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NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and
transformed cells, being one of the main executors of cell death in the immune system. NK
cells recognize target cells through an array of inhibitory and activating receptors for
endogenous or exogenous pathogen-derived ligands, which together with adhesion
molecules form a structure known as immunological synapse that regulates NK cell
effector functions. The main and best characterized mechanisms involved in NK cell-
mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the
expression of death ligands. These pathways are recognized as activators of different cell
death programmes on the target cells leading to their destruction. However, most studies
analyzing these pathways have used pure recombinant or native proteins instead of intact
NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be
difficult. Specially, since the activation of granule exocytosis and/or death ligands during
NK cell-mediated elimination of target cells might be influenced by the stimulus received
from target cells and other microenvironment components, which might affect the cell
death pathways activated on target cells. Here we will review and discuss the available
experimental evidence on how NK cells kill target cells, with a special focus on the different
cell death modalities that have been found to be activated during NK cell-mediated
cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and
pyroptosis. In light of this new evidence, we will develop the new concept of cell death
induced by NK cells as a new regulatory mechanism linking innate immune response with
the activation of tumour adaptive T cell responses, which might be the initiating stimulus
that trigger the cancer-immunity cycle. The use of the different cell death pathways and the
modulation of the tumour cell molecular machinery regulating them might affect not only
org May 2022 | Volume 13 | Article 8962281
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tumour cell elimination by NK cells but, in addition, the generation of T cell responses
against the tumour that would contribute to efficient tumour elimination and generate
cancer immune memory preventing potential recurrences.
Keywords: NK cells, cell death, granzymes, perforin, granule exocytosis, death receptors, immunological cell death
INTRODUCTION

Natural killer (NK) cells are effector cells of the innate immune
system that play a key role in the control of intracellular
pathogens and tumours, especially against those that evade
adaptive immunity by interfering with MHC-mediated antigen
presentation (1). Indeed, unlike its counterparts in the adaptive
immune system, cytotoxic CD8 T cells, NK cells preferentially
eliminate cells that have downregulated MHC expression. NK
cells sense their environment through both cytokine receptors
and germline-encoded activating and inhibitory receptors
specific for endogenous danger or pathogen signals. Cytokine
receptors are mainly involved in NK cell proliferation and
acquisition of functional molecules (including receptors and
cytotoxic and immunoregulatory molecules) and trafficking to
inflamed tissues where they will search for affected cells; while
activating and inhibitory receptors modulate NK cell activation
and recognition and elimination of target cells, which will be the
main focus of this review.

NK cells are professional killer cells that recognize and rapidly
destroy cells that are dangerous to the host, like stressed, infected,
or transformed cells, contributing to viral and cancer immune
surveillance (2, 3). NK cells are a heterogeneous and plastic
population acquiring different phenotypes and functions
depending on the tissue context and signalling cues they are
exposed to. In general, human NK cells are phenotypically
identified by the expression of CD56 in the absence of CD3 (4, 5).

Human NK cells are mainly classified into CD56Bright and
CD56Dim subsets based on cell-surface CD56 density and their
cytotoxic potential; these subsets differ in function, phenotype, and
tissue localization. CD56Dim subset represents more than 90% of
peripheral blood NK (pNK) cells and expresses high levels of the
cytotoxic molecules perforin and granzyme B as well as the
activating CD16 IgG Fc receptor and different members of killer
Ig-like receptors (KIRs). They are highly cytotoxic and also
produce cytokines after recognizing activating ligands expressed
on target cells. In contrast, the subset of CD56Bright NK cells is rare
in blood and preferentially reside in secondary lymphoid organs,
such as lymph nodes, and express low perforin, granzyme B and
killer Ig-like levels receptor, responding with strong cytokine and
chemokine production to soluble factors (6, 7).

Despite this heterogeneity, NK cells are still mainly
recognized by their ability to kill infected and transformed
cells, a process known as NK cell-mediated cytotoxicity.
Activation of NK cell-mediated cytotoxicity is controlled by
the balance between inhibitory and activating signals
transduced by several inhibitory and activating receptors
specific for pathogen and/or host cell derived ligands (1–3).
Once NK cells are activated and recognize the target cell, they
org 2
will make use of an arsenal of molecular mechanisms capable of
executing target cell death. The main mechanisms involved in
NK cell-mediated cytotoxicity are the granule exocytosis
pathway (perforin/granzyme) and the expression of death
ligands (8), which have been traditionally described to activate
apoptotic target cell death. However, more recent, indirect
evidence suggests that other types of programmed cell death
could be induced by NK cells like necroptosis or pyroptosis,
leading to enhanced inflammatory responses (9). The final
consequence of this process is not only the elimination of the
target cell, but in addition, depending on the way how target cells
die, it will modulate secondary adaptive immune responses that
will further enhance pathogen or tumour elimination (9). This
review will present and discuss the key mechanisms used for NK
cells to regulate and induce cell death in three parts (Figure 1): 1-
signals required to recognize the target cell and activate the NK
cell intracellular cytotoxic machinery; 2- the role of different
cell death pathways activated in the target cells during NK-cell
mediated killing and 3- the emerging evidence on how cell death
induced by NK cells might be a novel immunoregulatory
mechanism linking innate and adaptive immune responses.

