds. This is the case with
the surface mixing associated with surface hydro-
dynamic processes.

Previous studies investigating how oceanographic
processes determine the habitats of bluefin larvae
have inferred and parameterized the mesoscale
activity through eddy kinetic energy (EKE) (Alvarez-
Berastegui et al. 2016) or geostrophic velocity
(GVEL) (Alemany et al. 2010, Reglero et al. 2012,
Alvarez-Berastegui et al. 2014), which are Eulerian
diagnoses based on the analysis of snapshots of
velocity fields at given time. However, the develop-
ment over the last decade of new techniques from a
Lagrangian perspective has provided new opportu-
nities to analyze transport properties in turbulent
flows. While the Eulerian diagnosis only describes
the spatial characteristics of the currents, in the
Lagrangian perspective, both temporal and spatial

variability of the velocity field are explored through
fluid particle trajectories, allowing measuring the
effects on transport of this velocity field. In particular,
finite size Lyapunov exponents (FSLEs) (Aurell et al.
1997, d'Ovidio et al. 2004), based on the separation
rate of a pair of particle trajectories, provide addi-
tional and complementary information for the most
common Eulerian approaches in the analysis of the
mixing mechanisms of water masses (d'Ovidio et al.
2009, Hernandez-Carrasco et al. 2012). Unlike GVEL
or EKE, FSLEs provide information of the sea surface
mixing dynamics at smaller scales than the velocity
field resolution (i.e. sub-grid filaments), generated by
the interaction of oceanographic structures occur-
ring at larger scales, i.e. mesoscale eddies or fronts
(Hernandez-Carrasco et al. 2011, Herndndez-Carrasco
& Orfila 2018). The advantages and potential of
FSLEs for investigating the relations between physi-
cal and ecological interactions in the pelagic realm
have emerged in the last decade. Some examples are
the application of FSLEs for understanding the effects
of lateral advection on the dynamics of sea surface
temperature and chlorophyll a filaments observed in
satellite images (Lehahn et al. 2007, Herndndez-
Carrasco et al. 2018), with direct impact on the inter-
mediate trophic levels (Maps et al. 2015) and mega-
fauna behavior (Tew Kai et al. 2009, Abrahms et al.
2018, Scales et al. 2018). Within the Balearic Sea,
FSLEs have been used to investigate the effects of
surface mixing induced by eddy-eddy interactions
on phytoplankton dynamics (Hernandez-Carrasco et
al. 2020).

In this work, we investigated how sea surface mix-
ing, derived from mesoscale activity, helps to charac-
terize bluefin tuna larval habitats in the Balearic Sea.
We focused on analyzing the existence of a relation-
ship between Lagrangian measures of horizontal
mixing intensity, parameterized by FSLEs, and the
presence of bluefin tuna larvae. We also identified
the most adequate spatial scale at which integration
of FSLE values maximizes the probability of identify-
ing larval habitats from satellite altimetry. We then
explored the spatial and temporal particularities that
the mixing activity presents in the bluefin tuna
spawning area, comparing regional and seasonal dif-
ferences in FSLEs over the Western Mediterranean
basin. This allowed us to identify environmental
characteristics selected by bluefin tuna for reproduc-
tion, as well as to develop remote sensing based
monitoring indicators of the environmental variabil-
ity affecting the ecology of this emblematic species,
facilitating the integration of environmental variabil-
ity in fisheries assessment processes.
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2. MATERIALS AND METHODS
2.1. Study area and in sifu sampling

The study area is located around the Balearic
archipelago (box B in Fig. 1), covering the most rele-
vant spawning grounds of Atlantic bluefin tuna in
the Western Mediterranean Sea). This area is charac-
terized by 2 separate regions with different water
masses: cooler and more saline resident Mediterran-
ean waters in the north and warmer and fresher At-
lantic waters in the south (Sayol et al. 2013, Hernan-
dez-Carrasco et al. 2020). The Balearic and Algerian
basins are connected by the Balearic Channels (Ibiza
Channel, Mallorca Channel and Menorca Channel),
with complex bathymetry around the islands. The
Western Mediterranean shows strong mesoscale activ-
ity and a general circulation pattern that is highly
variable by year and seasonal temporal scales (Pinot
et al. 1994, 1995, 2002). In the northwestern Mediter-
ranean, the Northern Current (Fig. 1, box A) flows
southward along the Spanish shelf-slope. Part of the
Northern Current crosses the Balearic basin through
the Ibiza Channel, while the other part is deflected
eastward, forming the Balearic Current (La Violette
et al. 1990, Salat 1995, Garcia-Ladona et al. 1996).
Also, around the Balearic Islands, a salinity-driven
front characterizes the mesoscale oceanography pat-
terns of the bluefin tuna spawning grounds during
the spawning season (Balbin et al. 2014). In the
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southwestern region, the average circulation is dom-
inated by the Algerian Current (Fig. 1, box C) and a
large number of front and eddy structures induced
by the interaction of this boundary current with the
steep coastal topographic slopes (Escudier et al.
2016, Cap6 et al. 2019).

