1 High-performance Bifunctional hollow structures Cobalt-based

2 Phosphides Catalysts for Water Splitting

- 3 Wei Zhang^{1†}, Ning Han^{1†}, Jiangshui Luo^{*2}, Wei Guo¹, Sijie Xie¹, Zhenyu Zhou¹,
- 4 Palaniappan Subramanian¹, Kai Wan¹, Xu Han³, Jordi Arbiol^{3,4}, Chi Zhang^{*5},
- 5 Maowen Xu⁶, Xuan Zhang^{*1} and Jan Fransaer^{*1}
- 6 1 Department of Materials Engineering, KU Leuven, Leuven, 3001 Belgium.
- 7 2 College of Materials Science and Engineering, Sichuan University, Chengdu,
- 8 610065 P.R. China.
- 9 3 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
- 10 Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- 11 4 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
- 12 5 School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020 P.R.

13 *China*.

- 14 6 Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of
- 15 Education, School of Materials and Energy, Southwest University, Chongqing 400715,
- 16 *P. R. China.*
- 17 *†* W. Z. and N.H. contributed equally to this work.
- 18 ** Corresponding authors.*
- 19 *E-mail addresses: jiangshui.luo@scu.edu.cn (J. L); chizhang@wyu.edu.cn (C. Z);*
- 20 xuan.zhang@kuleuven.be (X. Z); jan.fransaer@kuleuven.be (J. F)

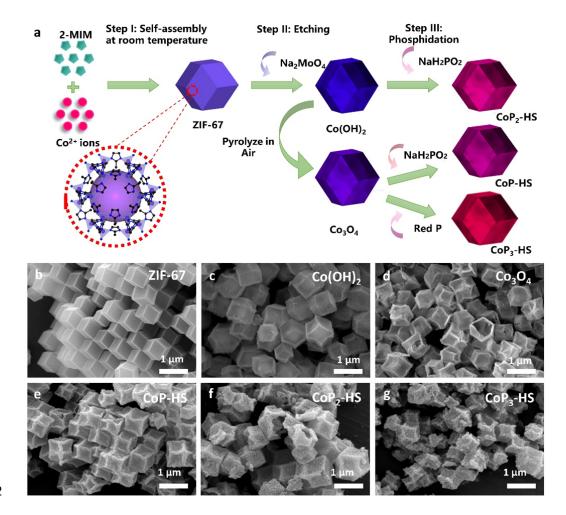
21 Abstract

22 Cobalt phosphides electrocatalysts have great potential for water splitting, but 23 the unclear active sides hinder the further development of cobalt phosphides. Wherein, 24 cobalt phosphides hollow structure (CoP-HS, CoP₂-HS and CoP₃-HS) catalysts based 25 on same sacrificial template were prepared. Surprisingly, these cobalt phosphides 26 exhibited similar OER but quite different HER performances. The identical OER 27 performance of these CoP_x-HS in alkaline solution were attributed to the similar 28 surface reconstruction to CoOOH. CoP-HS exhibited the best catalytic activity for HER among these CoP_x-HS, originating from the adjusted electronic density of 29 30 phosphorus to affect absorption-desorption process on H. Moreover, CoP-HS 31 displayed good performance (cell voltage of 1.47 V at a current density of 10 mA cm⁻²) and high stability in 1 M KOH. This work could provide the guidance for the 32 33 future investigations on transition metal phosphides for water splitting from material 34 design to mechanism understanding.

35

36 1. Introduction

Hydrogen will almost certainly play a role in future renewable energy plans.^{1,2} 37 Generation of hydrogen by sustainable electrochemical processes form water is an 38 appealing strategy.^{3,4} Electrochemical water splitting involves two reactions: the 39 40 cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction 41 (OER). Presently, platinum (Pt) and noble metal oxides, including ruthenium dioxide 42 (RuO₂) and iridium dioxide (IrO₂), are the state-of-the-art electrocatalysts to drive HER and OER, respectively.⁵ Nevertheless, the scarcity and associated high costs of 43 these noble metals severely restrict their large scale application.⁶ Hence, the lower 44 45 product cost, tolerance of catalysts working conditions for both reactions, the development of bifunctional catalysts, free from Pt-group metals, has gained 46 increasing attention.^{7,8,9} 47

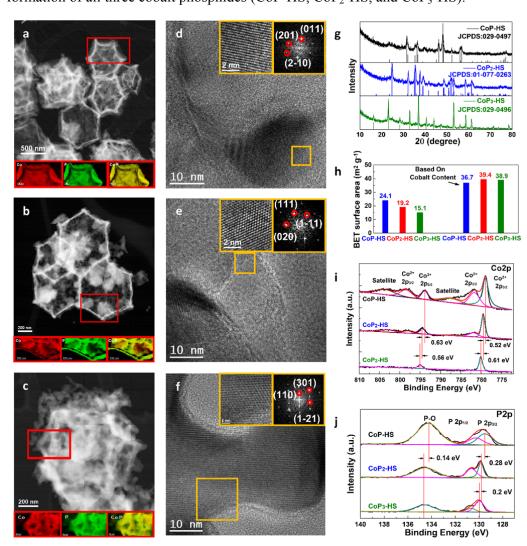

48 Different transition metal-based catalysts have been explored as bifunctional 49 catalysts for electrochemical water splitting, such as oxides, hydroxides, borides, selenides, nitrides and so on.^{10,11,12,13} Among these nonprecious metal electrocatalysts. 50 transition metal phosphides (TMPs) are considered as the promising alternatives 51 52 catalyst for both HER and OER. In particular, cobalt phosphides have attracted the most attention due to their high catalytic activity and durability in alkaline solution.¹⁴ 53 54 For instance, Yoo and co-workers reported that porous CoP nanoparticles exhibit good HER and OER activities owing to the increase of the accessible catalytic active 55 sites.¹⁵ However, the poor conductivity, unclear active sides and low reaction kinetics 56 hinder the practical use of cobalt phosphides. 57

58	To further improve electrochemical performance of TMPs, two approaches have			
59	been proposed: (1) Rational design of nanostructures to increase the number of			
60	exposed active sites and promote ion transport, such as nanoneedle, nanosheet,			
61	core-shell and hollow nanostructure. ^{16,17,18,19} Among those, hollow nanostructured			
62	catalysts materials have attracted a lot of research interests, because the high			
63	surface-to-volume ratio, low density and small transmission lengths of mass and			
64	charge.20 For example, compared with Ni-Co-P nanosheets, the Ni-Co-P hollow			
65	nanobricks are demonstrated as the more efficient bifunctional electrocatalysts for			
66	overall water splitting with a potential of 1.62 V to reach the current density of 10 mA			
67	cm ^{-2,21} (2) Understanding of active sites in cobalt phosphides. The mechanism of			
68	water splitting on cobalt phosphides is still under debate due to the complicate phase			
69	and structure change and unclear active sites. Some studies announced that the cobalt			
70	phosphides are stable during OER cycling. ^{22,23,24} Others believe that cobalt			
71	phosphides transform to oxide/oxyhydroxide during OER.25 Besides, cobalt			
72	phosphides have various stoichiometries, such as Co ₂ P, CoP, CoP ₂ and CoP ₃ .			