For reasons of clarity and length, in this review, we will focus
on the main mechanisms involved in the cytotoxic function
mediated by NK cells and their biological relevance, without
analyzing the function of these mechanisms in other cells that
present similar effector molecules such as CD8+Tc cells. Other
excellent reviews have presented a more general view of some of
these mechanisms, not only focused on NK cells (8, 10–13).
FIRST ACT: JUDGES AND HANGMEN IN
NK CELL-MEDIATED CYTOTOXICITY

Specific Receptors Dictate the Killing of
Target Cells
As mentioned, NK cells present a complex germline-encoded
system of inhibitory and activating receptors that help them
sense microenvironmental changes due to infection or
transformation, some of them related to the activation of
cellular stress pathways(Figure 1) (14). The best characterized
families for these receptors are NKG2 (NK group 2), KIR (killer
Ig-like receptor), the structurally related proteins ILT/LIR (Ig-
like Transcripts/leukocyte immunoglobulin-like receptor) and
the natural cytotoxicity receptors (NCRs). NKG2 and KIR
families are comprised of inhibitory and activating members
that recognize host cell proteins, including stress ligands
(NKG2D) and HLA class I molecules (NKG2A, NKG2C, ILT/
LIR and KIR); while NCRs (NKp30, NK44, NKp46 and NKp80)
May 2022 | Volume 13 | Article 896228
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are mostly activating receptors that recognize a broad range of
pathogen and host-derived structurally diverse ligands (2). Some
recent evidence indicate that some splice variants of NCRs,
specially of NKp44, might work as inhibitory receptors (15,
16). The main activating and inhibitory receptors as well as
their ligands are summarized in Figure 2. A more detailed
description of these families is out of the scope of this review
as it has been the topic of excellent recent reviews (17–19).

The typical structure of a NK cell receptor is an
immunoglobulin-like or c-type lectin-like extracellular domain,
a transmembrane domain that promotes clustering, and, some of
them, mostly activation receptors, adapter proteins to signalling
including CD3z, the Fc receptor common gamma-chain, DAP10
or DAP12. Activating receptors deliver a strong intracellular cue
resulting in rapid and transient phosphorylation of the
Immunoreceptor Tyrosine-based Activation Motif (ITAMs).
This signal functions as ‘on and off’ switches that links the
receptors to their intracellular signalling machinery working as
temporal scaffolds for Src homology 2 (SH2) domains of
downstream effector molecules. In the inhibitory receptors, the
phosphorylated tyrosine-based inhibitory motifs (ITIMs) act as
docking sites for recruiting the SHP-1 protein tyrosine
phosphatase, preventing cellular activation (8).

Besides all these NK cell receptor families, other receptors
have important implications in the activation of NK cell
Frontiers in Immunology | www.frontiersin.org 3
cytotoxicity. From all of them, it is worth mentioning CD16
(FCgRIIIa), the low-affinity receptor for the IgG1/3 Fc domains,
with strong positive signalling in NK cells that enables the
characteristic antibody-dependent cell-mediated cytotoxicity
(ADCC) (20, 21). CD16 has been reported to be the most
potent activating receptor of NK cell mediated target cell
killing triggering degranulation (22). Other receptors like
members of the SLAM family seems to be more involved in
the regulation of NK-target cell adhesion than in a direct
regulation of cell degranulation (23).

Thus, the balance between the intracellular signals triggered
by activating and inhibitory receptors after they bind their
respective ligands on target cells will dictate the activation of
the intracellular cell cytotoxic machinery and the execution of
the target cell. This process is triggered after the formation of a
supramolecular signalling structure on the contact zone
between NK and target cells known as NK cell immunological
synapse (IS).
The NK Cell Immunological Synapse
Triggers the Cytotoxic Machinery
NK cell effector functions require a direct tight contact with
target cells, ensuring their specific and efficient elimination.
Target cell binding by receptor-ligand interaction and
FIGURE 1 | Overview of the execution and functional consequences of NK cell mediated cytotoxicity. Target cell recognition through NK cell receptor-ligand
interaction and formation of the immunological synapse with a pro-activating signals balance promote NK cell activation. Upon activation, NK cells exert their effector
functions, granule exocytosis, or expression of death ligands, inducing target cell killing by regulated cell death (apoptosis, necroptosis, or pyroptosis). Target cell
death generates Danger Associated Molecular Patterns (DAMPs) and releases tumour antigens, which induces adaptative immune system activation.
May 2022 | Volume 13 | Article 896228
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execution of the effector function occurs within the IS, where the
stimuli triggered by NK cell receptors are integrated, resulting in
a highly polarized response (24). The prototypical NK cell IS is
performed through a linear sequence of required events:
recognition, initiation, effector and termination. The initial
stage of the immunological synapse is NK cell-target cell
interaction by a receptor arbitrarily distributed over the NK
cell surface, followed by establishing a strong association by
adhesion molecules, mainly LFA-1 integrin (25). LFA-1 is
essential due to the promotion of actin reorganization in NK
cells (26). Actin polymerization and polarization are controlled,
besides LFA-1, by ITAM and ITIM domains in adhesion,
activating and inhibitory receptors. In the absence of prevailing
inhibitory signals that can arrest progression to the effector stage,
actin reorganizations mobilize the microtubule-organizing
center (MTOC) to the immunological synapse while recruiting
the lytic granules generating a highly polarized response (24).
Then the cytotoxic granules are fused with the synaptic
membrane through a process driven by SNARE family
proteins like SNAPs and VAMPs (27). Synaptic cleft acts as a
protective pocket, increasing lytic effector molecule
concentration on target cells while protecting neighbouring
cells from potential uncontrolled damage. Finally, detachment
is necessary to allow cytolytic recycling of NK cells (24).

The Main Executors of NK Cell-Mediated
Killing
Upon activation, NK cells can kill target cells through two
complex mechanisms: the release of cytotoxic granules
containing perforin, granzymes and granulysin (the last
only in humans), and via death ligands, such as Fas ligand
Frontiers in Immunology | www.frontiersin.org 4
(FasL), and TNF-related apoptosis-inducing ligand (TRAIL),
(Figure 3) (28).