Six oceanographic cruises were carried out be-
tween 2011 and 2014, sampling a grid of stations dis-
tributed between 37.8-40.35°N and 0.77-4.91°E
with a distance between samples of 18 km (Fig. 2).
This spatial resolution allows us to resolve the meso-
scale structures, from 50 to 100 km, in the study area
(Pinot et al. 2002). In 2011, 3 cruises were conducted
in May, June and July, coinciding with the pre-onset,
the peak and the end of the spawning activity, re-
spectively. During 2012-2014, the oceanographic
cruises were carried out from the end of June until
the beginning of July, covering the peak of the
spawning season. The number of stations analyzed
and the dates on which the campaigns were carried
out are presented in Table 1.

Ichthyoplankton samples were collected using
Bongo 90 nets equipped with a mesh of 500 pm at
speeds around 2 knots, with towing lasting for 8-
10 min. The fishing depth was between 20 and 30 m,
coinciding with the depth of the thermocline in the
area during summer. In each network, HYDROBIOS
flowmeters were installed to calculate the volume of
water filtered in each fishing operation and a depth
gauge to determine the maximum depth reached.
The samples were immediately pre-
served with 4 % formaldehyde in sea-
water. In addition to the ichthyoplank-
ton samplings, vertical profiles of
conductivity, temperature and pres-
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Fig. 1. Western Mediterranean circulation and study area. The Mallorca, Ibiza
and Menorca channels are shown. The Algerian, Northern and Balearic Cur-
rents are indicated by thick arrows, and principal water masses (AW: Atlantic
Water; LIW: Levantine Intermediate Water; WIW: Western Intermediate Wa-
ter) and recurrent eddies are indicated by dashed arrows. Isobaths at 200,
1500 and 2000 m are shown. The study areas are highlighted in orange boxes:
(A) Gulf of Lion, (B) sampling area in the Balearic Sea and (C) Algerian basin

the mixing layer, the ocean region ad-
jacent to the air-sea interface, where
density is fairly uniform, and extend-
ing from the surface of the ocean to the
pycnocline. The ‘residualtemp’ was
estimated using a generalized additive
model (GAM), from the temperature
residuals against day of the year (DOY)
and position. Positive values indicate
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Fig. 2. Sampling mesh for oceanographic cruises conducted in the Balearic Sea in (a) 2011 (n = 3 cruises), (b) 2012, (c) 2013,
(d) 2014. See Fig. 1 for details of the study area

Table 1. Ichthyoplankton oceanographic fishing cruises used for statistical = oceanographic context as a measure of

analysis. Dates are given as d/mo/yr

dispersion, and thus of stirring and

mixing (Lacorata et al. 2001), as well

Cruise Year Start date Finish date No. of stations as to unveil dynamical structures that
analyzed act as transport barriers (Boffetta et al.
BF0511; BF0611; BEO711 2011 14/05/2011 17/07/2011 88 2001, d'Ovidio et al. 2004).
ATAMEO0612 2012 21/06/2012 13/07/2012 148 The largest Lyapunov values occur
BF0613 2013 20/06/2013 10/07/2013 120 along characteristic lines, called Lag-
BF0614 2014 13/06/2014 03/07/2014 91 rangian coherent structures (LCSs;

locations where water temperature is above average
and negative values indicate temperatures below
average, given the location and time of the year. We
followed this criterion because the temperature in
the mixed layer was correlated with the sampling
date.

2.2. FSLEs as a proxy of mixing activity

FSLEs were originally introduced in dynamical
system theory to characterize the mean growth of
non-infinitesimal perturbations in turbulent flows
(Aurell et al. 1997). The concept of the FSLE, based
on the separation distances between pairs of fluid
particle trajectories, was then further applied in the

Hernandez-Carrasco et al. 2011, Bet-
tencourt et al. 2012), which act as
transport barriers, allowing a proper identification of
fronts, eddies and filaments. Since LCSs cannot be
crossed by particle trajectories, these structures
strongly constrain and determine fluid motion, help-
ing to analyze from a quantitative perspective how
ocean transport is organized. The combined action of
transporting, stretching and folding of fluid elements
by LCS, termed 'stirring’, allows the mixing process
to take place. To illustrate the connection between
LCS and mixing processes, Fig. 3 shows the evolu-
tion by the marine flow of 2 fluid parcels with differ-
ent dyes. First, the 2 fluid elements containing differ-
ent dyes (black and white) are transported over large
distances (Fig. 3). The dye patches are then stretched
into long filaments along the attracting LCSs (red
line) identified as maximum values of backward in