In this work, based on the same ZIF-67 sacrificial template, a series of cobalt phosphides with a similar, hollow morphology were synthesized. The resulting catalyst exhibits similar nanocages with a porous structure. Interestingly, the different cobalt phosphides showed similar OER performance but different HER performance. In-depth structural characterizations and electrochemical studies show that the different cobalt phosphides convert during OER to the active catalyst. After cycling in alkaline solution, the active surface for all catalysts becomes oxyhydroxide which had

80	a similar activity with an overpotential of 270~280 mV at a current density of 10 mA
81	cm^{-2} for OER. On the contrary, all the cobalt phosphides with hollow structures
82	remained stability during HER test. Among these catalysts, CoP-HS nanocages
83	showed the best catalytic activity for HER with an overpotential of -116 mV which
84	could be the catalytically active sites for HER at a current density of -10 mA cm^{-2} in 1
85	M KOH. Density functional theory (DFT) computation revealed that the P-sites in
86	CoP _x -HS are the primary catalytically active site for HER, and the calculated ΔG_{H^*}
87	based on P-sites of CoP-HS agrees well with the corresponding normalized HER
88	performances. When CoP-HS//CoP-HS were used for water splitting, a current
89	density of 10 mA cm ⁻² is achieved at a remarkably low cell voltage of 1.47 V, which is
90	due to the hollow structure of the catalysts and the high activity of the P-sites in CoP.

91 **2. Results and discussion**



92

Figure 1. (a) Schematic illustration of the synthesis process of hollow cobalt phosphides
nanocages. SEM images of pure ZIF-67 (b), Co(OH)₂ (c), Co₃O₄ (d), CoP-HS (e), CoP₂-HS (f)
and CoP₃-HS (g).

The synthesis process of the three different cobalt phosphides nanocages are shown in **Figure 1a**. In order to ensure the same morphology for all CoP_x catalysts were synthesized based on the same ZIF-67 sacrificial template. The rhombic dodecahedral ZIF-67 particles are shown in **Figure S1a**. Next, the ZIF-67 particles were converted into hollow $Co(OH)_2$ structures by the reaction of with an aqueous

101	Na_2MoO_4 solution based on the Kirkendall effect. ^{26,27} Co ₃ O ₄ nanocages were			
102	fabricated by annealing the hollow Co(OH) ₂ particles at 500 °C in air. Subsequently,			
103	the hollow $Co(OH)_2$ and Co_3O_4 particles were annealed together with NaH_2PO_2 in N_2			
104	atmosphere together at 700 °C, resulting in the formation of hollow CoP2 particles			
105	(named CoP ₂ -HS) and hollow CoP particles (named CoP-HS), respectively. Hollow			
106	CoP ₃ particles (named CoP ₃ -HS) was prepared by annealing Co ₃ O ₄ particles with red			
107	phosphorus in N_2 at 700 °C. As shown in Figure 1b, the prepared rhombic			
108	dodecahedron shape ZIF-67 particles exhibited a uniform particle size of			
109	approximately 800 nm and perfectly flat facets. The X-ray diffraction (XRD) pattern			
110	of ZIF-67 matched well with the simulated pattern (Figure S1a), which demonstrates			
111	the purity of the starting phase. It clearly shows that during these transformations, the			
112	initial morphology and particle size of ZIF-67 is preserved (Figure 1c&1d). Because			
113	the structure was transformed from solid to hollow, the surface of the $\text{Co}(\text{OH})_2$ and			
114	Co ₃ O ₄ nanocages becomes wrinkled and protuberance-like. The formation of hollow			
115	structure of $Co(OH)_2$ and Co_3O_4 can be identified from several broken samples. XRD			
116	pattern presented in Figure S1b shows the presence of both $\alpha\text{-}Co(OH)_2$ and			
117	β -Co(OH) ₂ in the prepared Co(OH) ₂ . As shown in Figure S1c , the diffraction pattern			
118	of the Co_3O_4 is in good agreement with the standard pattern of Co_3O_4 (JCPDS 1-1152)			
119	powder. The uniform distribution of Co and P in the synthesized Co_3O_4 was proven by			
120	the energy-dispersive X-ray (EDX) (Figure S2). After phosphidation, the three cobalt			
121	phosphides have the original polyhedron shape of the ZIF-67 precursor. The diameters			
122	of these particles are in the range of 600 to 800 nm. As shown in Figure S3, the			

124 formation of all three cobalt phosphides (CoP-HS, CoP₂-HS, and CoP₃-HS).

overlap of P and Co elements in SEM-EDS mapping confirms the homogeneous

125

123

126 Figure 2. TEM images of CoP-HS (a), CoP₂-HS (b) and CoP₃-HS (c). EELS chemical 127 composition maps of CoP-HS (a), CoP₂-HS (b) and CoP₃-HS (c) obtained from area inside the red 128 square on the HAADF STEM micrograph. Individual Co L2,3-edges at 779 eV (red), P 129 L2,3-edges at 132 eV (green) and composite of Co-P. HRTEM images and corresponding indexed 130 power spectra (FFT) of CoP-HS showing a CoP orthorhombic crystal with Pnma phase along its 131 [12-2] axis (d), CoP₂-HS showing a CoP₂ monoclinic crystal with $P2_1/C$ phase along its [10-1] 132 axis (e) and CoP_3 -HS showing a CoP_3 cubic crystal with Im3 phase along its [-113] axis (f). (h) 133 BET surface area of CoP-HS, CoP₂-HS and CoP₃-HS based on cobalt content. (g) XRD patterns of

CoP-HS, CoP₂-HS and CoP₃-HS. XPS spectra of Co 2p (i) and P 2p (j) for CoP-HS, CoP₂-HS and
CoP₃-HS.

