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Optimal Cost-based Strengthening
of Complex Networks

Qingnan Rong, Jun Zhang, Xiaoqian Sun*, Sebastian Wandelt, Massimiliano Zanin, and Liang Tian

Abstract—Most real-world complex systems are extremely vulnerable to targeted attacks, making their immunization an important yet
challenging task. One of the most effective attack strategies is targeting articulation points specifically. In this study, we first propose a
generalized definition of network robustness. Then we address the problem of strengthening network robustness with the minimum cost
by exploiting the intuition behind the attack strategy based on articulation points, that is proven to be NP-hard. Accordingly, we propose
a heuristic for solving this problem, subject to a cost function whose choice determines the obtained network regime. Experiments on
both random and real-world networks show that our algorithm strengthens the robustness by using significantly cheaper edge additions
than state-of-the-art methods. Moreover, our algorithm excels against general attack strategies by revealing the essence of
strengthening network robustness, that is, increasing the size of the giant connected component optimally in the process of node
removal. While considering the realistic problem, our algorithm also provides a reasonable scheme to add edges at a low cost.

Index Terms—network robustness, targeted attacks, cost, strengthening problem, heuristic.
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1 INTRODUCTION

W ITHIN the large body of literature on complex net-
works, the topic of network disruption has received

much attention. Such interest is explained by the fact that
network robustness is strongly related to topological proper-
ties, like the presence of scale-free or modular structure, and
is thus a fertile ground for theoretical studies [1], [2], where
network robustness is defined as the ability to withstand
the disruption and measured by network efficiency [3],
percolation threshold [4], [5], [6], or the size of the giant
connected component (GCC) [7], [8], [9], [10], etc. Besides,
the estimation of the robustness of real-world networked
systems is invaluable for policy-making [11].

Most of these studies have focused on designing algo-
rithms to disrupt networks, i.e., removing a subset of nodes
(or edges) to split the network into the largest number
of isolated components [12]. Three types of disruptions
are proposed: random, targeted, and acquaintance attack.
Random attack removes nodes randomly without knowing
the network structure. Targeted attack removes the most
important node ordered by the node centrality, such as
degree, betweenness, etc [13], [14]. If the node centrality is
calculated once, it is a simultaneous targeted attack. But if
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the node centrality is recalculated after removing a node,
it is a sequential targeted attack [8]. Acquaintance attack is
between random attack and targeted attack, and destroys
the network integrity by removing a small fraction of nodes
without requiring specific knowledge of the network [15].

However, less attention has been devoted to the com-
plementary problem, i.e., how to change the network topol-
ogy to strengthen the robustness while keeping changes as
minimum as possible. Random networks are robust against
targeted attack but vulnerable against random attack. Real-
world networks with power-law degree distribution are ro-
bust against random attack but vulnerable against targeted
attack [4], [8], [16], [17]. Therefore, strengthening the robust-
ness is to change the topology towards the robust one [9].
State-of-the-art methods for network strengthening can be
divided into two classes: (i) Swap edges (SE) randomly and
accept the change only if the robustness is strengthened [7],
[18]. (ii) Add edges according to specific heuristics [19],
[20], [21], [22]. Among the latter class, possibilities include
adding edges between the lowest degree nodes (Preferential
Addition, PrefA) [19], or following a more sophisticated
strategy based on weak cores and the critical giant compo-
nent (Posteriorly Addition, PostA) [21]. However, for these
methods, the cost of topological modifications is measured
by simply counting the number of swapped or added edges,
leading to unrealistic results.

Recently, a sequential targeted attack called articulation
points-targeted attack (APTA) [23] was proposed and proven
to be more effective than other well-known attack strate-
gies such as the high-degree adaptive attack [24] and the
collective influence attack [25]. Articulation point (AP) is a
node whose removal disconnects the network or increases
the number of connected components. APTA iteratively
removes the most destructive AP, whose removal causes
most nodes disconnected from the GCC until no AP exists
in the GCC. The residual GCC is called a residual giant
bicomponent (RGB). The most robust network against APTA
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has no AP. Therefore, the network strengthening problem
against APTA has a well-known sub-problem, Biconnec-
tivity Augmentation Problem [26] whose object is to add a
minimum-cost set of edges to biconnect a network, making
any two nodes be connected by at least two independent
paths. Two typical algorithms for solving this problem are
approximation (Approx) algorithm [27] and fixed-parameter
(FPT) algorithm [28]. Approx algorithm finds a solution
biconnecting the network within a factor two of the opti-
mum. FPT algorithm achieves biconnectivity using at most
a certain number of new edges with the minimum cost.
But they can not strengthen the robustness significantly
using the limited budget that is not enough to biconnect
the network.