Diaz-Barroso et al.: Surface mixing and tuna larval habitat 73

Fig. 3. Role of Lagrangian coherent structures (LCSs) in transport and stretching ('stirring’) followed by diffusive mixing. Two

patches of different dye (white and black) are stirred by the marine flow: fluid parcels with different dyes are transported over

long distances (left panel), stretched along the repelling and attracting LCSs (in green and red) given by the ridges of the finite

size Lyapunov exponent (FSLE) field and brought in close contact (middle panel). Once chaotic stirring has stretched the dye
to sufficiently small length scales, diffusion dominates and mixing of the dyes occurs (grey tracer) (right panel)

time FSLEs and brought in close contact (Fig. 3).
Finally, once LCSs have stretched the dye patches,
creating high gradients on sufficiently small length
scales, diffusion dominates and the mixing of both
dyes occurs, resulting in a gray patch (Fig. 3) (Ottino
1990, Neufeld & Hernandez-Garcia 2009).

In 2-dimensional flows, the FSLEs are obtained by
computing the time t, at which 2 particles, one ini-
tially centered at location (x,y) and the other one sep-
arated by a specific distance §,, are advected in the
fluid flow up to a given final distance of separation 9.
The FSLE is given at position (x,y) and time ¢ by:

FSLE(X,y,t,SO,Sf)zllng—f (1)
T

0
where §, = 6 and & = 1d,, with r being the amplifica-

tion factor of separation, that in order to properly
obtain the LCS is chosen sufficiently large (e.g. r>> 2)
to adequately distinguish ridges (extrema) of the
FSLE field.

FSLEs can be obtained from particle trajectories ad-
vected forward or backward in time. In this work, we
computed the FSLEs backward in time. However,
given that in incompressible flows the forward and
backward FSLEs are related by temporal and spatial
shifts (Haller & Sapsis 2011), and that we are inter-
ested in temporal and spatial averages over relatively
large scales, we do not expect significant differences
between backward and forward exponents to esti-
mate the mixing quantifiers used here. This equiva-
lence between averaged forward and backward
FSLEs to estimate mixing activity was also explicitly
shown by d'Ovidio et al. (2004) for a marine flow.

FSLEs were then obtained by computing fluid par-
ticle trajectories in daily absolute geostrophic surface

currents derived from sea level anomalies and re-
gional mean dynamic topography Ssalto/Duacs mul-
timission altimeter regional L4 product at 1/8° spatial
resolution, released in 2016 by AVISO+ (https://
www.aviso.altimetry.fr) and currently distributed by
the Copernicus Marine Environment Monitoring Serv-
ice (CMEMS; http://marine.copernicus.eu/). Follow-
ing the algorithm described by Hernédndez-Carrasco
et al. (2011), the integration of particle trajectories
was carried out using a step-size adapting fourth/
fifth-order Runge-Kutta scheme in order to reduce
the numerical diffusion and bilinear interpolation in
space and linear in time. Note that in this work, we
were interested in analyzing the flow properties
rather than tracking larval motion. As a consequence,
we computed trajectories of neutrally buoyant parti-
cles, simulating fluid particles. A diffusion term was
not included in the Lagrangian model, as Lagrangian
dynamics are not significantly affected (Hernédndez-
Carrasco et al. 2011).

2.3. Statistical analysis

The methodological approach includes 2 steps: the
identification of the spatial scale at which the rela-
tionship between FSLEs and the probability of pres-
ence of larvae emerge, and the evaluation of the
potential improvement of the models when FSLEs
are included. We used same statistical methodology
in all steps, presence probabilities are modeled ap-
plying GAMs with binomial distributions (Wood
2006), where >1 larva is indicated as 1 and repre-
sents presence, and 0 indicates absences, in the sam-
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pling stations. As model performance indicators, we
used Akaike's information criterion (AIC; Akaike
1981), for which lower values are considered better,
and the area under the curve (AUC; Robin et al.
2011), for which higher values are considered better.
All statistical calculations were computed in R soft-
ware (R Development Core Team 2008).

2.3.1. Spatial scale analysis

The presence of larvae in a specific location can be
largely influenced by the spatial scales of the hydro-
dynamic processes occurring around that location.
Therefore, one of our aims was to find the spatial
scale at which the relationship between FSLEs and
the probability of presence of larvae emerges. Note,
however, that 3 different scales come into play in the
measurement of the hydrodynamic processes in the
sampling area:

(1) Eulerian spatial scale: scale given by the spatial
resolution of the velocity field. This scale represents
the effective scale that controls the dynamics that can
be inferred by the spatial and temporal resolution of
the satellite-derived geostrophic currents, in our case
limited to slow (weekly) and mesoscale structures
(10-100 km).