136 The well-defined nanocage-shaped structure and particle sizes (range from 600 137 nm to 800 nm) of the three cobalt phosphides are also confirmed by transmission 138 electron microscopy (TEM) images (Figure 2). The EELS chemical composition 139 maps of the three cobalt phosphides were obtained from the region inside the red 140 square in the HAADF STEM micrograph, shown in Figure 2a-c, for CoP-HS, 141 CoP₂-HS, and CoP₃-HS, respectively. As can be seen in these maps, Co and P are 142 uniformly distributed in the selected nanostructure. But the P signal is stronger in 143 CoP₂-HS and CoP₃-HS. A HRTEM micrograph was taken from the nanoparticle 144 inside the orange square (Figure 2d). Details of this region and its corresponding 145 power spectrum reveals that this nanoparticle has a crystal phase that is in agreement 146 with the CoP-HS orthorhombic phase (space group = Pnma) with a=5.0760 Å, 147 b=3.2770 Å and c=5.5990 Å. From the crystalline domain in **Figure 2d**, the CoP-HS 148 lattice fringe distances are 0.286 nm, 0.237 nm, and 0.199 nm, at 78.95° and 122.43° 149 which correspond to the orthorhombic CoP phase, visualized along its [12-2] zone 150 axis. For the CoP₂-HS sample, a HRTEM micrograph was taken from the nanoparticle 151 inside the orange square (Figure 2e). Details of this region and its corresponding 152 power spectrum, reveals that this nanoparticle has a crystal phase that is in agreement 153 with the CoP₂-HS monoclinic phase (space group = P21/C) with a=5.5510 Å, 154 b=5.5490 Å and c=5.6140 Å. From the crystalline domain in **Figure 2e**, the CoP₂-HS lattice fringe distances are 0.277 nm, 0.272 nm, and 0.281 nm, at 60.83° and 121.60° 155

which correspond to the monoclinic CoP₂-HS phase, visualized along its [10-1] zone axis. As illustrated in **Figure 2f**, the CoP₃-HS cubic phase (space group = Im3) with a=b=c=7.7112 Å can be proven from the corresponding power spectrum from a HRTEM micrograph taken from the nanoparticle inside the orange square. The CoP₃-HS lattice fringe distances (**Figure 2f**) are 0.553 nm, 0.243 nm, 0.313 nm and 0.313 nm, at 46.97°, 72.21° and 106.50° which could be interpreted as the cubic CoP₃-HS phase, visualized along its [-113] zone axis.

163 The crystalline structures and successful phosphidation process of these samples 164 are also confirmed by the XRD (Figures 2g). The experimental XRD patterns match 165 well with corresponding standard three cobalt phosphide crystal structures (ICDD 166 PDF: 029-0497 for CoP-HS, ICDD PDF: 01-077-0263 for CoP₂-HS and ICDD PDF: 167 029-0496 for CoP₃-HS) without unidentified peaks. These results indicate that the 168 $Co(OH)_2$ and Co_3O_4 were completely converted into the intended cobalt phosphides. 169 The Brunauer-Emmett-Teller (BET) specific surface area and pore size distributions 170 of the as-synthesized three cobalt phosphides were determined by N_2 sorption 171 experiments. The N₂ adsorption-desorption isotherms and Barrett-Joyner-Halenda 172 (BJH) pore-size distribution of CoP-HS, CoP₂-HS and CoP₃-HS nanocages are shown 173 in **Figure S4**. All of the cobalt phosphides show a type-IV isotherm loop, which 174 indicates the mesoporous characteristics of the materials. For the three cobalt 175 phosphides, the major pore size distributions are displayed at a region of 1.5 to 3.0 nm. 176 Moreover, BET surface areas of CoP-HS, CoP₂-HS and CoP₃-HS are 24.1, 19.2 and 15.1 m² g⁻¹ (Figure 2h), respectively. With increasing phosphorus content, the 177

specific surface area decreased. Interestingly, after normalizing the specific surface areas to the mass of cobalt, the normalized specific surface areas of all three cobalt phosphides are similar (**Figure 2h**). This phenomenon can be explained by the same self-sacrificing template was used. All these results prove that the successful synthesis of three different cobalt phosphides (CoP-HS, CoP₂-HS and CoP₃-HS) with similar structure and morphology by the presented top-down strategy.

184 X-ray photoelectron spectroscopy (XPS) is used for the analysis of chemical 185 state and the overall electronic structure of these catalysts. As shown in **Figure S5**, the 186 XPS survey spectrums of three cobalt phosphides reveal the existence of Co and P. 187 The Co 2p spectra of the CoP-HS (Figure 2i) is deconvoluted into six peaks, which 188 binding energies located at 778.9, 793.8, 787.6 eV that can be assigned to $Co 2p_{3/2}$, 189 and binding energies located at 781.7, 798.5, 803.8 eV that can be assigned to $Co 2p_{1/2}$. 190 Among them, the peaks centered at 787.6 and 803.8 eV are the satellite peaks of $2p_{2/3}$ and $2p_{1/2}$, respectively. The binding energy at 778.9 and 793.8 eV can be attributed to 191 Co^{3+} , and those located at 781.7 and 798.5 eV belong to Co^{2+} . Compared with CoP, 192 193 the Co 2p peaks in CoP₂-HS and CoP₃-HS shifted to a higher binding energy. The 194 main reason of this shift is due to the higher P content in CoP₂-HS and CoP₃-HS. A higher concentration of electronegative phosphorus shifts the peaks of Co^{3+} to higher 195 binding energies. In addition, compared to the Co^{2+} peaks in the three cobalt 196 197 phosphides, there is a gradual decrease in the peak intensities from CoP-HS to 198 CoP₃-HS. In the P 2p spectrum of CoP-HS (Figure 2j), the peaks located at 129.5, 199 130.3 and 134.2 eV are indexed to P $2p_{3/2}$, P $2p_{1/2}$ in cobalt phosphide and surface

200 oxidation of P, respectively.²⁸ Compared with CoP₃-HS, the peaks of CoP-HS and 201 CoP₂-HS in P $2p_{3/2}$, P $2p_{1/2}$ region shifted to lower binding energy. The negative shift 202 of P 2p binding energy, induced by changing cobalt-phosphorus composition, shows 203 the enhanced electron occupation, which can give rise to the improvement of the 204 electron-donating ability of the catalyst.²⁹

