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Nonuniform random graphs on the plane: A scaling study
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We consider random geometric graphs on the plane characterized by a nonuniform density of vertices. In
particular, we introduce a graph model where n vertices are independently distributed in the unit disk with
positions, in polar coordinates (l, θ ), obeying the probability density functions ρ(l ) and ρ(θ ). Here we choose
ρ(l ) as a normal distribution with zero mean and variance σ ∈ (0,∞) and ρ(θ ) as a uniform distribution in
the interval θ ∈ [0, 2π ). Then, two vertices are connected by an edge if their Euclidean distance is less than or
equal to the connection radius �. We characterize the topological properties of this random graph model, which
depends on the parameter set (n, σ, �), by the use of the average degree 〈k〉 and the number of nonisolated
vertices V×, while we approach their spectral properties with two measures on the graph adjacency matrix:
the ratio of consecutive eigenvalue spacings r and the Shannon entropy S of eigenvectors. First we propose a
heuristic expression for 〈k(n, σ, �)〉. Then, we look for the scaling properties of the normalized average measure
〈X 〉 (where X stands for V×, r, and S) over graph ensembles. We demonstrate that the scaling parameter of
〈V×〉 = 〈V×〉/n is indeed 〈k〉, with 〈V×〉 ≈ 1 − exp(−〈k〉). Meanwhile, the scaling parameter of both 〈r〉 and 〈S〉
is proportional to n−γ 〈k〉 with γ ≈ 0.16.

DOI: 10.1103/PhysRevE.105.034304

I. INTRODUCTION

In many complex systems the entities are embedded in
a geometric space such that the connections between them
are mainly determined by their spatial separations. When
representing these systems we deal with the so-called spa-
tial networks [1], where nodes representing the entities of
the system are located in a given space, which may include
a geographic space, like in the case of road networks [1].
Nodes can also be located in a three-dimensional space like
in certain biological networks where the proximity of cells
in a biological tissue determines the structure of the network
(see Ref. [2]). A list of related examples includes the networks
of patches and corridors in a landscape [3], the networks of
galleries in animal nests [4,5], the networks of fractures in
rocks [6], and networks of wireless communication devices
[7–9], such as mobile phones, wireless computing systems,
and wireless sensor networks, among others.

In modeling these systems most of the efforts are a con-
tinuation of the pioneering work of Gilbert in 1959 when he
proposed the random geometric graph (RGG) model [10]. In
a RGG the nodes of the graph are distributed randomly and
independently in a unit square and two nodes are connected if
they are inside a disk of a given radius [11,12]. This kind of
random graph has found multiple applications in areas such
as modeling of epidemic spreading in spatial populations,
which may include cases such the spreading of worms in a
computer network, viruses in a human population, or rumors

in a social network [13–17]. Recent modifications known as
random rectangular graphs (RRGs) have been applied in a
variety of physical scenarios [18–21].

The Gilbert model and their analogies are very useful in
situations where the nodes are uniformly distributed in the
graph. This is the case for instance when we want to deploy a
series of wireless sensors in a given area. In this case RGG or
RRG are very useful modeling techniques to characterize the
properties of the network emerging from the sensor deploy-
ment [22]. However, in the scenarios mentioned before where
the nodes are embedded in a given space not necessarily in
a uniform way, the consideration of RGG and/or RRG is not
the most appropriate one.

Here we propose an extension of the RGG model to con-
sider different degrees of spatial nonuniformity in the graph.
First, we characterize the average topological properties of
this random graph model. In particular, we propose heuristic
expressions for the average degree and the number of noniso-
lated vertices. Then, within a random matrix theory approach,
we characterize the spectral and eigenvector properties of the
adjacency matrix. To this end we perform a scaling study
of both the ratio of consecutive eigenvalue spacings and the
Shannon entropy of eigenvectors.