(2) Lagrangian spatial scale: scale of the dynamical
structures originated by the folding and stretching of
the fluid flow, which is given by the spatial resolution
at which the FSLEs are calculated. One of the signif-
icant properties of FSLEs is that they are able to
reveal oceanic structures below the nominal resolu-
tion of the velocity field being analyzed.

The scaling properties and robustness of the FSLEs
were investigated by Herndndez-Carrasco et al.
(2011), who reported that the spatial resolution at
which FSLEs are computed has a relevant effect on
the type of dynamical features that could be identi-
fied, showing that FSLEs have typical multifractal
properties. This means that FSLEs obtained at a finer
resolution than the resolution of a given velocity field
provide non-artificial information. In other words,
through FSLEs we can capture some effects of the
large-scale structures on scales which are smaller
than the resolution of velocity data. This is mainly
due to the capacity of the Lagrangian diagnostics to
exploit the spatiotemporal variability of the velocity
field by following fluid particle trajectories. Of
course, all effects derived from oceanographic pro-
cesses occurring at smaller scales than the measured
ones cannot be reconstructed (for example the ones
originating from small mixed layer eddies). In our

case, we used an altimetry-derived geostrophic veloc-
ity product provided by CMEMS; therefore, subme-
soscale processes cannot be resolved, and we were
only able to reconstruct the structures derived from
the interaction between mesoscale geostrophic struc-
tures (10-100 km). Following the algorithm provided
by Hernandez-Carrasco et al. (2011), daily FSLE sur-
face fields for the 4 years of study were computed for
the Western Mediterranean. We computed daily
maps of FSLEs at 2 spatial resolutions (Lagrangian
spatial scale), 8, = 1/8° and §, = 1/64°, and we used an
amplification factor, r, equal to 10 (see Eq. 1), to prop-
erly identify regions of maximum stretching.

(3) Smoothing scale: size of the surrounding area
that could be affected by the dynamical features,
which is given by the size of the averaging window
used in the spatial smoothing of FSLEs around the
sampling position.

To analyze the spatial scale at which the relation-
ship between FSLEs and the probability of larval
presence emerges, we followed an approach that has
already been applied in previous studies focused on
scale analysis in pelagic environments (Alvarez-
Berastegui et al. 2014, Schneider 2018).

(1) To compute the spatial smoothing of FSLEs, we
used a round polygon with different sizes that deter-
mine the scales (o), generating a variable called
FSLE,,. Variations in the spatial scale were performed
using a kernel matrix (circular convolution matrix,
using 1 and NA [not available, i.e. missing value] to
create a circular form). This procedure consists in the
following steps: (i) we used a square matrix with odd
dimensions, and placed the center element of the
kernel matrix over the source pixel. (ii) Each value of
the kernel was then multiplied by the corresponding
pixel (convolution); (iii) the resulting multiplied val-
ues were summed; and (iv) the resulting value from
(iii) was returned as the new value of the central
pixel. The source pixel was then replaced with a
weighted sum of itself and surrounding pixels ob-
tained from the convolution kernel application. The
output is placed in the destination pixel value. This
process is repeated across the entire image. The ref-
erence delta was 0.125° (9 x 9 pixels, ca. 13 km), and
the matrix was incremented by 0.125° until 1°.

(2) To assess the power of FSLEs to predict the
habitats of larval tuna, we evaluated the relationship
between daily FSLE, and the probability of the pres-
ence of bluefin tuna larvae using the formula:

Lpp=s(FSLE,, k=3)+¢ 2)

where Lpp is the larval presence probability; s is a
smooth function; k is the number of knots for the s



Diaz-Barroso et al.: Surface mixing and tuna larval habitat 75

function, and ¢ is the error term. The objective is to
identify the best spatial smoothing scale, comparing
the performance of the different outputs obtained
from modeling the Lpp against daily FSLE, (Eq. 2),
and following the statistical criteria mentioned at the
beginning. The FSLE smoothed at the spatial win-
dow that better accounts for larval presence is
termed 'FSLE-optimal smoothed' (FSLEos). Note that
we used daily fields of the FSLEos to be assigned to
each sampling location and time. Furthermore, we
calculated the time average of FSLEos over the
bluefin tuna spawning season in the 4 yr of study.
The aim is to show the hydrodynamic singularities of
the Balearic Sea with respect to other regions in the
Western Mediterranean Sea.

2.3.2. FSLE as a habitat descriptor variable

To evaluate of the potential improvement of the
models when FSLE is included, the first step explored
the potential correlation between the ‘basic’ and 'en-
vironmental hydrographic’ variables with FSLEos, as
an additional variable accounting for differences in
dynamical conditions, applying Pearson's correlation
coefficient; we then checked that there was no cor-
relation between them. These variables were se-
lected from previous studies in the area (Reglero et
al. 2012).