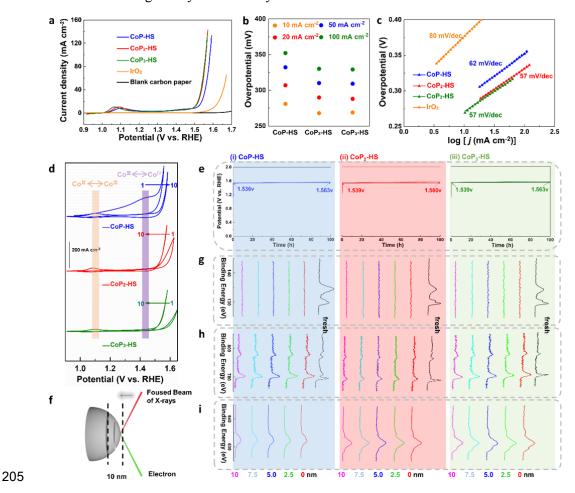
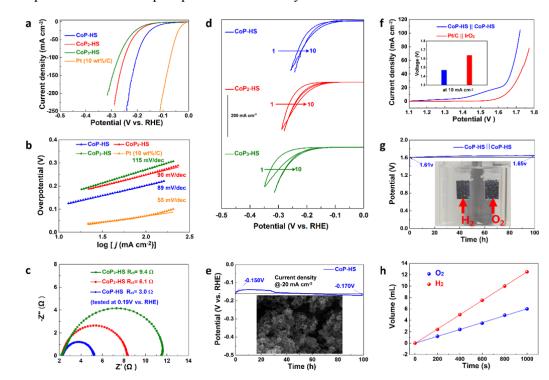


Figure 3. (a) The LSV curves of CoP-HS, CoP₂-HS, CoP₃-HS, IrO₂ and carbon paper measured in
1.0 M KOH solution toward OER at a scan rate 10 mV/s after activation by 50 CV cycles between
0.0 V and 0.85 V (vs. Hg/HgO) at a scan rate 50 mV/s. (b) The data of CoP-HS, CoP₂-HS and
CoP₃-HS at different current density. (c) The corresponding Tafel plots for the samples. (d) The
CV curves obtained at the 1st and 10th cycles at a scan rate of 10 mV/s in a 1.0 M KOH solution.
(e) The potential of CoP-HS, CoP₂-HS and CoP₃-HS versus time at a current density of 20 mA


cm⁻² in 1.0 MKOH. (All the tests were taken on carbon paper). (f) The schematic of surface
composition investigation via XPS in different depths after ion beam etching. (g) High-resolution
P 2p XPS spectra of the fresh CoP-HS, fresh CoP₂-HS, fresh CoP₃-HS and post-OER samples. (h)
High-resolution Co 2p XPS spectra of fresh CoP-HS, fresh CoP₂-HS, fresh CoP₃-HS and
post-OER sample. (i) High-resolution O 1s XPS spectra of the post-OER CoP-HS, post-OER
CoP₂-HS and post-OER CoP₃-HS samples.

218 Cobalt based phosphides are considered as promising bifunctional catalysts for 219 both HER and OER. Firstly, the electrocatalytic OER performance of three cobalt 220 phosphides were examined in 1.0 M KOH using a three-electrode system and 221 different electrodes were prepared by coating carbon paper with approximately 1 mg cm^{-2} of catalyst. The active site of cobalt based phosphides for OER is still on debate. 222 Even though, cobalt based phosphides have been reported as catalysts for OER,^{23,24,30} 223 224 the structure and phase changes occurring during OER tests cannot be ignored. To 225 investigate the phase changes of three cobalt phosphides, the CV curves of three 226 cobalt phosphides at the 1st, 3rd, 5th, and 10th cycle were measured. As illustrated in 227 Figure 3d&S6, at the 1st cycle, the OER performance of CoP-HS seems better than 228 CoP₂-HS and CoP₃-HS, which could be explained by unstable of CoP_x-HS system. 229 Furthermore, as the number of cycles increases, the OER performance of CoP₂-HS 230 and CoP₃-HS improves, while the OER performance of CoP-HS decreases. At the 231 10th cycle the CV curves of CoP-HS, CoP₂-HS and CoP₃-HS almost overlap. 232 Therefore, all catalysts were first activated by 50 CV cycles at a scan rate 50 mV/s 233 between 0.0 V and 0.85 V (vs. Hg/HgO). LSV with iR-correction are used for 234 evaluated the OER performances of these catalysts (Figure 3a). For the purpose of

235	comparison, The OER performances of commercial IrO_2 and bare carbon paper were
236	also investigated. As shown in Figure 3a, the CoP-HS requires an overpotential of
237	281 mV at a current density of 10 mA cm ⁻² . Similar performance of the CoP ₂ -HS and
238	CoP ₃ -HS catalysts can be achieved, which overpotentials of resp. 268 mV and 269
239	mV at a current density of 10 mA cm ⁻² . All these catalysts show better performance
240	than commercial IrO_2 (375 mV). Meanwhile, the bare carbon paper hardly shows any
241	electrocatalytic activity for OER even at high overpotential (Figure 3a). The
242	corresponding Tafel slopes are derived from plotting overpotential against log (j)
243	(Figure 3c). CoP ₂ -HS and CoP ₃ -HS exhibit a similar Tafel slope of $57 \sim 62 \text{ mV dec}^{-1}$.
244	The Tafel slope results suggest that CoP-HS, CoP ₂ -HS and CoP ₃ -HS have similar
245	charge transfer kinetics during OER. The electrochemical durability of the catalyst is
246	a key parameter for practical application. The electrocatalytic stability of different
247	cobalt phosphides electrodes were investigated by chronopotentiometry at a constant
248	current density of 20 mA cm ⁻² (Figure 3e). The chronopotentiometry curves show that,
249	after 100 h, the catalytic activity of CoP-HS, CoP2-HS and CoP3-HS dropped by
250	6.5 %, 6.0% and 7.7%, respectively. This result suggests a good electrochemical
251	stability of all three cobalt phosphides for the OER in alkaline solution. At the cycling
252	tests, the three cobalt phosphides prepared in this paper show almost identical results
253	(1.563 V for CoP-HS, 1.560 V for CoP ₂ -HS and 1.563 V for CoP ₃ -HS, vs. RHE),
254	which indicates that the P composition does not influence the OER performance of
255	cobalt based phosphides in an alkaline medium. This could be caused by the
256	oxidization of the similar structure of CoP-HS, CoP ₂ -HS and CoP ₃ -HS surface during