II. PRELIMINARIES

Let G = (V, E ) be a graph where V is the set of vertices
and E the set of edges. A RGG is an undirected graph with
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FIG. 1. Examples of RGGs with different degrees of nonuni-
formity σ : (a) σ = 0.01, (b) σ = 0.04, (c) σ = 0.1, (d) σ = 0.4,
(e) σ = 1, and (f) σ = ∞. In all cases we consider n = 125 vertices
and a connection radius of � = 0.1.

n = |V | randomly sampled vertices in [0, 1)2, where two ver-
tices are connected by an edge if their Euclidean distance is
less than or equal to the parameter �. Here, � is known as the
connection radius.

We propose an extension of the RGG model where
n vertices are independently distributed in the unit disk with
positions, in polar coordinates (l, θ ), obeying the probability
density functions ρ(l ) and ρ(θ ), respectively. Here we choose
ρ(l ) as a normal distribution with zero mean and variance σ 2,
ρ(l ) = N (0, σ 2), and ρ(θ ) as a uniform distribution in the
interval θ ∈ (0, 2π ), ρ(θ ) = U (0, 2π ). Indeed, the parameter
σ ∈ (0,∞) accounts for the degree of spatial nonuniformity
of the graph; for σ < 1 a cluster of vertices is formed around
the disk center, while for σ � 1 the distribution of vertices
becomes uniform within the unit disk. Then, two vertices are
connected by an edge if their Euclidean distance is less than or
equal to the connection radius � ∈ [0, 2], where 2 corresponds
to the diameter of the unit disk, so it is the maximum value
that � can take. Therefore, this random graph model depends

on three parameters: the number of vertices, n; the degree of
nonuniformity, σ ; and the connection radius �. Note that both
σ and � are given in units of the disk radius, chosen here to
be one.

In Fig. 1 we present examples of RGGs with different de-
grees of nonuniformity, σ , along several orders of magnitude.
In all cases we consider n = 125 vertices and a connection
radius of � = 0.1. As can be clearly seen from Fig. 1, the
random graph model produces a cluster around the disk center
for σ < 1. Formally, it reproduces the RGG model (in the
disk) when σ → ∞; however, as can be observed in Fig. 1(d),
already for σ = 1 the vertices appear uniformly distributed.
In fact, as will be shown below, σc ≈ 1 separates two graph
regimes: the clustering regime when σ < σc and the uniform
regime when σ � σc. We want to add that we choose a disk
as the embedding geometry, instead of a square as in other
studies of RGGs, to account for the radial symmetry of the
vertex distribution.

We characterize the topological properties of our random
graph model by the use of the average degree 〈k〉 and the
number of nonisolated vertices V×. We note that since the
degree distribution P(k) of the graph model proposed here
is unimodal and bounded, studying solely its mean is indeed
meaningful. We approach their spectral properties with two
well-known random matrix theory (RMT) measures on the
graph adjacency matrix: the ratio of consecutive eigenvalue
spacings r and the Shannon entropy S of eigenvectors.

On the one hand, it is relevant to stress that analytical
expressions for both 〈k〉 and 〈V×〉 on RGGs have been reported
recently. In fact, we will make use of those expressions to
approach the model of nonuniform RGGs. In particular:

(i) In Ref. [18] the expression for the average degree of
RGGs embedded in the unit rectangle was derived; it reads as

〈k〉 = (n − 1) f , (1)

where f is a highly nontrivial function of the connection
radius � and the rectangle side lengths. Clearly, when the
rectangle sides are equal the expression for 〈k〉 of RGGs
embedded in the unit square is obtained; in such a case f gets
the form

f (�) =
{
�2

[
π − 8

3� + 1
2�2

]
, 0 � � � 1

1
3 − 2�2[1 − arcsin(1/�) + arccos(1/�)] + 4

3 (2�2 + 1)
√

�2 − 1 − 1
2�4, 1 � � �

√
2.

(2)

(ii) The average of V× can be computed from the average
number of isolated vertices 〈K1〉 as 〈V×〉 = n − 〈K1〉. In fact,
for standard RGGs, 〈K1〉 is already known [23]; it is given by

〈K1〉 = n(1 − π�2)n−1 = n exp(−nπ�2) − O(n�4).