The evaluation was addressed by comparing the
results of 3 different models to explain larval pres-
ence from a binomial distribution. The first model,
considered the 'basic’ model, included basic stan-
dardization variables; time of day (‘hour’), filtered
volume during fishing (‘volume’), interannual vari-
ability (‘year’), day of the year (‘DOY’'). A second
model, denoted 'hydrographic’, also included habitat
environmental variables: average salinity in the mix-
ing layer (‘smixture’) and the variation in tempera-
ture of each day at the sampling station with respect
to the average value of the temperature of the year
(‘residualtemp’). The third model, the 'FSLEmodel’,
also included the FSLEos. The maximum number of
smoothing oscillations in the GAM evaluations was
set to 3 in order to avoid overfitting, except for the
time of day variable, which was assigned to 7. To
assess the effects of the different variables on the
presence of larvae, a variable selection approach was
applied on the basis of variable significance (p < 0.095)
and the lower AIC.

The selection of the presence probabilities in the
framework of this study was made for various rea-
sons. Firstly, the data set of larval abundances is

strongly skewed to low values, making the binomial
distribution adequate to explore relations with envi-
ronmental variables. This is the same approach
applied in the framework of the International Com-
mission for the Conservation of Atlantic Tunas
(ICCAT), where larval abundances are assessed
through delta-log normal models, in which presence
probabilities play a main role (Ingram et al. 2017,
Alvarez-Berastegui et al. 2021). Secondly, it is the
most relevant statistical parameter used today to
identify habitats of tuna larvae in the study area, not
only for bluefin tuna but also for other tuna species
(Alvarez-Berastegui et al. 2016, 2018)

3. RESULTS

3.1. Optimal spatial scale of FSLE describing
mesoscale mixing

We compared 2 different Lagrangian scales, i.e.
1/8° (same as the velocity grid) and 1/64°. While the
structures observed in the FSLE field at 8, = 1/8°
(Fig. 4a) are also captured in the FSLE at 9, = 1/64°
(Fig. 4b), new structures appear in areas previously
regarded as almost inactive. While the FSLE com-
puted at 1/8° (the same resolution as the velocity
field) identifies the main large structures, the compu-
tation of FSLE at 1/64° shows new structures in areas
previously regarded as almost inactive, such as
smaller eddies or thin filament-like structures origi-
nated by the twist and fold of the mesoscale eddies.
Close-ups of the sampling area (Fig. 4c,d) clearly
show that FSLE is able to unveil subgrid filament-
like structures when increasing the spatial resolution
of the FSLE field below the spatial resolution of the
velocity field, that is, using an initial pair separation
of 8y < 1/8°. The origin of these small-scale filaments
is the stretching and folding of fluid elements pro-
duced in the interaction between large eddies. This
suggests that the small-scale features captured from
FSLE computed at finer resolution provide an im-
proved quantification of the local mixing activity.

We then further analyzed the spatial scale around
the sampling location, at which the presence of lar-
vae is strongly related to the mixing process. The
spatial smoothing of the FSLE was computed for 8
different scales, oo. The AUC and AIC of the GAMs
computed with the finest FSLE (8, = 1/64°) at the dif-
ferent scales, o, are presented in a graphical scalo-
gram (Fig. 5). According to the statistical criteria, the
scale of 0.625° proved to be the optimal spatial scale,
i.e. with the lowest AIC and the highest AUC, and
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therefore the FSLE smoothed at
this scale was chosen as the opti-
mal FSLE (FSLEos) for the remain-
ing analyses. To illustrate the dif-
ference between the optimal and

Table 2. Summary of generalized additive models of bluefin tuna larvae presence
probability (Lpp): (1) initial model configuration; (2) model configuration after
variable selection process. AIC: Akaike's information criterion; AUC: area under
the curve; DOY: day of year; smixture: average salinity in the mixing layer; resid-
ualtemp: average value of the temperature of the year; FSLEos: optimal-smoothed

finite size Lyapunov exponent

the original scales in the FSLE
computations, Fig. 6 displays both

Model group Model variables

snapshots for 15 June 2011 with the
original resolution of 1/64° (Fig. 6a)
and the FSLEos with o = 0.625°
(Fig. 6b). While it is possible to
identify the mesoscale structures

Basic model

model
governing the flow dynamics, such
as filaments, fronts and eddies in
the instantaneous maps of FSLE (at FSLE model

a given time) at higher resolution,

AIC  Delta AIC AUC
(1) Lpp = volume + DOY + hour 516.856 0 0.758
+ year
(2) Lpp = DOY + year 514.120 2736  0.756
Hydrographic (1) Lpp = DOY + year + smixture  506.639 10.218 0.774
+ residualtemp
(2) Lpp = DOY + year 508.473 8.384  0.769
+ residualtemp
(1) Lpp = DOY + year 496.911 19.946  0.790
+ residualtemp + FSLEos

the FSLEos map shows the sur-
rounding effect of mixing restricted
by areas.