The AP exists in the path structure of the network whose
removal disconnects the network. To reduce the impact of
its removal, we can cover it by adding edges. Based on
this idea, we propose an effective network strengthening
algorithm. We illustrate how our algorithm can be modified
to account for the cost of creating new edges in terms
of the distance between the connected nodes. Even with
this limitation, our algorithm still outperforms state-of-the-
art techniques by orders of magnitudes. Further, against
general attack strategies, our algorithm excels by revealing
the essence of strengthening the network robustness, that
is, reducing the impact of AP removal. Our algorithm also
provides a reasonable suggestion on adding edges at a low
cost for the realistic problem.

2 THEORETICAL DEFINITION

2.1 Background: network robustness
The first proposal for a metric assessing the network ro-
bustness was presented in Ref. [7]. Given a network with
N nodes, the robustness is defined as R = 1

N

∑1
q=1/N s(q)

where s(q) is the fraction of nodes in the GCC after remov-
ing qN nodes.

This robustness measurement requires an attack to re-
move all nodes from the network eventually. It is not
generic, as some attack strategies (including APTA) only
target a subset of nodes; nor realistic, as the marginal cost
of disrupting additional nodes in real-world networks may
be higher than the induced damages. If the attack removes a
subset of nodes, R is not suitable to measure the robustness
because it loses comparability. Suppose that networks A
and B have the same number of nodes N . APTA removes
a few nodes from network A and the RGB size is large,
but it removes many nodes from network B and the RGB
size is small. Obviously, network A is more robust, but
its robustness R could be smaller than that of network B.
More explanations can be seen in Appendix A. To make the
robustness comparable, we propose a modified version of
R. Suppose that an attack terminates after removing qmax
fraction of nodes. We define the generalized robustness as

Rg =
1

N + 1

qmax∑
q=0

s(q) +
1∑

q=qmax+1/N

s(qmax)

 (1)

Then the value of Rg for network A is greater than that
for network B. Rg fulfills the requirements of any R-like
robustness measurement. Specifically, Rg is between zero

(for a star network with infinite nodes) and one (when the
attack has no effect on the network). The calculation of Rg
is based on a specific attack strategy. We here leverage on
the APTA for the sake of completeness. We also prove that
Rg measures the network robustness against APTA more
appropriately than other measurements in Appendix B.

2.2 Defining the network strengthening problem

The problem of strengthening a network is defined as:
Definition 2.1. An undirected network G = (V,E) consists

of a set of nodes V and a set of edges E. The network
strengthening problem is adding a minimum-cost set
of edges E1 to G to make the network robustness Rg
greater than or equal to t, where t belongs to [0, 1].

The cost of adding edges can be arbitrary. In Ref. [29],
the cost of destroying a node with degree k is assumed as
c(k) = kα, where α determines the optimal attack strategy.
Similarly, not all added edges have the same cost in practice.
For instance, in subway or railway systems, the cost of
building an edge often increases as a function of its (spatial)
length. Thus, we define the cost of adding an edge (a, b) as

c((a, b)) = [SPL(a, b)]α (2)

where SPL(a, b) is the shortest path length between nodes
a and b, and α belongs to [0,∞). Different α represents dif-
ferent practical scenarios. When α is equal to zero, c((a, b))
is the unit cost. The cost of added edges is simply the
number of added edges, i.e., the default case discussed in
the literature. When α is greater than zero, we differentiate
the cost function with respect to SPL(a, b), and receive

dc((a, b))

dSPL(a, b)
= α[SPL(a, b)]α−1 (3)

that is the unit distance cost. When α is equal to one, the unit
distance cost is equal to one. When α is smaller (or greater)
than one, the derivative is smaller (or greater) than one, and
the unit distance cost decreases (respectively, increases) with
the increase of the length of the added edge. Therefore, the
exponent α determines the unit distance cost. Note that, the
cost of added edges is calculated in the original network.
In Appendix C, we reduce the biconnectivity augmentation
problem [26] to the network strengthening problem to prove
that the latter is NP-hard. Therefore, the way to solve this
problem is to design network strengthening heuristics.

3 METHODOLOGY

3.1 Making a path biconnected

Strengthening network robustness against APTA is to re-
duce the impact of AP removal or eliminate APs in the
network so that APTA can not remove any node. APs
exist in the path structure whose removal separates the
path. Meanwhile, the path is an elementary component of
a network. As a prerequisite, we first propose the Alg. 1 to
solve the problem of making a path biconnected with the
minimum cost.

When we remove all current APs from the network,
there are some small components that do not contain these
APs. We call them leaf-components. We choose two nodes
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Algorithm 1 Making a path biconnected

Input: A path a1-a2-. . . -aÑ1
from the network G, where a1

and aÑ1
are non-APs, a set of real-APs S = {ai|i ∈

Γ ⊆ {2, ..., Ñ1− 1}} in this path and a cost function c of
adding edges.

Output: A set of edges E1 biconnecting the path using the
minimum cost.