Human NK cells present specialized cytosolic granules that
contain several cytotoxic proteins, including the pore-forming
proteins (perforin, granulysin) and a family of serine proteases
called granzymes (gzm): 5 in humans (A, B, K, M, and H) and 10
in mice (A, B, C-G, K, M, N). Gzm enzymatic activity is maximal
at neutral pH, and like most proteases, gzms are synthesized as
inactive zymogens (proenzymes) that must be proteolytically
processed in order to become enzymatically active. All known
gzms contain an inhibitory dipeptide and a N-terminal signal
peptide that directs it to the endoplasmic reticulum (ER) (28, 29).
The signal peptide is cleaved off, resulting in the proenzyme,
which is then modified in the cis compartment of the Golgi
apparatus by the N-acetylglucosamine-1-phosphodiester a-N-
acetyl-glucosaminidase with a mannose-6 phosphate (M6P)
moiety to provide a sorting signal that directs gzms to the
secretory granules via the M6P-receptor (30). Once in the
granule structures, M6P may be removed due to the acidic
environment (pH 5.5) (31). M6P-independent pathways of
sorting of gzms to granules have been described, which might
involve other molecules like the proteoglycan Serglycin, although
the detailed molecular mechanisms remains unclear (30, 32).
Intringuingly these works found that sorting of GzmA to
granules is differentially affected by Serglycin deficiency in
comparison with sorting of GzmB, suggesting that trafficking
and/or sorting of gzms to granules is a more complex process
than previously though. Once in the granules, the cysteine
proteases cathepsin C or cathepsin H remove the inhibitory
dipeptide to produce the mature and enzymatically active
proteases. Similar to CD8+Tc cells, different studies, mainly
FIGURE 2 | The major activating and inhibitory NK cell receptors and their ligands on target cell. The NK cell activation is mediated by the balance of activating and
inhibitory signals that can trigger NK cell effector functions. NK cell receptors families are displayed (NKG2, KIR, NCR and Immune checkpoints) as well as CD16 and
DNAM1 activating receptors. Each receptor is represented showing their immunoglobulin-like or lectin-like extracellular domains, its oligomerization (NKG2D
homodimer, NKG2A and NKG2C heterodimer with CD94), its associated adapter (DAP10, DAP12 or CD3z/FcϵRIg), and their intracellular signalling domains if
applicable. Intracellular activator domains (green) ITAM and YINM promote positive activation signals, represented by a plus sign, and inhibitory domains (red) ITIM,
KIEELE and ITISM trigger inhibitory signals represented by a minus sign. The major ligands of each receptor are represented.
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using mouse NK cells, have confirmed the role of cathepsin C or
H in the generation of active gzms NK cells (33–37). Indirect
evidences, using a drug that downregulates cathepsin C
expression, all-trans retinoic acid, also suggest a role for
cathepsin C in the activation of gzmB in human NK cells,
albeit confirmation using a more specific experimental
approach will be required (36). Gzms are then stored in their
active form mainly associated with the proteoglycan serglycin
that might act as scaffold, binding granule components to form
an insoluble complex visualized as the granule core. In mouse
models it has been demostrated that serglycin plays important
roles in different granule-associated functions like maturation of
dense-core cytotoxic granules or the trafficking and storage of
perforin and gzms. In addfition, it might prevent self-damage
due to the cleavage of host cell proteins (30, 32, 38). Although a
direct role of serglycin in granule secretion has not been shown
in human Tc/NK cells, gzmB-serglycin complexes have been
identified in granules of human NK cells (38). In addition, the
low pH limits gzm activity inside the granules (30, 38).

A study using mass cytometry to profile the expression of
cytotoxic molecules in peripheral blood mononuclear cells
found that human NK cell subsets have differential
expression of cytotoxic molecules: CD56Bright NK cells
showed low gzmB,perforin and high gzmK expression. In
contrast, CD56Dim NK cells showed high gzmA, B and
Frontiers in Immunology | www.frontiersin.org 5
perforin and low gzmK expression (39). Other studies by flow
cytometry indicated that CD56Dim cells have at least ten times
more perforin and gzmA than CD56Bright ones (40, 41).
However, these results might depend on the pathology and
the tissue where they were gathered since it was recently shown
that CD56Bright cells in the synovium of osteoarthritis patients
express high levels of gzmA, similarly to those found in synovial
CD56Dim NK cells. In contrast, the level of gzmB in
synovial CD56Bright cells was significantly lower than in
synovial CD56Dim NK cells (42). The high expression of
gzmA in the non-cytotoxic CD56Bright subset supports recent
findings indicating that gzmA is involved in processes
unrelated to cell-mediated cytotoxicity, like the regulation of
the inflammatory responses and extracellular matrix
remodelling (8, 13, 43–48).

In contrast to gzms, that are expressed by different immune
cell populations, including cytotoxic and non-cytotoxic cells
(44), perforin is uniquely expressed in cells with cytotoxic
potential such a NK cells. It is a glycoprotein that, in the
presence of calcium, has the ability to insert into lipid bilayer
membranes, polymerize and form structural and functional
pores allowing gzms delivery into the target cell. Perforin
deficient mice are more sensitive to tumour development,
including NK-cell sensitive tumours (10, 12, 44). In contrast
the role of NK cell-associated gzms in the control of tumour
FIGURE 3 | NK cell cytotoxicity is mediated by the release of cytotoxic granules and death ligands. Cytotoxic granules secretion containing perforin induces pore
formation, allowing internalization of granzyme (gzm). Gzm initiates apoptosis cleaving intracellular substrates such as effectors caspase-3 and caspase-7. In addition,
gzmB can cleave the BH3-only protein Bid to generate the truncated t-Bid or the anti-apoptotic protein Mcl-1 to release Bim initiating the mitochondria outer membrane
permeabilization (a process known as MOMP), the release of cytochrome c and other proapoptotic factors promote the formation of the apoptosome, caspase 9
activation, and the full activation of caspase-3 and -7 to execute the apoptotic process. Gzms and Caspases can also cleave and activate gasdermins (GSDMs), linking
apoptosis to pyroptosis or directly activating pyroptosis. Membrane or soluble death ligands (TNF-a, FasL and TRAIL) can induce cell death through their death receptor
(TNFR1, Fas, and DR4/DR5, respectively). Ligand-receptor interaction generates receptor trimerization and its intracellular death domains clustering inducing Complex I
(CYLD, TRAF2, cIAP1/2, TRADD, RIP1) formation in the case of TNFR1. RIP1 de-ubiquitination induces Complex IIa formation. However, Fas or TRAIL death ligands
trimerization promotes the death-inducing signalling complex (DISC) formation, which is similar to Complex IIa in conformation and performance. In the DISC or Complex
IIa, Caspase-8 auto-cleaves leading to apoptosis pathway (involving Bid and/or caspase-3), while caspase-8 inactivation induces Complex IIa transformation in IIb, which
drives phosphorylated-RIP3 and MLKL ion pore-forming, resulting in ion disbalance and necroptosis cell death.
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development is still not clear. Some studies have found that
gzmA/B KO mice are more susceptible to NK-sensitive tumours
than wt mice, while others have found no difference (49, 50).