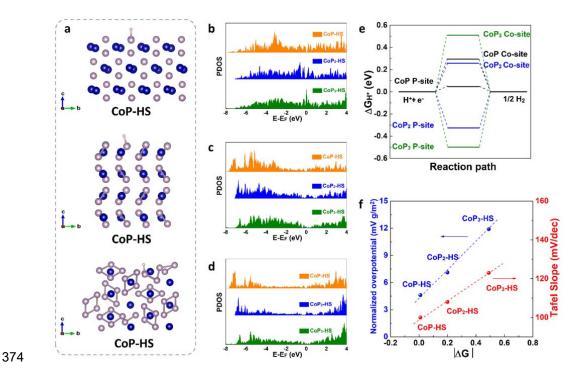
257 the OER test. After the OER electrochemical durability test, SEM and EDS 258 measurements were conducted to characterize the morphologies and surface 259 compositions of the three cobalt phosphides. The SEM images show that the 260 morphology and structure of three cobalt phosphides are reasonably retained after 261 OER durability test (Figure S7a-c). But the surface composition of three cobalt 262 phosphides changes showing a loss of phosphorous after long-term OER durability 263 test in an alkaline medium (Figure S7d). This result is consistent with previous 264 papers. Metal-based materials, such as metal chalcogenides, metal pnictides and metal 265 carbides, are partly or completely transformed to oxides or (oxy) hydroxides under sufficiently extended periods during alkaline OER testing^{22,31,32}. To further investigate 266 267 the post-OER electrodes, the XPS was used to analyze the electrodes. Combining a 268 sequence of ion gun etch cycles, more quantified vertical information and information 269 evolution with thicknesses was obtained by depth-profiling X-ray photoelectron 270 spectroscopy (Figure 3f). As shown in Figure 3g, the characteristic signals for 271 phosphorous almost completely disappears from the surface. As for cobalt, only two 272 broad peaks corresponding to oxidized cobalt species were observed on the surface 273 for all three cobalt phosphides after OER (Figure 3h), which is consistent with a previous report on CoOOH.³³ To further validate the formation of CoOOH, the O/Co 274 275 peak area ratio of was calculated based on the XPS detection at the surface and the 276 result is about 2:1 (Figure 3h&i). Argon ion sputtering was applied to remove the 277 oxidized surface (2.5 nm/per step) of the three cobalt phosphides after OER and 278 measured again to observe the XPS signals of P 2p (Figure 3g), Co 2p (Figure 3h),

279 and O 1s (Figure 3i). However, XPS results remain unchanged, which indicate the 280 complete transformation of the near surface region of all three cobalt phosphides (the 281 active region) during OER durability test. This explains the similar OER 282 performance after durability test. According to these results, the near surface region of 283 all three cobalt phosphides transform via self-reconstruction into CoOOH. Therefore, 284 P composition will not affect the OER performance in an alkaline medium. After the 285 conversion into CoOOH, these catalysts have comparable or better OER activity than 286 reported metal-based phosphides electrocatalysts as shown in Table S1.

287

Figure 4. (a) The LSV curves of CoP-HS, CoP₂-HS, CoP₃-HS and Pt/C measured in 1.0 M KOH
toward HER at scan rate 10 mV/s. (b) The corresponding Tafel plots for the samples in 1.0 M
KOH. (c) Nyquist plots of CoP-HS, CoP₂-HS and CoP₃-HS in 1.0 M KOH. (All the tests were
taken on carbon paper). (d) The CV curves of CoP-HS, CoP₂-HS and CoP₃-HS measured in 1.0 M
KOH solution for 1st and 10th cycles at a scan rate 10 mV/s. (e) The chronopotentiometry curve

of CoP-HS at the current density of -20 mA cm⁻² for 100 h in 1 M KOH. The inset in (e) is the SEM image of CoP-HS after 100 h HER stability measurement in 1 M KOH. (f) Overall water splitting performance based on the CoP||CoP and Pt/C||IrO₂ electrodes in 1 M KOH. The inset in (f) is the potential of CoP||CoP and Pt/C||IrO₂ at a current density of -10 mA cm⁻². (g) Long term durability test of CoP in the two-electrode electrolyzes at 20 mA cm⁻² for overall water splitting. The inset in (g) is optical image during the overall water splitting. (h) Amount of H₂ and O₂ as a function of time.


300 On the contrary, the catalytic process of cobalt based phosphides for HER is 301 different from OER. Based on previous studies, the P sites in cobalt phosphides could 302 be the active site for HER. To investigate the HER activity of three cobalt phosphides, 303 LSV curves after CV scans in 1.0 M KOH were recorded at a scan rate of 10 mV/s, 304 and all the curves were IR corrected (Figure 4a). As expected, the HER activity of 305 bare carbon paper is negligible (Figure S8a), and the Pt/C exhibits the best activity with an overpotential of 25 mV at the current density of -10 mA cm⁻². 116 mV is 306 required for the CoP-HS to achieve the current density of -10 mA cm^{-2} , which is much 307 308 lower than that of CoP₂-HS (159 mV) and CoP₃-HS (170 mV). The Tafel plots 309 derived from the LSV polarization curves are displayed to estimate the reaction 310 kinetics. As expected, the Tafel slope of commercial Pt/C is 34 mV dec⁻¹ (Figure 4b), which is consistent with the reported value.³⁴ The Tafel slope of CoP-HS, CoP₂-HS 311 and CoP₃-HS is 89, 90, and 115 mV dec⁻¹, respectively. According to literature, the 312 313 HER occurs through three different individual steps, which are named Volmer, Heyrovsky, and Tafel reaction.³⁵ The Tafel values of three cobalt phosphides indicate 314 315 that a Volmer-Heyrovsky reaction, which happens on the surface of catalysts, is the