1: Normalize the path by finding the shortest sub-path
containing all real-APs. Renumber the path as n1-n2-
. . . -nN1−1-nN1

, where n1 = amin(Γ)−1 and nN1
=

amax(Γ)+1 are non-APs, and n2 = amin(Γ) and nN1−1 =
amax(Γ) are real-APs. Renumber the AP set S as S1;

2: Find all roots, {(n1, nt) | t ∈ [3, N1], nt−1 ∈ S1};
3: function CHILDREN((nu, nv))
4: if nv is an AP then
5: return {(nv−1, ni)|ni−1 ∈ S1, i− (v − 1) ≥ 2}.
6: else
7: Find the next uncovered AP nw, where {nx|v <
x < w} are not APs;

8: return {(nw−1, ni)|ni−1 ∈ S1, i− (w − 1) ≥ 2}.
9: end if

10: end function
11: function DFS(root)
12: stack = [(root, [root])], Solution = ∅;
13: while stack 6= ∅ do
14: (edge, s) = stack.pop();
15: if edge[-1] = nN1

then
16: Add s to Solution;
17: continue;
18: end if
19: for child in CHILDREN(edge) do
20: stack.append((child, s + [child]));
21: end for
22: end while
23: return Solution.
24: end function
25: Candidate solution = ∅;
26: for each root (n1, nt) do
27: Add DFS((n1, nt)) to Candidate solution;
28: end for
29: Calculate the cost of each solution in Candidate solution

using the cost function c and choose the one with the
minimum cost as E1;

30: return E1.

a1 and aÑ1
randomly from two different leaf-components,

respectively, and find the shortest path a1-a2-. . . -aÑ1
in the

original network with some real-APs S = {ai|i ∈ Γ ⊆
{2, ..., Ñ1 − 1}} whose removal disconnects the original
network and separates their neighbors in this path. Nodes
a1 and aÑ1

are non-APs in the original network because
they come from the leaf-components, and other nodes can
be APs or non-APs. We normalize this path by finding
the shortest sub-path containing all these real-APs, that
is amin(Γ)−1-amin(Γ)-. . . -amax(Γ)-amax(Γ)+1. We renumber
this path as n1-n2-. . . -nN1−1-nN1

, where n1 = amin(Γ)−1

and nN1
= amax(Γ)+1 are non-APs, n2 = amin(Γ) and

nN1−1 = amax(Γ) are real-APs, and renumber the AP set
S as S1 (line 1). Biconnecting the path is to add the optimal

Fig. 1: A path with eight nodes. Red nodes are real-APs. The
set of edges in red is a candidate solution obtained by DFS.

set of edges to cover all APs. The candidate solutions are
obtained by depth-first search (DFS). First, we define the
roots as the edges {(n1, nt)|t ∈ [3, N1], nt−1 ∈ S1}, con-
necting the endpoint n1 with the other node nt, where nt−1

is an AP (line 2). Each root covers at least one AP, nt−1.
Afterwards, we define the children of an edge (nu, nv),
where v − u ≥ 2 (lines 3-10). If nv is an AP, the children
are the edges {(nv−1, ni)|ni−1 ∈ S1, i − (v − 1) ≥ 2}. If
nv is not an AP, we find the next uncovered AP nw, where
{nx|v < x < w} are not APs, and the children are the edges
{(nw−1, ni)|ni−1 ∈ S1, i− (w − 1) ≥ 2}. All children cover
at least one AP, ni−1. Based on this definition, we avoid
unnecessary costs when covering APs. In DFS (lines 11-28),
for each root, we store it and an initial candidate set in a
stack format. At each iteration, we pop up an edge, add
its children to the stack, and update the candidate set by
adding a child. If the candidate set ends with the endpoint
nN1 , we get a candidate solution. The above process termi-
nates until the stack is empty. We get all candidate solutions.
Finally, we calculate the cost of each solution and add the
corresponding edges with the minimum cost to biconnect
the path (lines 29-30).

We illustrate our algorithm through a path in Fig. 1.
Suppose that there are four real-APs in red. Roots are
(n1, n3), (n1, n4), (n1, n7), (n1, n8) covering at least one AP,
n2. For instance, we start from the root (n1, n3) and find its
children departing from the node n2 because the next un-
covered AP is n3. The children are (n2, n4), (n2, n7), (n2, n8)
that also cover at least one AP. We choose the child
(n2, n4) and continue to find its children until the edge
ends with the endpoint n8. We get a candidate solution,
[(n1, n3), (n2, n4), (n5, n7), (n6, n8)], covering all APs.

The definition of children avoids unnecessary costs
when covering APs, and we compare all possible solutions,
so Alg. 1 provides a solution with the minimum cost.
Starting from the root (n1, nt), there are at most (N1 − t) +
(N1− t− 1) + · · ·+ 2 + 1 = (N1− t+ 1)(N1− t)/2 children.
So the complexity of DFS is O([(N1−t+1)(N1−t)/2+1]2).
The total complexity of Alg. 1 is O(

∑N1

t=3[(N1− t+ 1)(N1−
t)/2 + 1]2) < O(N5

1 ). To reduce the complexity, we give
another effective algorithm based on the Approx algorithm
in Appendix D and prove that it provides the same result as
Alg. 1. The complexity is O(N2

1 ) [27].