As indicated above other molecules within cytotoxic granules,
like serglycin, regulate the cytotoxic function of perforin and
gzms. Recently, it has been described in human NK and CD8+Tc
cells that the release of perforin and gzmB is performed in
approximately equal amounts of soluble and stable complexes,
called supramolecular attack particles (SMAPs) which were
composed of a core shell structure and were assembled in the
dense secretory granules before release (51, 52). The SMAPs, that
were found in both human CD8+Tc and NK cells, consist of a
core of gzms, perforin and serglycin proteoglycans, and galectin-
1 surrounded by a glycoprotein shell that includes
Thrombospondin 1 (TSP-1), a Ca2+-binding glycoprotein (52).
It is notable to point out that these studies have been performed
in human cells. When the content of lytic granules is released
into the IS, the subsequent uptake of gzms by the target cell
through pores generated by perforin initiates the death program
that will eventually lead to cell elimination. The gzm and perforin
complexing within SMAPs may offer a mechanism to increase
localized perforin concentrations in target cell membranes or
prevent toxic proteins from leaking out of the synaptic cleft.
Although alternative models have been proposed, such as the
internalization of the gzm–Prf–Srgn complexes in endosomes
(53, 54).

More recent experimental evidence indicate that perforin-
mediated pore formation on the target plasma cell membrane is
the key event for the intracellular delivery of gzms (55–57).
Although perforin-independent cytotoxic functions of gzms have
been described, their relevance during NK cell-mediated target
cell killing is not clear and will not be discussed here (44).

Death Ligands
In addition to NK cell-mediated killing by cytotoxic granules,
activated NK cells can induce cell death in target cells through
activating the death receptor pathway. Here a protein, known as
death ligand, produced by the effector cell binds to the respective
receptor expressed on the target cell membrane triggering target
cell death. NK cells express different death ligands with potential
cytotoxic activity like TNFa, Fas ligand (FasL), and/or TRAIL.
However, from all of them, only FasL and TRAIL have been
shown to act as direct cytotoxic molecules during NK-cell
mediated cell killing in humans and mice. The use of one or
more ligands by NK cells seems to be influenced by the
susceptibility of the target cell and/or the stage of NK cell
maturation and/or activation (58, 59).

These ligands belong to the TNF family and are naturally
expressed by immune cells, including NK cells, granulocytes,
monocytes, T cells, B cells and dendritic cells, among others (60).
They are transmembrane proteins that can be proteolytically
cleaved and released in a soluble form or forming part of
microvesicles (61–67). In contrast to soluble FasL that does not
present bioactivity, both soluble TRAIL and TNF-a mediate
different biological activities including killing of cancer cells (68).
Death receptors are type I transmembrane proteins with
extracellular domains rich in cysteine and a 80-amino acid
Frontiers in Immunology | www.frontiersin.org 6
conserved sequence in the cytoplasmic domain called death
domain (DD). When the ligands are bound to their receptors,
DD induces receptor trimerization and recruitment of Fas-
associated death domain (FADD)/caspase-8 complex, which
triggers cell death (Figure 3). In addition, to activate different
cell death modalities, depending on the composition of the
signalling complexes formed after ligand-receptor interaction,
some of these receptors can activate the NF-kB pathway involved
in pro-survival signalling, proliferation and/or cytokine
production, depending on the composition of the signalling
complexes formed after ligand-receptor interaction (69–72).

TNFa is a type II transmembrane protein that is cleaved and
released as a soluble form after processing by TNF-a-converting
enzyme (TACE), that mediates its biological activity by binding
to TNF receptor 1 (TNF-R1 or DR1) and TNF receptor 2 (TNF-
R2). TNF-R1 is classified as a death receptor since it possesses a
DD, so it can trigger cell death under certain conditions, whereas
TNF-R2 lacks a DD and belongs to the non-death receptor group
of the TNF receptor superfamily (TNFRSF).

FasL (CD95L), a type II transmembrane protein, is expressed
in NK cells and interacts with DR2 (Fas or CD95) and DcR3 (73,
74). DcR3 inhibits FasL/Fas activity, thus acting as a fake
receptor (75). However, when FasL binds to Fas, it starts the
clustering of the receptor leading to cell death. TRAIL, as FasL, is
a transmembrane protein type II and modulates the immune
response (76). TRAIL can bind to three decoy receptors: DcR1
(TRAIL-R3), DcR2(TRAIL-R4), OPG, and two DR: DR4 and
DR5. TRAIL is known to induce apoptosis in transformed cells
while sparing the non-transformed ones (77, 78).

In addition to their role in regulating peripheral tolerance and
immune cell homeostasis, FasL and TRAIL have been shown to
contribute to NK-cell mediated cell killing and tumour
immunosurveillance in mice and humans (3, 58, 59, 73, 79, 80).