316	rate-determining step. Moreover, electrochemical impedance spectroscopy was used
317	to investigate the electron transfer kinetics during the HER process. As shown in
318	Figure 4c, the Nyquist plots of different catalysts are measured at -0.19 V. The inset
319	in Figure 4c displays the equivalent circuit model. The intersection of the plots on the
320	real axis represents the solution resistance (R_s) and the diameter of the semi-circle
321	represents the charge transfer resistance (R_{ct}) across the electrode-solution interface,
322	repectively. ³⁶ CoP-HS possesses the smallest R_{ct} value. ³⁷ The phase and
323	electrochemical stability of the three cobalt phosphides during HER are investigated
324	in the same way as in the OER experiments. Firstly, the CV curves of three cobalt
325	phosphides at the 1st, 3rd, 5th, and 10th cycles were conducted. As illustrated in
326	Figure 4d&S9, after 3 CV cycles, the CV curves of the three cobalt phosphides
327	display only minor changes, which indicates that three cobalt phosphides reach a
328	stable electrochemical state in a short period of time. Overall, CoP-HS is always
329	displaying the best HER performance in three cobalt phosphides. It could be
330	explained by XPS that the bonding energy of P 2p negatively shifted with the decrease
331	of P concentration in cobalt phosphides (CoP-HS <cop<sub>2-HS <cop<sub>3-HS), indicating</cop<sub></cop<sub>
332	the enhanced electron occupation to improve the electron-donating ability. ²⁹
333	Chronopotentiometry was conducted to evaluate the stability of these catalysts. After
334	100 hours durability test, CoP retained good catalytic activity with a 17% decrease in
335	potential (Figure 4e). After 100 hours of OER, SEM, XPS, and SEM-EDX were used
336	to investigate the morphology, structure and composition of CoP-HS (Figure
337	4e&S10). As shown in the SEM images, the CoP-HS preserves its morphological

338	integrity (inset of Figure 4e). Based on the XPS results (Figure S10a), phosphorous
339	can be clearly detected after HER test, which is different to the situation for OER
340	(Figure 3g). Moreover, the chemical composition analyzed by SEM-EDS chemical
341	mapping shows that the atomic ratio of Co/P is close to 1.3 (Figure S10b), which
342	indicates the stability of CoP-HS during HER test in alkaline medium. All these
343	results prove that CoP-HS shown high stability for HER. Compared with recent
344	reports, the HER performance of CoP-HS is comparable or better than most cobalt
345	based HER electrocatalysts in alkaline solution (Table S2). In view of the stability of
346	the three cobalt phosphides in acid solution, the HER activity of CoP-HS, CoP ₂ -HS
347	and CoP_3 -HS were also explored in 0.5 M H_2SO_4 (Figure S11). Similar results to the
348	HER in alkaline solution are achieved in that CoP-HS was still the best catalysts
349	(Figure S12) and comparable to other CoP catalysts reported in literature (Table S3).
350	The electrochemical stability of these three cobalt phosphides during HER in acid
351	solution were investigated via CV test at various cycles (Figure S13), and 100 hours
352	stability test at the current density of -20 mA cm^{-2} in 0.5 M H ₂ SO ₄ (Figure S14a).
353	Finally, the high stability on phase structure of CoP-HS in acid solution was proven
354	via SEM, XPS, and SEM-EDS of the CoP-HS after 100 hours HER stability
355	measurement (Figure S14b-d).
050	

According to the above results, the CoP-HS electrocatalyst was used as both anode and cathode for water splitting in a two-electrode configuration in 1.0 M KOH at 25°C. As shown in **Figure 4f**, a current density of 10 mA cm⁻² is achieved at a remarkably low cell voltage of 1.47 V, which is better than that of the benchmark

360	$\ensuremath{\text{Pt/C} \text{IrO}_2}$ system with the same mass loading. Compared with literature, the water
361	splitting performance of CoP-HS is comparable or better than most of the cobaltbased
362	water splitting electrocatalysts in alkaline solution (Table S4). The long-term
363	operational stability of the CoP-HS CoP-HS system was evaluated by
364	chronopotentiometry test at a current density of 20 mA cm ⁻² . After 100 h, almost no
365	degradation can be observed, indicating the stability of the CoP-HS CoP-HS for
366	alkaline water electrolysis (Figure 4g). The H_2 and O_2 generated from the alkaline
367	electrolyzer were quantitatively collected by the water drainage method and displayed
368	in Figure S15. The volume-time curve in Figure 4h reveals a volume ratio of 2.07:1
369	for the collected H_2 to O_2 , which approaches the theoretical 2:1 ratio for water
370	electrolysis. Based on the measured volume ratio, the Faradaic efficiency is estimated
371	to be $\approx 100\%$ by considering the airtightness of the device. All these results
372	demonstrate that the prepared CoP-HS bifunctional catalyst is a promising candidate
373	catalyst for alkaline water electrolysis.

Figure 5. (a) Optimized configurations of CoP-HS, CoP₂-HS and CoP₃-HS for the DFT calculation. (b) Projected density of states (PDOS) plots of P 3p orbitals. (c) PDOS plots of P 3p orbitals in CoP-HS, CoP₂-HS and CoP₃-HS when H was adsorbed. (d) PDOS plots of H 1s orbitals in CoP-HS, CoP₂-HS and CoP₃-HS when H was adsorbed. (e) HER free energy changes of CoP-HS, CoP₂-HS and CoP₃-HS at P-sites and Co-sites. (f) The correlation between the HER free energy changes based on P-sites of CoP_x-HS and the normalized overpotential as well as Tafel slope.

In order to gain insights into the electrocatalytic HER activity of the CoP-HS, CoP₂-HS and CoP₃-HS, DFT calculations were performed. According to the XRD and TEM results, the selected configurations of CoP-HS, CoP₂-HS and CoP₃-HS are shown in **Figure 5a** based on stable facets. As P was determined as the active center in all three cobalt phosphides system, the difference of electronic structure on P of the parent CoP_x-HS were investigated via DFT (**Figure 5b**). As shown in the **Figure 5b**, it could be observed that the energy shift upwards with P composition increasing in

389	CoP_x -HS system, which indicates that CoP_3 -HS has the strongest covalent interaction
390	between Co and P. The difference in electronic structure of CoP-HS, CoP ₂ -HS, and
391	CoP ₃ -HS can affect the electron transfer process during electrocatalytic reactions.
392	Moreover, the interaction effects on surface adsorbents of three cobalt phosphides
393	display the trend of CoP-HS <cop<sub>2-HS <cop<sub>3-HS, which means that CoP₃-HS has</cop<sub></cop<sub>
394	the strongest H adsorption. After H adsorption, a significant rearrangement of
395	electrons in CoP_x -HS could be observed in P 3p (Figure 5c) compared with their
396	corresponding parent CoP _x -HS (Figure 5b). Similarly, CoP-HS is the best catalyst in
397	the CoP_x -HS for desorption process with the most negative position on electronic
398	distribution. The calculation results of PDOS of H 1s on three cobalt phosphides agree
399	well with the PDOS of P 3p (Figure 5d). When H is adsorbed on the surface, the P 3p
400	orbital shifts downwards in all three cobalt phosphides, but especially in CoP-HS,
401	leading to more filled antibonding states of the H 1s orbital and hence resulting in a
402	weakened H-P bond, which is beneficial for the desorption of H_2 . To understand the
403	effect of changes from the electronic structure in three cobalt phosphides on HER, the
404	free energy of hydrogen chemisorption on the surface of the selected CoP-HS,
405	CoP ₂ -HS and CoP ₃ -HS configurations were calculated by DFT. Details of the possible
406	configurations of CoP_x -HS are given in Figure S16-18, with the corresponding
407	calculated ΔG_{H^*} values in Figure S19. As shown in Figure 5e, the final ΔG_{H^*} values
408	of CoP_x -HS from optimized configurations on Co- and P-sites are 0.24 eV and 0.01
409	eV for CoP-HS, 0.23 eV and -0.32 eV for CoP ₂ -HS and 0.44 eV and -0.50 eV for
410	CoP ₃ -HS, respectively. Generally speaking, a smaller ΔG_{H^*} will translate into a better