3.2 Making an arbitrary network biconnected.
We then biconnect an arbitrary network G. The Alg. 2 is
divided into two stages. In the first stage (lines 1-20), we
remove all current APs from G to find the leaf-components.
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Algorithm 2 Making an arbitrary network biconnected

Input: A network G and a cost function c of adding edges.
Output: A set of edges biconnecting G.

1: Collect all APs as a set S, and set LC = ∅, L = ∅;
2: for v ∈ S do
3: Create a copy of G as G1;
4: Decompose G1 to some components by removing v;
5: Add leaf-components that do not contain these APs

in S to LC ;
6: end for
7: For each leaf-component in LC, choose a node ran-

domly and add it to L;
8: t = 1;
9: while t ≤ T do

10: E1 = ∅;
11: while number of unused nodes in L is not less than

two do
12: Choose two unused nodes from L randomly, and

find the shortest path p1 between them in G and all real-
APs as a set aps1 in this path;

13: Eliminate aps1 in p1 using Alg. 1 and add the
corresponding edges to E1;

14: end while
15: Calculate C/∆Nap of E1;
16: t = t+ 1;
17: end while
18: Add edges in E1 with the smallest C/∆Nap to G;
19: if G is biconnected then
20: return E1.
21: else
22: while G is not biconnected do
23: Find left APs as a set S1, and set G2 as a copy of

G;
24: Remove a random node v1 ∈ S1 from G2 and get

some components;
25: Choose two nodes randomly from two random

components that are not APs;
26: Find the path p2 between these two nodes in G

and the real-APs as aps2 in this path;
27: Eliminate aps2 in p2 using Alg. 1 and add the

corresponding edges to G and E1;
28: end while
29: return E1.
30: end if

We then generate a node-set L by choosing a node randomly
from each leaf-component. At each step, we choose two
unused nodes from L randomly and find the shortest path
between them in G and the real-APs in this path. We add
edges to cover these APs using Alg. 1. The above process is
repeated until the number of unused nodes in L is smaller
than two. We get a set of edgesE1 and calculate itsC/∆Nap,
where C is the total cost of edges in E1, ∆Nap is the number
of APs reduced after adding these edges to G. Finally, we
repeat the whole process T times and get T edge sets. As we
want to eliminate more APs with less cost, we add edges in
E1 with the smallest C/∆Nap to G. Some APs may still
exist in G. In the second stage (lines 21-30), we eliminate
these left APs. At each step, we remove a random AP from

Fig. 2: (a) Red nodes are the APs. We first choose the path
0-2-4-5-6-7 in blue to add edges. (b) The added edges are
shown with red dashed lines when α is equal to zero.

G and get some components. We choose two nodes that are
not APs from two random components and find the shortest
path between them. We biconnect this path using Alg. 1 and
add the corresponding edges to E1 and G. This process is
repeated until no AP exists in the network.

We illustrate our algorithm through a small network
depicted in Fig. 2. We set α to zero. Five APs are
drawn with red. In the first stage, leaf-components are
{0}, {1}, {7}, {8}, {9} and the node-set L is {0, 1, 7, 8, 9}.
We choose two nodes 0 and 7 and find the path 0-2-4-5-6-7
in blue in Fig. 2 (a). We add an edge (0, 7) to biconnect this
path by Alg. 1. The next two chosen nodes are 1 and 8, and
we add an edge (1, 8). Then there is only one AP left, node
3. In the second stage, we remove it from the network and
get two components {0, 1, 2, 4, 5, 6, 7, 8} and {9}. We find
the path 8-3-9 between two randomly chosen nodes 8, 9 and
add an edge (8, 9). All added edges {(0, 7), (1, 8), (8, 9)} are
shown with red dashed lines in Fig. 2 (b).

In the first stage, suppose that we find N2 leaf-
components in the network and N2/2 paths between pairs
of nodes in the leaf-components. We repeat Alg. 1 T times
on these paths, so the complexity of Alg. 2 is O(N2

1N2T ),
where N1 is the maximum number of nodes in these paths.

3.3 Decomposition-Coverage algorithm

We now introduce our Decomposition-Coverage (DC) algo-
rithm in Alg. 3 to increase the robustness when the budget
is smaller than that required by the previously obtained so-
lution. In this case, the solution involves applying the Alg. 2
on the networks resulting from deliberately removing some
APs; as a result, the average shortest path length within
each of them will be shortened, leading to a reduction in
the cost of the solution. Formally, suppose that the nodes re-
moved by APTA are ordered as {nAPTA,1, . . . , nAPTA,M};
an affordable solution can be found by removing the first
m nodes, where 0 ≤ m ≤ M , getting M + 1 GCCs as
new networks and then using the Alg. 2 to find the added
edges biconnecting these new networks. Finally, we add
these edges to the original network G and calculate the
corresponding cost and robustness.