As indicated above, the use of TNFa by NK cells as a molecule
with direct cytotoxic capacity against cancer cells is not clear.
However, it has been shown to modify the cancer cell
susceptibility to NK cells by modulating the expression of
molecules involved in target cell recognition and IS formation
like members of ICAM family (81, 82).

NK Cell Effector Function Dynamics
As mentioned above, NK cell cytotoxicity is mediated by the
directed release of preformed cytotoxic granules and the
expression of death ligands that activate their respective death
receptors on the surface of the target cells. Although it is clear
that NK cells can use both pathways to kill tumour cells in vitro,
the relative contribution of each mechanism to the elimination of
target cells and during tumour immunosurveillance in vivo is still
not clear, and likely dependent on the sensitivity of tumour cells
to each mechanism (83). Former studies in perforin deficient
mice showed that perforin is the main executor of NK-cell
mediated cell killing and cancer immunosurveillance (10, 49,
50, 84–86). However, later on, it was shown that TRAIL is
required for the control of tumour metastasis (87) and, more
specifically, it contributed to NK cell-mediated control of cancer
metastasis (79, 88). Regarding FasL, indirect evidence using
tumour cells expressing inhibitors of the death receptor
May 2022 | Volume 13 | Article 896228
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pathway like CrmA (a cowpox protein) or FLIP, suggested that
FasL was also involved in NK cell-mediated tumour
immunosurveillance (89, 90). However, in this case, it could
not be differentiated between FasL and TRAIL since CrmA and
FLIP overexpression blocks both pathways.

More recently, it has been proposed that these two distinct
cytotoxic mechanisms were shown to act on different time scales,
with rapid granule-mediated cell death and slower death ligand-
induced cell death. Indeed, it has been shown that the
contribution of perforin and death ligands to NK cell-mediated
killing might be related to the ability of a single NK cell to kill
more than one target cell, a process known as serial killing (91–
93). Indeed, Deguine et al., using intravital microscopy
demostrated that NK cells form transient contacts with tumor
cells, compared with the more stable contact of Tc cells, allowing
NK cells to establish multiple contacts over short periods
favoring the serial killing capacity that has been described in
vitro (94). A similar result was obtained by Halle et al. using a
model based on Tc cell-dependent cytotoxicity, confirming that
the serial killig capacity of NK cells is more pronounced than that
of Tc cells (95).

After target cell death, the locally attached NK cell can
disengage and subsequently mediate additional killing events of
neighbouring target cells (91, 93). The two mechanisms
(cytotoxic granules and death receptor-mediated killing
pathways) are coordinated and regulated during the serial
killing activity of NK cells. It was shown that NK cells
contained an average of 200 cytotoxic granules and released
about 10% of their total granules in a single killing event. They
require about 1% of cytotoxic granules to kill a target cell,
suggesting that NK cell cytotoxic granules are highly efficient
and that NK cell do not release their entire lytic granule reserve
onto a single target cell allowing NK cells to perform serial killing
of multiple target cells. However, not all NK cells have the serial
killing capacity, being about the 10% of the entire NK cell
population responsible for 30% of target cell death (93, 96).
Although death receptor signalling is possibly initiated
simultaneously with granzyme activity, the fast and efficient
granule-mediated cell death is likely dominant in the initial
stages over the slower death receptor pathway (97). Only after
increasing concentrations of surface death ligands accumulate on
the NK cell membrane, it becomes more prominent so that the
final kill events are dominated by death receptor stimulation. In
other words, for their first killing events, NK cells almost
exclusively use the granule-mediated pathway, resulting in a
swift and efficient killing of target cells. After losing some of
granule content and increasing surface Death Ligands, NK cells
switch from granule to death ligand-mediated cytotoxicity. The
complementary action of death ligands and cytotoxic granules,
co-expressed at varying levels among individual NK cells, could
facilitate the lytic action of even poor perforin/gzm-expressing
NK cells. They can synergize, be additive, or act complementarily
(97). Thus, it is possible that under specific conditions where
perforin cannot act like genetic deficiency (perforin KO mice or
human type 2 FHL) or in cancer cells with perforin resistance,
death ligands would contribute to NK cell-mediated cancer
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control. In addition, the expression of intracellular inhibitors
that might regulate the susceptibility of cancer cells to granule
exocytosis and/or death receptor pathways will dictate whether
the contribution of each pathway to NK-cell mediated tumour
cell killing and cancer progression.
SECOND ACT: THE EXECUTION PHASE
OR HOW TARGET CELL UNDERGOES NK
CELL-MEDIATED PROGRAMMED CELL
DEATH

Most studies analysing target cell death pathways activated by
perforin/granzymes or death ligands have been performed using
purified recombinant or native proteins and, in some cases
validated mainly using CD8+Tc cells. These seminal studies
have been key to properly understand the role of cell-mediated
cytotoxicity and programmed cell death pathways in pathogen
and tumour control. However, when extrapolating these findings
to NK cell-mediated cytotoxicity, it should be taken into account
that the precise expression of effector molecules and how they are
activated during NK cell-mediated elimination of target cells
might influence the cell death pathways activated in the target
cells. In addition, as indicated above, the cytotoxic mechanisms
that NK cells use to trigger tumour cell death cannot be viewed as
independent events. For example, it is known that the different
cell death pathways that are activated by these mechanisms such
as apoptosis, necroptosis or pyroptosis interact with each other.
On the other hand, apoptosis has been described as non-
immunogenic canonical cell death due to the formation of
apoptotic bodies that enclose intracellular content, while
pyroptosis and necroptosis have been described as
immunogenic programmed cell deaths, resulting in the spillage
of cellular content, like necrosis that is an unregulated form of
cell death mainly caused by cell injury or trauma. In addition,
granule exocytosis might regulate the susceptibility to death
receptors and vice versa.