3.2. Predictive power of mixing activity in the
larval habitat

The 3 models tested to evaluate of the potential im-
provement present different performances (Table 2).
The ‘basic’ model shows the lowest performance
(highest AIC and lowest AUC) and retained the
variables DOY and year, and the ‘hydrographic’
model retained DOY, year and residualtemp, show-
ing the relevance of the latter variable. The 'FSLE-
model’ retained DOY, year, residualtemp and
FSLEos. In this last model, smixture was excluded,
as it had no significant effect on larval presence.

a)

44
42

40

Latitude (°)

38

b)

This demonstrates that FSLEos has a higher predict-
ing power than salinity. Regarding the functional
responses of the variables included in the FSLE
model, both DOY and the residual temperature
have a positive response (Fig. 7a,d) to the presence
of larvae, while FSLEos shows a dome-shaped
effect on larval presence, with a maximum at mod-
erated values of 0.1 d™! (Fig. 7c). The response of
the binomial model on larval presence probabilities
classified for real presences and real absences
(Fig. 8) shows that the FSLE model provides high
probability values for stations where larvae are
present in the fishing tows and a wide range of
probability values for stations with no larval catches.
This confirms that FSLEos improves the predictive
power of the larval presence model.
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Fig. 6. Snapshots of the finite size Lyapunov exponent (FSLE) field for 15 June 2011, corresponding to (a) original FSLE
computed at §; = 1/64° and (b) the ‘optimal smoothed' FSLE (FSLEos) at the optimal scale of 0.625°
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Fig. 7. Response effects of the larval presence probabilities of the generalized additive model (‘FSLEmodel’) for the vari-

ables: (a) day of the year, (b) year, (c) optimal-smoothed finite size Lyapunov exponent (FSLEos) and (d) residual temperature

(residualtemp). The black lines on the x-axis represent the number of samples we found in each value for the different
variables. The black line corresponds to the mean and the gray band is the standard deviation

3.3. Spatial and temporal hydrodynamic
singularities during the spawning season

Instantaneous maps of FSLEs (at given time) have a
significant signature of short-lived fast processes and
are adequate to extract LCS, but in this research, we
were also interested in slower processes at larger
scales. We therefore took time averages of FSLEs
over the spawning periods, in order to select the low-
frequency, large-scale signal. In this way, we can
easily characterize regions in the Western Mediter-
ranean with different horizontal mixing activity;
areas with larger values of FSLEos are identified as
zones with more persistent horizontal mixing. In this
study, the temporal averaged FSLEos over June and
July (the spawning season) for the 4 sampling years

showed a predominant and persistent effect of mix-
ing restricted by areas. We found high values of mix-
ing activity in the Alboran Sea, in the eastern Gulf of
Lion and in the Algerian basin (Fig. 9). Large FSLEos
values (20.2 d™') were obtained in this basin as the
result of the mesoscale activity induced by the pres-
ence of the intense vortices located in the Alboran
Sea and their associated frontal dynamics, and the
continuous detachment of eddies formed by flow—
topography interaction in the Algerian Current. The
Balearic Islands and the north of the Algero-Provencal
basin present medium-low FSLE values (<0.1 d).
This high spatial variability of averaged FSLE re-
veals the Balearic basin as a particular hydrodynamic
region characterized by low values of FSLE, as com-
pared to the rest of the Western Mediterranean, dur-
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Fig. 8. Finite size Lyapunov exponent (FSLE) model predic-

tions of larval presence probabilities for the study data set

(blue: predictions for samples with larvae presence in the

fishing tow; pink: prediction probabilities for stations with
no larvae catches)

ing the spawning period. This result suggests that
mild mixing activity favors larval habitats.

Another convenient quantity used to characterize
mixing in a prescribed geographical region R was
introduced by d'Ovidio et al. (2004), which is simply
the spatial average of the FSLE over that region at a
given time, denoted by < FSLE(x,y,t) > R. This allows
further investigating the temporal variability of the
mixing activity in the different regions of the West-
ern Mediterranean. In this way, mixing activity was
also assessed by spatially averaging the FSLEs over
the different regions in the years 2011-2014. The
analyzed regions were: the Western Mediterranean
Sea, the Gulf of Lion (Fig. 1, box A), the Algerian
coastal basin (Fig. 1, box C) and the Balearic Sea
(Fig. 1, box B). These regions were selected based on
their particular hydrodynamical characteristics. The
Balearic Sea area was determined by the in situ sam-
pling grid area for the study years. We selected the
other 2 areas following hydrographic criteria. Both
regions are characterized by well-known hydro-
graphic features. In particular, they are characterized
by the presence of boundary currents, one of the
major mesoscale features of the Western Mediterran-
ean. The Gulf of Lion area includes the Northern Cur-
rent (Mediterranean waters), and the Algerian basin
includes the Algerian Current (Atlantic waters). We
use rectangular shapes as they naturally cover the
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Fig. 9. Optimal-smoothed finite size Lyapunov exponent