We biconnect M + 1 new networks using the Alg. 2,
so the total complexity of DC algorithm is O(MN2

1N2T ),
whereN1 is the maximum number of nodes in the paths that
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we find, N2 is the maximum number of leaf-components in
these networks, and T is the number of iterations in Alg. 2.

Algorithm 3 Decomposition-Coverage algorithm

Input: A network G and a cost function c of adding edges.
Output: The sets of cost and robustness: Cost, Rob.

1: Find the nodes removed by APTA. They are ordered as
nAPTA = {nAPTA,1, . . . , nAPTA,M}whose length isM ;

2: m = 0, Cost = ∅, Rob = ∅;
3: while m ≤M do
4: Create a copy of G as G1;
5: Remove the first m nodes in nAPTA from G1, find

the GCC and take it as a new network Gnew;
6: Find the added edges biconnecting Gnew using

Alg. 2;
7: Create a copy of G as G2;
8: Add these edges to G2, calculate the cost and robust-

ness, and then add them to Cost and Rob;
9: m = m+ 1;

10: end while
11: return Cost, Rob.

3.4 Theoretical results

We decompose the network and take the GCC as a sub-
network to decrease the average shortest path length so that
the budget is enough to biconnect the sub-network using the
Alg. 2. We add edges to cover all APs in some normalized
paths, denoted as a set SP . Therefore, the added edges
are determined by the edges added in each path. These
edges are influenced by the maximum length of these paths
lmax = max{|p| | p ∈ SP} and α in the cost function.

If the length l1 of the normalized path p = n1-. . . -nN1

is equal to two, the path is n1-n2-n3 with one AP n2. It
can be covered by the edge (n1, n3) of length two that does
not depend on α. If the length l1 of the normalized path
p is not less than three, l1 ≥ 3, suppose that we cover all
APs by adding one edge {e1} or two edges {e2, e3}. In this
normalized path, n2 and nN1−1 are two real-APs, therefore,
e1 is the edge (n1, nN1) with length l1. e2 and e3 connect
node n1 and node nN1 with another two nodes and their
length is set to l2 and l3. We do not add edges between
connected nodes, so l2 and l3 are not less than two, l2, l3 ≥ 2.
We need to cover all APs without redundant cost. Therefore,
if these two nodes are non-APs, we have l1 ≥ l2 + l3. If at
least one of these two nodes is an AP, we need to cover
this AP by the other edge. So we have l1 = l2 + l3 − 1. In
summary, we have

l1 ≥ l2 + l3 − 1 (4)

The costs of these two solutions are lα1 and lα2 + lα3 . When α
is equal to zero, we have lα1 = lα2 = lα3 = 1. So

lα1 < lα2 + lα3 (5)

always holds. Increasing the number of added edges will
increase the total cost. By induction, we conclude that the
edge connecting two endpoints of each path p ∈ SP is the
optimal solution.

When α is greater than zero, if we still hope to connect
the endpoints of all paths, we need to make Eq. (5) hold

Fig. 3: Three cases of adding edges. The boundary curve is
lmax = 2

α+1
α and the boundary line is α = ln2

ln3−ln2 ≈ 1.7.
We connect the endpoints of all paths in the Stable Region
I, add edges of length two in the Stable Region II, and add
different edges in the Transition Region.

for all paths. Then lα1 should be smaller than the minimum
value of lα2 + lα3 , equal to 2α + 2α = 2α+1 when l2 = l3 = 2.
Therefore, we have lα1 < 2α+1, i.e., l1 < 2

α+1
α . For all paths

in SP , we should have lmax < 2
α+1
α . lmax is not less than

three and equal to three when α is equal to ln2
ln3−ln2 . Thus,

the range of α is (0, ln2
ln3−ln2 ). It indicates that we connect the

endpoints of all paths when lmax < 2
α+1
α and α < ln2

ln3−ln2
in the Stable Region I in Fig. 3.

When α is not less than ln2
ln3−ln2 , we set a function as

f(l2, l3) = (l2 + l3 − 1)α − lα2 − lα3 (6)

Take the partial derivatives of f as

∂fl2 = α(l2 + l3 − 1)α−1 − αlα−1
2 (7)

∂fl3 = α(l2 + l3 − 1)α−1 − αlα−1
3 (8)

Because l2 + l3 − 1 > l2, l3 and α − 1 > 0, we have
∂fl2 , ∂fl3 > 0. Therefore, f(l2, l3) is an increasing function
whose minimum value is equal to 3α−2α−2α = 3α−2α+1

when l1 = 3, l2 = l3 = 2. Let 3α − 2α+1 ≥ 0, then
α ≥ ln2

ln3−ln2 . In this case, we have

(l2 + l3 − 1)α − lα2 − lα3 ≥ 0 (9)

Combining Eq. (4) and Eq. (9), we get

lα1 ≥ lα2 + lα3 (10)

Therefore, increasing the number of added edges will re-
duce the total cost. By induction, we should add edges
with the minimum length, equal to two to cover APs when
α ≥ ln2

ln3−ln2 in the Stable Region II in Fig. 3.