Next, we will discuss the main cell death pathways that have
been described to be activated by granule exocytosis and death
ligands although since the information regarding NK cells is
scarce, on some occasions, we will refer to cell death mechanisms
found using pure proteins or CD8+Tc cells.

Programmed Cell Death Pathways
Activated by Granule Exocytosis
As discussed above, once granule content is released in the NK
IS, perforin facilitates the intracellular delivery of gzms into the
target cell. Perforin-mediated self-damage on NK cell membrane
would be prevented by different mechanisms like CD107a, a
lysosomal/granule protein that is translocated to the NK cell
membrane during degranulation. However recently this
mechanisms has been disputed by Rudd-Schmidt et al, 2019
describing two protective properties of the plasma membrane of
cytotoxic lymphocytes within the synapse, an increased plasma
membrane lipid order, thus reducing perforin binding, and the
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exposure of negative charge on the membrane surface via
phosphatidylserine, thus inactivating residual perforin within
the immune synapse (98–100). Once delivered into the target
cell, gzms would cleave intracellular substrates leading to the
target cell death. Among all gzms, gzmB is the one with a highest
cytotoxic potential, while the ability of other gzms to kill target
cells is still controversial and out of the scope of this review (8,
10, 101, 102). Although extracellular gzmB has also been
involved in perforin-independent cell death via receptor
activation in neurons or after extracellular matrix degradation
in fibroblasts and smooth muscle cells (103–105), we will not
focus here in this pathway as its relevance during NK cell
mediated cytotoxicity has not been explored.

Both, human and mouse GzmB initiates apoptosis cleaving
several intracellular substrates such as effectors caspase-3 and
caspase-7 (106–108).In addition, human and mouse gzmB can
cleave the BH3-only protein Bid in human and mouse target
cells, respectively, to generate a truncated t-Bid form (109–113)
and the Bcl-2 protein, Mcl-1, which is degraded releasing the
pro-apoptotic protein Bim (114, 115). Here it should be noted
that studies using purified proteins have shown that the substrate
affinity of mouse and human gzms are different, presenting
mouse gzmB a higher affinity for mouse caspase-3 than for
mouse Bid, while the opposite was shown for human gzmB (116,
117). However the relevance of these findings during cell death
induced by pure gzmB or gzmB of NK/Tc cells on intact target
cells is not well understood and seems to be more complex than
suggested by the substrate affinity studies. This assumption is
supported by functional studies using mouse target cells with
deficiency in caspase-3 or Bid pathways showing that the absence
of caspase-3 or Bid influences the molecular mechanism of
apoptotic cell death induced by mouse gzmB (109, 110)
suggesting that both pathways contribute to gzmB-mediated
cell death in both human and mice. Both pathways initiate the
mitochondria outer membrane permeabilization (a process
known as MOMP), the release of cytochrome c and other
proapoptotic factors like SMAC/Diablo, promoting the
formation of the apoptosome and the full activation of
caspase-3 and -7 to execute the apoptotic process (8, 10–12,
43). Alternatively, human and mouse gzmB can also induce
DNA fragmentation through its ability to cleave the cytoplasmic
nuclease inhibitor, ICAD, releasing the Caspase-activated
DNase, CAD, that promotes DNA degradation (118, 119). In
addition, it cleaves other proteins involved in the maintenance of
nuclear integrity (Lamin B), DNA repair (DNA-PKcs), poly
(ADPribose) polymerase (PARP), microtubule dynamics
(a-tubulin), and host autoantigens (NUMA, U1-70kD, Mi-2)
(8, 10, 102, 107, 108, 120, 121). Here it should be noted that some
of these studies were performed using either mouse or human
gzmB, and confirmation in both species might be required to
understand the biological relevance of these findings.

Albeit gzmB activates apoptosis by direct or indirect
mitochondrial-mediated caspase activation, it has been shown
that these pathways are dispensable for the elimination of
tumour cells mediated by gzmB of Tc and NK cells, both in
mouse and human models, in vivo and in vitro (109, 110, 122,
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123). Whether NK cell mediated-tumour cell death in the
absence of caspases and the mitochondrial pathway is executed
by some of the gzmB substrates indicated above or by the
activation of other cell death pathways is still being explored.
For example some of the gzmB substrates indicated above
(DNA-PKs, NUMA, lamins or ICAD) have been validated
using LAK cells, which are NK cells generated in vitro using a
high concentration of IL2 (108, 119, 121).

Alternatively, recent studies have shown that human and
mouse gzmB released by NK cells could also directly cleave
and activate gasdermin E (GSDME) in a caspase-independent
manner, promoting pyroptotic cell death (9, 124). Pyroptosis
is an inflammatory cell death modality regulated by
the GSDM family. GSDMs are activated by cleavage,
forming a transmembrane pore that contributes to IL1
fami ly cytokine re lease and, in addit ion , dis turbs
intracellular ion homeostasis, resulting in cell death (125).
There are different members on the GSDM family, all of which
are activated by caspase-mediated cleavage. Traditionally
GSDM activation was associated to inflammatory caspases
like caspases-1, -4 or -5. More recently, it has been shown that
other caspases, like caspase-3 or -8, can activate different
GSDMs in Gsdm-expressing tumour cells. Furthermore, it
has been recently shown that during GzmB-mediated cell
death, caspase-3 is activated and mediates Gsdm cleavage
and pyroptosis linking the gzm pathway to cell pyroptosis
(124). The main role of pyroptosis seems to be inducing strong
inflammatory responses that contribute to host defense
against pathogen infection.

Regarding gzmA, the other major granule protease, its
cytotoxic potential is reduced in comparison with gzmB, and
at present, the relevance of cell death induced by gzmA is still in
debate (8, 10, 46, 102, 126, 127). Recently it was shown that
human gzmA released from NK cleaved and activated GSDMB,
triggering pyroptosis in a caspase-independent manner (128).