(FSLEos) mean values in the study area during the bluefin

tuna spawning season (June and July) for the 2011-2014
period

hydrographic areas of interest. The use of more com-
plex shapes should not change the results. Finally,
the resulting time series were compared between
these areas, including the seasonal signal and focus-
ing on the regional differences the FSLEs during the
spawning season. Spatial averages of FSLE values
for every day during the 4 yr (2011-2014) of data are
shown in Fig. 10. It is worth noting that the mixing
intensity, as compared to the averaged FSLE values
over the Western Mediterranean basin, is typically
larger in the Gulf of Lion, likely due to the intensifi-
cation of the Northern Current, and in the Algerian
basin, caused by the large eddy activity associated
with the Algerian Current, while lower FSLE values
are clearly identified over the Balearic Sea in compar-
ison to the other study regions. Furthermore, the
mean mixing activity does not show a seasonal signal
over the Western Mediterranean, nor over the Alger-
ian basin, and only slightly over the Gulf of Lion.
However, the Balearic region shows clear seasonal
variability with maximum values in autumn or spring
and minimum values (around 0.11 d°') in summer, in
particular during the months of the spawning period
(June and July). This spatial and temporal consis-
tency in the low mixing values and the high presence
of larvae strongly suggests that the ocean dynamics
could play an important role in the shaping of the
spawning habitat area of the bluefin tuna. We found
additional characteristic scales of variability at higher
frequencies (around 3 wk for the Algerian basin and
the Gulf of Lion and around 6 wk in the Balearic Sea
and in the Western Mediterranean basin), with no
relationship to the presence of larvae.
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Fig. 10. Time series (2011-2014) of the finite size Lyapunov exponent (FSLE) (at 1/64°) spatial average (solid line) and the stan-
dard error (stderr) (dashed line) over the Algerian basin, Balearic Sea, Gulf of Lion and the Western Mediterranean Sea. Time
range highlighted in grey shows the bluefin tuna spawning season (Reglero et al. 2012)

4. DISCUSSION

In this work, we explored how sea surface mixing
activity, parameterized from FSLEs, provides new
information on the environmental characteristics that
define Atlantic bluefin larval habitats in the Western
Mediterranean. On one hand, through spatial analy-
sis, we revealed the scale of observation that maxi-
mizes the information regarding the spatial distribu-
tion of these habitats, i.e. 0.625° (FSLEos), and the
particularities of the mixing activity in the spawning
ground at the basin scale. On the other hand, and
through temporal analysis, we showed that surface
mixing activity in the Balearic Sea area during the
spawning season (June and July) is lower than the
general values at the scale of the Western Mediter-
ranean basin. These results suggest that this hydro-
graphic characteristic may be influential on the spa-
tial-temporal distribution of the spawning sites. Our
findings shed new light on how surface hydrodynam-
ics affect the ecology of early life stages of bluefin
tuna in an area where the relevance of mesoscale
features, such as eddies and fronts, on larval distribu-
tions have been reported (Alemany et al. 2010,
Reglero et al. 2012, Alvarez-Berastegui et al. 2014,

Druon et al. 2021), but where the role of sea surface
mixing was not examined. Investigating whether
these results are consistent with other species and
other areas could provide helpful advances in the
discipline of pelagic seascape ecology, focused on
disentangling how the spatial structure of the pelagic
realm affects the ecology of the species (Alvarez-
Berastegui et al. 2014, Pittman 2018).

One of the main findings of our study is that the
presence of bluefin tuna larvae is not correlated with
high values of FSLEs, which identify the presence of
LCSs (Herndndez-Carrasco et al. 2011, Bettencourt
et al. 2012), but is correlated with areas where FSLE
values are low/moderate (i.e. mild mixing). The
FSLEos values at which the occurrence of larvae
were most probable were around 0.1 d~! and corre-
spond to medium-low levels of sea surface mixing
(Hernédndez-Carrasco et al. 2012). This pattern of
higher probability of larval occurrences at moderate
turbulence is consistent with previous results show-
ing that strong turbulence has a negative effect on
larvae by disaggregating food and larvae patches
(Saville 1965, Peterman & Bradford 1987) and on
recruitment (Lasker 1981a, Mais 1981). This is con-
sistent with both classical theory, and evidences that
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fitness of early life stages is maximized at intermediate
values of mixing activity following the OEW hypo-
thesis (Cury & Roy 1989). The OEW was proposed to
explain the recruitment process on the basis of a
trade-off between physical and biological constraints
(i.e. food availability, predator presence). Evidence
of the OEW has been shown in several studies over
regional scales, particularly in small pelagic fish and
upwelling systems (e.g. Guisande et al. 2001, Dian-
kha et al. 2018), while never, to our knowledge, at
such small scales as we have shown here. Also, the
‘stable ocean' hypothesis suggests that high turbu-
lence processes in the euphotic layer can increase
larval mortality by reducing the availability of their
planktonic prey (Lasker 1975, 1978, 1981b).