However, when α ∈ (0, ln2
ln3−ln2 ) and lmax ≥ 2

α+1
α ,

it is difficult to predict the added edges because they are
determined by different l1 and α. So, there is a transition
region between two stable regions in Fig. 3.
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Fig. 4: Comparisons on two random networks and ten real-world networks with the unit cost. DC is the best-performing
algorithm that increases the network robustness Rg most when adding the same number of edges.

4 RESULTS

4.1 Evaluation with unit cost

We compare DC algorithm with state-of-the-art network
strengthening methods (PrefA, PostA, and SE) and aug-
mentation algorithms (Approx and FPT) on both random
networks and real-world networks. We generate an ER
network and a BA network randomly. The Tokyo Subway
(TS) network and the Air China (CA) network are collected
by ourselves, and other real-world networks can be down-
loaded from the UCI Network Data Repository [30]. These
networks have extensively been studied in the literature
and they cover a variety of network structures, as indicated
by the number of APs, average degree, and diameter in
TABLE 1. For these networks, we can get satisfactory results
by setting T = 1000 in Alg. 2.

TABLE 1: Overview of two random networks, ten real-world
networks and the network properties.

Network |N | |E| |AP| Avg. deg Diam.
ER 100 244 3 4.88 6
BA 100 99 27 1.98 10
karate 34 78 1 4.59 5
dolphins 62 159 7 5.13 8
lesmis 77 254 8 6.60 5
CA (Air China) 107 469 7 8.77 4
TS (Tokyo Subway) 215 260 91 2.42 32
SmallW 233 994 5 8.53 4
usair 332 2126 27 12.80 6
netscience 379 914 57 4.82 17
bio (bio-CE-GT) 878 3181 46 7.24 10
email (email-univ) 1133 5451 132 9.62 8

We first set α to zero to recover the experimental setup
used in the literature, where the total cost is measured
by the number of added edges. Augmentation algorithms
biconnect the network by adding all edges at once. To
consider the process of adding edges, we provide two
schemes: (i) We add one edge chosen from these edges
randomly at each step and calculate the average results
of one hundred independent experiments. The algorithms
are denoted as Approx and FPT. (ii) We add the best edge
that makes the robustness maximum when added at each
step. We call the corresponding algorithms as Approx best
and FPT best. Fig. 4 shows that DC (highlighted in red) is
the best-performing algorithm that increases the robustness



7

most when adding the same number of edges. The worst
method is SE. It does not perform any guided search and
does not increase the number of edges, so it is hard to
biconnect the network. The results of Approx, Approx best,
FPT, FPT best, PrefA and PostA are between those of DC
and SE and are rather unstable. If the budget is enough,
they can biconnect the network. But if the budget is limited,
they can not strengthen the robustness effectively. Approx
and FPT suddenly increase Rg from a small value to one
for some networks such as BA, lesmis, etc. The reason is
that removing an AP may lead to the emergence of new
APs, so more nodes will be removed from the network. But
if we add edges to cover this AP, it will not be removed
and no more APs will emerge. Therefore, covering the last
AP may increase Rg a lot. Approx best and FPT best do
not perform better than Approx and FPT algorithms, and
the robustness could decrease because adding one edge
does not necessarily increase the network robustness against
APTA.

4.2 Evaluation with length-dependent cost
We further study the effect of making the cost length-
dependent, i.e., α > 0. We know from our theoretical
result that when α is greater than or equal to two, DC
algorithm connects the endpoints of all paths. For conve-
nience, we only consider the case that α belongs to [0, 2].
We compare DC algorithm with other methods on two
real-world networks. First, in the CA network, for which
the increase of cruise time leads to a decrease of the unit
distance cost, we set α to 0.0, 0.5, and 1.0. Second, in the
TS network, for which the unit distance cost increases with
the length for encountering more practical problems when
building, we set α to 1.0, 1.5, and 2.0. Fig. 5 shows that DC
algorithm strengthens the robustness significantly using less
cost compared with other methods. It is worth mentioning
that Approx biconnects the TS network using the same cost
as DC algorithm when α is equal to 1.0, 1.5, and 2.0. But
DC algorithm strengthens the robustness more when the
cost is limited. More comparisons on random networks and
more real-world networks are shown in Appendix E. The ex-
perimental results show that DC algorithm strengthens the
robustness more effectively than other methods for different
α. Approx best and FPT best still do not perform better
than Approx and FPT algorithms, and their complexity is
high because of choosing the best edge at each step. So
we do not consider these two algorithms in the following
experiments.