Programmed Cell Death Pathways
Activated by Death Receptors
Activation of the death receptor pathway by death ligands can
also kill target cells through different cell death modalities,
including apoptosis, necroptosis or pyroptosis. After a death
receptor is engaged by its respective ligand, the adaptor protein
FADD is recruited to the cytosolic DD of the receptor via
homotypic interactions. Then the death effector domain (DED)
present in FADD recruits procaspase-8, FLIP, and RIP1 to form
a death-inducing-signalling complex, known as DISC in the case
of TRAIL and FasL (70, 129) (Figure 3). Within the DISC,
molecules of procaspase-8 in close proximity undergo
autocatalytic cleavage to stabilize caspase-8 in its catalytically
active conformation that will activate downstream cytosolic
effector caspases, including caspase-3 and caspase-7. Under
some circumstances, death receptor stimulation is insufficient
to induce apoptosis via direct cleavage of caspase-3 and, then,
caspase-8 mediated activation of Bid and the mitochondrial
apoptotic pathway is required as described for gzmB (70,
71, 130).
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Similar to FasL and TRAIL, the engagement of TNFa to
TNFR1 generates the formation of a large complex known, in
this case, as Complex I (74, 82) (Figure 3). It includes cIAP1,
cIAP2, CYLD, RIP1, and TRAF2. While cIAPs induce
RIP1 polyubiquitination inhibiting Complex IIa formation,
CYLD promotes its deubiquitination, boosting Complex IIa
generation and RIP1-mediated apoptosis. Furthermore,
within Complex IIa, activated caspase-8 cleaves and inactivates
RIP1, RIP3, and CYLD. Cleaved RIP1 and RIP3 lose their
transphosphorylation and downstream substrate phosphorylation
capabilities (74). However, when the cleavage of RIP1 and RIP3 is
prevented by caspase-8 inhibitors or by the genetic deletion
of caspase-8 or FADD, Complex IIb is formed (Figure 3). In
Complex IIb, MLKL is phosphorylated by RIP3, oligomerising
and translocating to the cell membrane, where it binds to
phosphatidylinositides inducing cell membrane disruption and
necroptotic cell death (69, 71, 129, 131).

Although all death ligands present differences in their
signalling cascades, they can induce a multi-protein complex
formation involving procaspase-8, FLIP, FADD, and RIP1. In
this way, both TRAIL and FasL can also induce necroptosis in
specific conditions, such as when caspase-8 is inhibited (71). The
formation of each complex is regulated by a complex network of
protein interactions from host cells and pathogens, including
FLIPs and IAPs, that modulate cell outcome (survival or death)
and the modality of cell death (69).

Similar to granule exocytosis, the relevance of the cell death
pathways activated by death ligands during NK cell-mediated
cytotoxicity is still not clear. It might also be influenced by the
profile of death ligand expression in NK cells and the strength of
the signals received by NK cells during target cell recognition.
Curiously, it was recently shown that NK cells were able to
activate necroptosis in some target cells. However, surprisingly,
this process was not mediated by death receptors but by the
gzmB pathway. This result was supported by previous findings
showing that during NK cell attack, apoptosis, necrosis and
mixed forms of cell death could be detected in target cells
(132). In this line, Prager et al. showed that human NK cells
used both gzmB and FasL to activate apoptotic- and/or necrotic
like morphology in target cells (97). Further experiments will be
required to determine whether this necrotic-like morphology is
necroptosis or, for example, perforin-mediated lysis. Here it
should be clarified that most of these results were mainly
observed using gzmB inhibitors with no clear specificity, and,
thus, further experimental work will be required to validate them
using more specific approaches like CRISPR/Cas9-mediated
knock-down. More importantly, despite NK cells might
express high amounts of TNFa, it is still not known whether
NK cells can activate classical necroptosis in cancer cells by
using TNFa.

Thus, albeit it has been proposed that specific mutations in
some of these cell death pathways might contribute to tumour
cell resistance to NK-cell mediated activation of cell death (133),
confirmation using NK cells is mandatory to find out the
relevance of these mutations during NK cell mediated
cancer immunosurveillance.
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DEATH IS NOT THE END: NK CELL-
MEDIATED CELL DEATH BOOSTS
ADAPTIVE IMMUNITY
The primary role of NK cells, as indicated above, is to eliminate
infected and transformed cells by inducing target cell death.
Albeit apoptosis has been considered the paradigm of
programmed cell death, more recently it has been confirmed
that NK cells are also able to induce other forms of cell death like
necroptosis and pyroptosis. These more inflammatory ways of
cell death can lead to an increased release of both DAMPs and
tumour antigens promoting inflammation and potentially the
activation of adaptive immune responses against endogenous
cancer antigens, a process known as immunological cell death
(ICD) (122, 134, 135).

Thus, cell death activation in tumour cells by NK cells could
be an additional mechanism that links the innate to the adaptive
immune responses in cancer immunity (72).This mechanism
would complete the cancer-immunity cycle (136, 137) linking an
initial elimination of some tumour cells by NK cells to the
activation of T cell responses that would complete tumour cell
elimination (138). This hypothesis has been recently confirmed
experimentally in vivo in mouse models showing that both NK
and Tc cells induce ICD in primary tumours promoting the
activation of new Tc cell responses against antigens released by
dying tumour cells, which prevents the growth of secondary
tumours (139, 140).

These findings increase our understanding about the role of
NK cells in shaping tumour adaptive immune response and
support previous results indicating that NK cells drive
inflammation and immune cell infiltration, including
conventional type 1 Dendritic Cells (cDC1), increasing tumour
neoantigen presentation and CD8+ T cell immunity (141–144).