The established mechanistic role of the flow struc-
tures identified by LCS, i.e. fronts, eddies and fila-
ments of high turbulent mixing, is regulating primary
production through upwelling and aggregating pro-
cesses (Lévy et al. 2018, Hernandez-Carrasco et al.
2018). This generates strong dynamical interfaces
identified as hot spots of marine food and therefore a
target for predators (Tew Kai et al. 2009, Abrahms et
al. 2018). The fitness of bluefin tuna during the early
life stages could therefore be benefited by hydrody-
namic environments associated with low to moderate
FSLE values, that is in the absence of intense LCS
which occurs in the Balearic Sea in comparison to
other areas in the Western Mediterranean. This agrees
with identified strategies of bluefin tuna larvae, that
occupy areas spatially distributed to avoid predation
from species such Pelagia noctiluca ephyrae (Ottmann
et al. 2021) and for which cannibalistic strategies seem
to play a key role for survival strategies (Reglero et
al. 2011, Uriarte et al. 2019).

At a regional scale, our results reveal that during
the time of spawning, the predominant mean values
of the FSLEos in the Balearic Sea are lower (close to
0.1 d7') than in surrounding areas of the Western
Mediterranean Sea (Figs. 9 & 10). It is known that the
spawning grounds are associated with the oceanic
front located in the Balearic sea generated by the
mixing of the incoming Atlantic waters from the
Strait of Gibraltar and the more resident Mediterran-
ean waters (Alvarez-Berastegui et al. 2014), but these
new results show that remote sensing observations
parameterized through the FSLEos provide addi-
tional information to describe the environmental sig-
nals that mark the spatial distribution of adequate
habitats for bluefin tuna larvae. Also, this analytic
tool provides a quantitative measurement to parame-
terize oceanographic surface processes identifying
LCSs, and therefore transport barriers, which deter-

mine the general transport template of particles in
marine flows. This opens the possibility of identifying
and developing new variables and ocean monitoring
indicators, which are key for the integration of the
hydrodynamic variability into the study of the ecol-
ogy of a species (Hobday & Hartog 2014), and for the
application of operational oceanography to respond
to the challenges of the SDG14 and the UN's Decade
of Ocean Science for sustainable development (Tin-
toré et al. 2019).

The FSLEos showed a higher predictive power to
explain larval occurrences than salinity values in the
mixed layer depth. Salinity is a proxy for the location
of the front in the area and has been one of the most
relevant explanatory variables used in previous stud-
ies for identifying tuna larval habitat distributions
(Alemany et al. 2010, Reglero et al. 2012, Alvarez-
Berastegui et al. 2014). The higher relevance of the
FSLEos compared to the salinity found in this study
reveals the potential of applying these metrics to
improve quantitative identification of larval habitats
to standardize interannual variability in larval abun-
dances. The habitat standardization to improve lar-
val abundance estimations is applied for the bluefin
tuna population assessment models by the scientific
groups of the ICCAT to assess the total allowable
catch of this species and other tunas (ICCAT 2017,
Ingram et al. 2017, Alvarez-Berastegui et al. 2018).

One of the limitations of the ichthyoplankton sur-
veys is that they provide real presence of larvae
when they are found in the catches, but they do not
provide real absences when they are not present in
the catch. The different possible scenarios are (1)
probability of presence and being detected, (2) prob-
ability of presence and not being detected and (3)
probability that they are not present and therefore
are not detected (Steventon et al. 2005). The exis-
tence of the second case influences the capacity of
downward predictive models regarding absences,
and this limits the effectiveness of the binomial mod-
els to detect the real absences, as shown by the
selected binomial model which included the FSLEos.
This result should be considered when developing
larval distribution models.

This study proves the importance of considering
sea surface mixing processes when studying the
early life ecology of bluefin tuna in the upper water
column, and it contributes to advance the integration
of environmental variability into the standardization
of abundance indices used for fisheries assessment,
a relevant path for the practical implementation
of ecosystem-based fisheries management (Skern-
Mauritzen et al. 2016). FSLE metrics could indeed
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be relevant for improving knowledge of the spawn-
ing and early life stage survival of other pelagic spe-
cies evolutionarily adapted to maximize opportuni-
ties provided by mesoscale processes in the upper
water column, such as tuna and swordfish species,
but also small pelagic fish. Further research is needed
to implement these metrics in modern stock assess-
ments and management practices.
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