4.3 Properties of the strengthened networks
To understand the reasons underpinning the performance
of DC algorithm, we calculate the length distributions of the
added edges biconnecting the TS network in Fig. 6 (a)-(c).
When α is equal to zero, DC algorithm adds nine edges
connecting the endpoints of all paths that we choose. The
length of added edges could be small or large, depending
on the length of these paths. When α is equal to two, DC
algorithm adds ninety-three edges of length two. When α
is equal to one, DC algorithm adds eighteen edges, and
the distribution is a compromise between the above two
situations. The corresponding added edges are visualized

Fig. 5: Comparisons on the CA network and the TS network
with length-dependent cost. α equals 0.0, 0.5, 1.0 in (a)-(c)
and 1.0, 1.5, 2.0 in (d)-(f). DC algorithm performs better than
other methods to strengthen the robustness for different α.

in red in Fig. 6 (a)-(c). Furthermore, we show that the
number of added edges n increases but their average length
l decreases when α increases in [0, ln2

ln3−ln2 ] in Fig. 6 (d). This
is, nicely, consistent with the theoretical result in Fig. 3. With
the increase of α, adding long-distance edges costs more, so
DC algorithm avoids connecting long-distance nodes but
adds more edges to reduce the total cost. When α is greater
than ln2

ln3−ln2 , DC algorithm adds the same number (ninety-
three) of edges of length two. Approx algorithm also adds
edges with different lengths as α changes in Fig. 6 (e)-
(g). When α is equal to two, it adds ninety-three edges
of length two. That is the reason that it performs as well
as DC algorithm to biconnect the TS network in Fig. 5 (f).
The length of the edges added by FPT algorithm does not
change significantly when α is different in Fig. 6 (i)-(k).
When α is equal to zero, the number of added edges is
nine and equal to the result of DC algorithm, as shown in
Fig. 4 (g). However, with the increase of α, FPT algorithm
still adds a few long-distance edges, leading to high costs.
PrefA algorithm and PostA algorithm do not consider the
length-dependent cost and add the same sets of edges for
different α in Fig. 6 (h) and (l).

We show the degree distributions of the original TS
network, the biconnected networks when α is equal to zero,
one, and two in Fig. 7 (a), and the strengthened networks
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TABLE 2: The change of ACC and ASPL. ACC increases but
ASPL decreases as the network is strengthened.

Index Network ACC ASPL
1 TS (original) 0.0242 10.33
2 TS, Rg = 1, α = 0 0.0299 9.79
3 TS, Rg = 1, α = 1 0.0407 9.15
4 TS, Rg = 0.416, α = 2 0.0840 10.07
5 TS, Rg = 0.732, α = 2 0.1861 9.58
6 TS, Rg = 1, α = 2 0.3144 8.35

during the strengthening process when α is equal to two in
Fig. 7 (b). We find that the node with degree one does not
exist in the biconnected network because it would connect
with an AP and needs to be strengthened. Besides, high
degree nodes do not change significantly, implying that
the edge addition does not change the network backbone.
We also calculate the average clustering coefficient (ACC)
and the average shortest path length (ASPL) in TABLE 2.
Comparing indexes 1,2,3,6, we know that ACC increases
but ASPL decreases as the network is strengthened. During
the strengthening process, when α is equal to two, we can
confirm this via the comparison of indexes 1,4,5,6.

4.4 Strengthening network robustness against general
attack strategies

We further study the network robustness against the high-
degree adaptive attack (HDA) and the high-betweenness
adaptive attack (HBA), two alternatives extensively studied
in the literature. At each step, they remove the largest
degree or betweenness node. The robustness is simplified
as Rg = 1

N+1

∑1
q=0 s(q) because these two attack strategies

can eventually remove all nodes from the network.
The most robust network is the fully connected network

whose s(q) is reduced by 1
N when a node is removed. While

DC algorithm is based on the identification of APs, the idea
of strengthening the robustness is generic. Specifically, APs
can be substituted by any list of nodes yielded by the chosen
attack strategy, and the algorithm will return a strengthened
network against this attack. If the removed node is not an
AP, its removal does not dismantle the network, and thus,
it does not need to be strengthened. But if the removed
node is an AP, s(q) will be reduced by more than 1

N . So
this node needs to be strengthened. Based on this idea, DC
algorithm is modified accordingly. At each step, we first
remove m ∈ [0, N − 3] nodes from the network based on
the attack strategy. If the next removed node is an AP in
the current network Gc, its removal splits the component
into some small components. We choose the least important
node (the smallest degree or betweenness node) from the
largest component and the second largest component, re-
spectively, and find the shortest path between them in Gc.
We biconnect this path using Alg. 1, add the corresponding
edges to the original network and calculate ∆Rg/C, where
∆Rg is the increment of robustness and C is the cost of
these edges. To expand the search space, we also find the
least important node in each weak core, connect it with the
least important node in the critical giant component, like
PostA algorithm, and calculate ∆Rg/C. Finally, we add the
edges with the largest ∆Rg/C to the original network so
that we can strengthen the robustness more with less cost.