HER activity.³⁸ To understand the intrinsic correlation between P-sites/Co-sites in 411 CoP_x-HS and HER activity, the normalized LSV curves of CoP_x-HS in 1.0 M KOH 412 413 toward HER were calculated (Figure S20). As shown in Figure 5f, the calculated 414 ΔG_{H*} based on P-sites of CoP_x-HS follows a quite similar trend with the normalized 415 overpotential and Tafel slope, indicating the important role of P-sites on the surface of 416 CoP_x for the HER process. Meanwhile, no significant correlation exists between 417 Co-sites and the HER performance (normalized overpotential and Tafel slope) for the 418 CoP_x -HS system (Figure S21). Therefore, it is likely that the surface 419 absorption/desorption capacity on P-sites of CoP_x-HS is the intrinsic rate-determining 420 factor for the HER process.

421 **3.** Conclusions

422 ZIF-67 MOF was used to synthesize porous CoP-HS, CoP₂-HS and CoP₃-HS 423 nanocages. As confirmed by experimental results, the cobalt phosphides work as 424 pre-catalyst for OER rather than as the active materials. After cycling in alkaline 425 solution, the near surface region of all three Co-phosphides transformed to 426 oxyhydroxide, resulting in identical OER performance after cycling. On the contrary, 427 the different cobalt phosphides exhibited a high stability and clear different catalytic 428 activities for the HER. CoP-HS nanocages showed the best catalytic activity for HER with an overpotential of -116 mV at a current density of -10 mA cm⁻² in 1 M KOH. 429 430 Based on density functional theory (DFT) calculations, the calculated ΔG_{H^*} on P-sites 431 were lower than those on Co-sites in CoP_x-HS system. Moreover, the calculated ΔG_{H^*}

432 based on P-sites of CoP-HS follows a quite similar trend with the normalized 433 overpotential and Tafel slope, indicating the important role of P-sites for the HER 434 process. Moreover, no significant correlation between Co-sites and the HER 435 performance (overpotential and Tafel) for all the CoP_x-HS was found. This indicates 436 that the P-sites are probably the catalytically active sites for HER. When 437 CoP-HS//CoP-HS were used as bifunctional catalysts for water splitting in a cell device, a current density of 10 mA cm⁻² is achieved at a remarkably low cell voltage 438 439 of 1.47 V, which is one of the best bifunctional catalysts among the once reported in 440 literature. This excellent electrochemical performance of CoP-HS for overall water 441 splitting is derived from the hollow structure and high activity of P-sites in CoP-HS. 442 These results shed new light on the design and development of other transition metal 443 phosphides materials for water splitting.

444 Acknowledgements

445 Xuan Zhang and Jan Fransaer are grateful for the Research Foundation–Flanders 446 (FWO) project (12ZV320N). Funding from National Natural Science Foundation of 447 China (project No.: 22005250, 21776120 and 51901161) is appreciated. Wei Zhang is 448 grateful to the China Scholarship Council (NO. 201808310068). Wei Guo is grateful 449 to the China Scholarship Council (NO. 201806030189). Sijie Xie is grateful to the 450 China Scholarship Council. Kai Wan is grateful to the Oversea Study Program of 451 Guangzhou Elite Project. Funding from the Research Foundation-Flanders (FWO) 452 (project No.: G0B3218N) and Natural Science Foundation of Fujian Province, China

453 (No.: 2018J01433) is acknowledged. ICN2 acknowledges funding from Generalitat de 454 Catalunya 2017 SGR 327 and the Spanish MINECO project ECOCAT and subproject 455 NANOGEN. ICN2 is supported by the Severo Ochoa program from Spanish 456 MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / 457 Generalitat de Catalunya. Part of the present work has been performed in the 458 framework of Universitat Autònoma de Barcelona Materials Science PhD program. 459 This work has received funding from the European Union's Horizon 2020 Research 460 and Innovation Programme under grant agreement No.654360 NFFA-Europe. X.H. 461 thanks China Scholarship Council for scholarship support (201804910551).

462 **Author Contributions**

463 W. Z and N. H conceived and designed the research, coordinated the work, made the 464 visualization of the experiment results, performed the mechanism analysis. J. A and X. 465 H conducted TEM and performed the corresponding data analysis. W. Z, X. Z and M. 466 X conducted the BET and XPS, and W. Z performed the data analysis. C. Z conducted 467 the first principles calculation, W. Z and N. H performed the data analysis. W. G, S. X 468 and Z. Z conducted the SEM and XRD, W. Z and N. H performed the data analysis. P. 469 S and K. W assisted in the electrochemistry test. W. Z wrote the manuscript, and C. Z, 470 X. Z, J. L and J. F assisted in revising the manuscript. All co-authors contributed to 471 this work.