The specific role of apoptosis, necroptosis, and pyroptosis in
NK cell-mediated ICD is still unknown. However, the results
obtained using Tc cells in vivo indicate that the presence of active
caspase-3 is required for ICD, at least when induced by Tc cells.
Tc-cell mediated killing of tumour cells expressing a dominant
negative mutant of caspase-3 were eliminated as efficiently as
wild type tumour cells, but ICD determinants were reduced in
mutant caspase-3 cells, and the protection against a secondary
tumour challenge was lost (139). This result indicates that
caspase-3 dependent apoptosis in the context of effector cell
attack is immunogenic or, alternatively, ICD is activated due to
secondary pyroptosis as a consequence of caspase-3 mediated
GSDME activation as recently shown (9, 124). Further
experimental analysis will be required to confirm these
hypotheses. Here it should be considered that exacerbated
effector cell-mediated responses might also be detrimental and
promote cytokine release syndrome (CRS) as recently shown
when using highly activated CAR-T cells, expressing high
amounts of gzmB, which activates GSDME dependent
pyroptosis, contributing to CAR-T toxicity. Interestingly,
unlike CAR-T cells, CAR-NK cells do not promote CRS,
pointing to a more controlled immune response during target
cell elimination (145).
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At present, the role of necroptosis in ICD induced by NK cells
has not been explored.

As indicated above it is not clear at what extent mutations in
different cell death pathways contribute to evasion of NK cell
responses. This scenario becomes even more complex when
considering that these mutations might not affect killing of
primary tumour cells, but they might impact the immunogenic
characteristics of cell death, reducing the activation of adaptive T
cell responses, which in turn would reduce the elimination of
primary tumour cells and the generation of immune memory
against recurrent cancer cells.
CONCLUSION

NK cells are key mediators of cellular cytotoxicity, which is an
important effector mechanism of the immune system (28, 146). The
ability to directly kill other cells is critical for removing infected or
transformed cells and is, therefore, a central tool in the immune
system’s fight against viral infections and cancer. It is well
established that the different cytotoxic effector mechanisms of NK
cells, including granule exocytosis and death ligands, are essential
for the elimination of tumors (147, 148). Here the pleiotropic ability
of these mechanisms to activate different cell death programs in the
target cells is essential for the elimination of offending cells,
especially to overcome potential mutations in the cell death
machinery that might compromise target cell elimination.
Moreover, the most recent evidences indicate that NK cell
mediated cytotoxicity is not only involved in the control of initial
tumour development, but, in addition, regulates the activation of
adaptive T cell responses by inducing ICD. ICD provides
inflammatory signals and antigens to activate and expand new
anti-tumoral T cells, enhancing the efficacy of tumour elimination
and, potentially, preventing cancer metastasis and recurrence. Thus,
on a conceptual basis, NK cell-mediated cell death might be
considered the initial signal that triggers the cancer-immunity
cycle. Here future efforts should be directed to understand the
role of mutations in cancer cell death machinery on ICD that might
impact on cancer metastasis and recurrence.

The information about the role of the different cell death
mechanisms activated by NK cells on the control of tumor
development and the efficacy of the different types of
immunotherapy is still limited. However, all the new findings
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discussed here point to a fundamental role for NK cell-mediated
cytotoxicity in the efficacy of these new treatments, including
checkpoint inhibitors and adoptive cell transfer (i.e. allogeneic
NK cells and CAR-NK). A better understanding of the role of
apoptosis, necroptosis, and pyroptosis in NK cell-induced death
will allow us to design better treatments to eliminate tumors
and prevent recurrences effectively and safely, reducing the
potential adverse effects of immunotherapy like Cytokine
Release Syndrome.
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Andrés-Tovar, Garzoń-Tituaña, Uranga-Murillo, Arias, Galvez and Pardo. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
May 2022 | Volume 13 | Article 896228

https://doi.org/10.1126/sciimmunol.aax7969
https://doi.org/10.1038/s41577-019-0228-2
https://doi.org/10.3389/fimmu.2020.01054
https://doi.org/10.1146/annurev.immunol.26.021607.090404
https://doi.org/10.1126/science.aaz7548
https://doi.org/10.1016/S0968-0004(01)01895-3
https://doi.org/10.1093/emboj/17.6.1675
https://doi.org/10.1038/cdd.2014.126
https://doi.org/10.1074/jbc.RA118.004549
https://doi.org/10.3390/ijms21103726
https://doi.org/10.1038/cdd.2011.96
https://doi.org/10.1016/j.cell.2007.10.030
https://doi.org/10.1038/s41568-020-0272-z
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1126/science.1203486
https://doi.org/10.1136/jitc-2020-000528
https://doi.org/10.1136/jitc-2020-000528
https://doi.org/10.1136/jitc-2019-000325
https://doi.org/10.1080/2162402X.2018.1537581
https://doi.org/10.1038/s41591-018-0085-8
https://doi.org/10.1038/s41591-018-0085-8
https://doi.org/10.1016/j.cell.2018.01.004
https://doi.org/10.1126/scitranslmed.aav7816
https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.1038/nri.2015.9
https://doi.org/10.1016/j.smim.2017.08.002
https://doi.org/10.1038/ni.3518
https://doi.org/10.1038/ni.3518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity
	Introduction
	First Act: Judges and hangmen in NK Cell-Mediated Cytotoxicity
	Specific Receptors Dictate the Killing of Target Cells
	The NK Cell Immunological Synapse Triggers the Cytotoxic Machinery
	The Main Executors of NK Cell-Mediated Killing
	Death Ligands
	NK Cell Effector Function Dynamics

	Second Act: The Execution Phase or how Target Cell Undergoes NK Cell-Mediated Programmed Cell Death
	Programmed Cell Death Pathways Activated by Granule Exocytosis
	Programmed Cell Death Pathways Activated by Death Receptors

	Death is not the end: NK Cell-Mediated Cell Death Boosts Adaptive Immunity
	Conclusion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