This process is repeated until a certain number of edges
are added. The experimental results on the TS network are
shown in Fig. 8. Our algorithm is more effective to increase
the robustness than other methods for different α. Approx
and FPT can not further strengthen the robustness once the
network is biconnected. PrefA and PostA still can not adjust
the added edges according to the cost function.

4.5 Applying DC algorithm on the realistic problem

Afore-presented results are based on the network topology.
Still, real-world networks include other information, such as
the geographical positions of nodes. In the TS network, two
stations may be geographically close, but their topological
distance can be large if they do not belong to the same line.
We tackle this case by estimating the distance between pairs
of nodes through the Haversine Formula, and by then taking
this distance as the cost of adding edges. Alg. 2 has then to
be adapted in one place: In the first stage, when we find the
shortest path between two unused nodes u, v chosen from L
randomly, we also consider its alternative paths. We search
the nodes x and y that are not APs in the bicomponents
with the minimum geographical distance from nodes u and
v, respectively. Then we find the shortest paths u-. . . -x and
v-. . . -y. Comparing the edges added in the alternative paths
with the edges added in the original path by Alg. 1, we
choose the edges with less cost. Other methods can also
include the geographical information. For Approx algorithm
and FPT algorithm, we use the geographical distance as the
cost function. For PostA algorithm, we add the edge that
strengthens the robustness most using unit distance cost.
For PrefA algorithm, we add edges between the smallest
degree nodes with the minimum geographic distance. For
SE algorithm, we still swap edges randomly and accept the
change only if the robustness is increased. Fig. 9 shows
that DC algorithm performs better on strengthening the
network robustness than other methods when the cost is
measured by the geographical distance. The strengthened
and biconnected networks by DC algorithm and Approx
algorithm are shown in Fig. 10 (a) and (b). The edges added
by DC algorithm are reasonable from an operational point
of view because they connect the short-distance stations. As
the cost of the result of Approx algorithm is smaller than
twice the optimal cost, this algorithm adds some redundant
edges. Comparing these results with those in Fig. 6 (a)-(c),
we find that the added edges are not realistic when the
cost is based on SPL in graph theory. When α is small,
the added edges connect long-distance nodes. When α is
large, the number of added edges is large. Therefore, to get
more practical solutions, we need to take the geographical
distance into consideration.

5 CONCLUSION

Network robustness measures the capacity of a network
to keep functioning when disrupted. In this paper, we
generalized the robustness measurement against any attack
strategy. Then we tackled the problem of strengthening the
network robustness with the minimum cost and proved it to
be NP-hard. Next, we designed a novel, targeted heuristic
algorithm to strengthen the network robustness against
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Fig. 6: Illustration of the reason that DC algorithm is more effective. (a)-(c) and (e)-(l) show the length distributions of the
edges added by different methods. (a)-(c) also show the corresponding added edges in red. The transitions of number of
edges n added by DC algorithm and their average length l are shown in (d). |E1| = n is the number of added edges.

Fig. 7: The change of the degree distribution. (a) The node
with degree one does not exist in the biconnected network
for different α. (b) The number of nodes with degree one
decreases with the increase of Rg .

articulation points-targeted attack. The network was decom-
posed into the right size by the attack strategy, and then we
added edges to cover all APs in the specific paths in the
network. For the paths, the results of our algorithm are op-
timal, and we provide the theoretical solutions to guide how
to add edges according to different cost definitions. Experi-
ments on both random and real-world networks show that
our algorithm is better suited for the strengthening problem
with unit cost as well as variable costs compared with the
state-of-the-art methods. Compared to PostA, PrefA and
SE algorithms, our algorithm can add edges pertinently

to cover the articulation points to reduce the impact of
their removal and take the cost of adding edges into con-
sideration. Compared to FPT and Approx algorithms, our
algorithm can strengthen the network robustness effectively
using the limited budget. Against general attack strategies,
we show that articulation point plays an important role in
network strengthening. Our algorithm excels by revealing
the essence of strengthening the robustness, that is, increas-
ing the size of the giant connected component pertinently
during the node removal process. Besides, our algorithm is
flexible. With a minor modification, it is better suited for the
realistic strengthening problem on real-world networks.

For future research, our algorithm could be adapted
towards different attack strategies, such as localized at-
tacks [31], [32]. In our study, the network robustness was
measured by the size of the giant connected component; an
alternative measure is the generalized k-core [33], for which
different techniques might be required for effective strength-
ening. Moreover, there is a need for extending our algorithm
to strengthen multi-layer or interdependent networks [34].
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