472 Note and references

473 1. Tiwari, J. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen

474		evolution activity. Nat Energy 3, 773-782 (2018).
475		
476 477	2.	Turner, J. Sustainable hydrogen production. Science 305, 972-974 (2004).
478 479 480	3.	Sultan, S. et al. Superb water splitting activity of the electrocatalyst $Fe_3Co(PO_4)_4$ designed with computation aid. <i>Nat. Commun.</i> 10 , 1-9 (2019).
481 482 483	4.	Roger, I., Shipman, M. & Symes, M. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. <i>Nat. Rev. Chem.</i> 1 , 1-13 (2017).
484 485 486 487	5.	Wang, X., Li, W., Xiong, D., Petrovykh, D, & Liu, L. Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. <i>Adv. Funct. Mater.</i> 26 , 4067-4077 (2016).
488 489 490	6.	Tan, Y. et al. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. <i>Energy Environ. Sci.</i> 9 , 2257-2261 (2016).
491 492 493	7.	Tang, B., Yang, X., Kang, Z. & Feng, L. Crystallized RuTe ₂ as unexpected bifunctional catalyst for overall water splitting. <i>Appl. Catal. B-Environ.</i> 278 , (2020).
494 495 496	8.	Ling, C., Shi, L., Ouyang, Y., Zeng, X. & Wang, J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. <i>Nano Lett.</i> 17 , 5133-5139 (2017).
497 498 499	9.	Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. <i>Nat. Commun.</i> 6 , 7261 (2015).
500 501 502 503	10.	Prabhakaran, S., Balamurugan, J., Kim, N. & Lee, J. Hierarchical 3D Oxygenated Cobalt Molybdenum Selenide Nanosheets as Robust Trifunctional Catalyst for Water Splitting and Zinc–Air Batteries. <i>Small</i> 16 , 2000797 (2020).
504 505 506 507	11.	Masa, J. et al. Amorphous cobalt boride (Co_2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. <i>Adv. Energy. Mater.</i> 6 , 1502313 (2016).
508 509 510	12.	Zhou, H. et al. Water splitting by electrolysis at high current densities under 1.6 volts. <i>Energy Environ. Sci.</i> 11 , 2858-2864 (2018).
511 512 513	13.	Han, N., Liu, P., Jiang, J., Ai, L., Shao, Z. & Liu, S. Recent advances in nanostructured metal nitrides for water splitting. <i>J Mater. Chem. A</i> 6 , 19912-19933 (2018).
514 515 516	14.	Joo, J., Kim, T., Lee, J., Choi, S. & Lee, K. Morphology controlled metal sulfides and phosphides for electrochemical water splitting. <i>Adv. Mater.</i> 31 , 1806682 (2019).
517	15.	Ryu, J., Jung, N., Jang, J., Kim, H. & Yoo, S. In Situ Transformation of Hydrogen-Evolving

518		CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed
519		Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catal. 5, 4066-4074 (2015).
520		
521	16.	Wu, R. et al. A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency Neutral-pH Water
522		Splitting. Angew Chem. Int. Ed. 57, 15445-15449 (2018).
523		
524	17.	Pan, Y. et al. Core-shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon
525		nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140,
526		2610-2618 (2018).
527		
528	18.	Wang, Q. et al. Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable
529		bifunctional electrocatalysts for alkaline water splitting. J. Mater. Chem. A 7, 7636-7643
530		(2019).
531		
532	19.	Du, C., Yang, L., Yang, F., Cheng, G., & Luo, W. Nest-like NiCoP for Highly Efficient Overall
533		Water Splitting. ACS Cataly 7, 4131-4137 (2017).
534		
535	20.	Zhang, H., Zhou, W., Dong, J., Lu, X, & Lou, X. Intramolecular electronic coupling in porous
536		iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen
537		evolution. Energy Environ. Sci. 12, 3348-3355 (2019).
538		
539	21.	Hu, E., Feng, Y., Nai, J., Zhao, D., Hu, Y. & Lou, X. Construction of hierarchical Ni-Co-P
540		hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy
541		Environ. Sci. 11, 872-880 (2018).
542		
543	22.	Liang, Z. et al. Fabrication of hollow CoP/TiOx heterostructures for enhanced oxygen
544		evolution reaction. Small 16, 1905075 (2020).
545		
546	23.	Qiu, B. et al. Fabrication of Nickel-Cobalt Bimetal Phosphide Nanocages for Enhanced
547		Oxygen Evolution Catalysis. Adv. Funct. Mater. 28, (2018).
548		
549	24.	He, P., Yu, X. & Lou, X. Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide
550		Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angew Chem. Int.
551		Ed. Engl .56, 3897-3900 (2017).
552		
553	25.	Guan, C. et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano
554		<i>Energy</i> 48 , 73-80 (2018).
555		
556	26.	Zhang, J., Hu, H., Li, Z. & Lou, X. Double-Shelled Nanocages with Cobalt Hydroxide Inner
557		Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator
558		for Lithium-Sulfur Batteries. Angew Chem. Int. Ed. 55, 3982-3986 (2016).
559		
560	27.	Zha, Q., Xu, W., Li, X. & Ni, Y. Chlorine-doped alpha-Co(OH) ₂ hollow nano-dodecahedrons
561		prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity.

562		Dalton Trans. 48, 12127-12136 (2019).
563		
564	28.	Cao, H. et al. Flower-like CoP microballs assembled with (002) facet nanowires via precursor
565		route: Efficient electrocatalysts for hydrogen and oxygen evolution. Electrochim. Acta 259,
566		830-840 (2018).
567		
568	29.	Yan, L. et al. Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal
569		Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater.
570		27 , (2017).
571		
572	30.	Jamesh, M. & Sun, X. Recent progress on earth abundant electrocatalysts for oxygen
573		evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review. J.
574		Power Sources 400, 31-68 (2018).
575		<i>Tower Sources</i> 400 , 51-00 (2010).
576	31.	Mabayoje, O., Shoola, A., Wygant, B. & Mullins, C. The Role of Anions in Metal
577	51.	Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as
578		
579		"Pre-catalysts". ACS Energy Lett. 1, 195-201 (2016).
	22	
580	32.	Yu, F. et al. Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst
581		for Water Oxidation. ACS Catal. 7, 2052-2057 (2017).
582	22	
583	33.	Ye, S., Shi, Z., Feng, J., Tong, Y. & Li, G. Activating CoOOH Porous Nanosheet Arrays by
584		Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angew Chem. Int. Ed. 57,
585		2672-2676 (2018).
586		
587	34.	Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen
588		evolution reaction. Energy Environ. Sci. 7, 2624-2629 (2014).
589		
590	35.	Shinagawa, T., Garcia-Esparza, A. & Takanabe, K. Insight on Tafel slopes from a microkinetic
591		analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).
592		
593	36.	Zhang, X. et al. From rational design of a new bimetallic MOF family with tunable linkers to
594		OER catalysts. J. Mater. Chem. A 7, 1616-1628 (2019).
595		
596	37.	Cao, E. et al. Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives
597		Enhanced pH-Universal Hydrogen Evolution. Angew Chem. Int .Ed. 59, 4154-4160 (2020).
598		
599	38.	Huang, X., Xu, X., Li, C., Wu, D., Cheng, D. & Cao, D. Vertical CoP Nanoarray Wrapped by
600		N,P Doped Carbon for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions.
601		<i>Adv. Energy Mater.</i> 9 , (2019).
602		
603		
604		
004		