Therefore, for standard RGGs, we can write

〈V×〉 ≈ n [1 − exp(−nπ�2)]. (3)

On the other hand, given the ordered spectra {λi} (i =
1, . . . , n) and the corresponding normalized eigenvectors 	 i

(i.e.,
∑n

j=1 |	 i
j |2 = 1) of an adjacency matrix, the ith ratio of

consecutive eigenvalue spacings is given by [24]

ri = min(λi+1 − λi, λi − λi−1)

max(λi+1 − λi, λi − λi−1)
, (4)

while the Shannon entropy of the eigenvector 	 i reads as

Si = −
n∑

j=1

∣∣	 i
j

∣∣2
ln

∣∣	 i
j

∣∣2
. (5)

We would like to mention that in contrast to the Shannon
entropy, which is a well-accepted quantity to measure the
degree of disorder in complex networks, the use of the ratio of
consecutive eigenvalue spacings is relatively recent in graph
studies (see, for example, Refs. [25–28]).
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Here, we will follow a recently introduced approach under
which the adjacency matrices of random graphs are repre-
sented by diluted RMT ensembles; that is, we impose random
weights to the adjacency matrix such that we retrieve standard
RMT ensembles in the limits of isolated vertices and complete
graphs. See the application of this approach on Erdős-Rényi
graphs [26,29], RGGs and random rectangular graphs [30],
β-skeleton graphs [31], multiplex and multilayer networks
[32], and bipartite graphs [27]. Consequently, we define the
elements of the adjacency matrix A of the random graph
model as

Auv =
⎧⎨
⎩

√
2εuu for u = v

εuv if there is an edge between vertices u and v

0 otherwise.

(6)

We choose εuv as statistically independent random variables
drawn from a normal distribution with zero mean and variance
one. Also, εuv = εvu, since the graphs are assumed as undi-
rected here. Note that the choice of εuv as random numbers
with zero mean (i.e., positive and negative numbers) makes
the spectra of A to be centered around zero, which is irrelevant
here since we characterize the spectra through eigenvalue
spacings [see Eq. (4)]. According to definition (6), diagonal
random matrices are obtained for � = 0 [Poisson ensemble
(PE), in RMT terms], whereas the Gaussian orthogonal en-
semble (GOE) (i.e., full real and symmetric random matrices)
is recovered when � = 2. Therefore, a transition from the PE
to the GOE can be observed by increasing � from zero to two,
for any given fixed pair (n, σ ). In fact, this is not the only way
to observe the PE-to-GOE transition; it could also be observed
by decreasing σ for a given fixed pair (n, �) (see, e.g., Fig. 1)
or by increasing n for fixed (σ, �).

Notice that the random weights we impose to the adjacency
matrix in definition (6) do not play any role in the computation
of 〈k〉 or 〈V×〉; however, these weights help us obtaining
non-null adjacency matrices (that we can still diagonalize)
for graphs with a large number of isolated vertices, so we
can safely explore numerically the spectral and eigenvector
properties of the model in the limit � → 0.

We want to clarify that the use of RMT ensembles and mea-
sures in this study is motivated by the known effectiveness of
RMT techniques in problems involving matrices representing
complex systems or complex processes (see, e.g., Ref. [33]),
including random graphs and networks. We also acknowledge
that the weighted adjacency matrices defined in Eq. (6) could
be interpreted as a new diluted GOE (recall that there is a
diluted GOE that can be understood as based on Erdős-Rényi
graphs; see, e.g., Refs. [29,34]). However, it should be noted
that the proposed method for building this ensemble is not
efficient. In fact, we are not proposing it here as a new RMT
ensemble and its main value should be seen in the context of
the study of the spectral properties of the random geometric
graphs proposed here.

From the definitions above, when � = 0 (i.e., when all ver-
tices in the graph are isolated) we have 〈k〉PE = 0, 〈V×〉PE =
0, 〈r〉PE ≈ 0.3863 [24], and 〈S〉PE = 0, while when � = 2
(i.e., when the graph is complete) we have 〈k〉GOE = n −
1, 〈V×〉GOE = n, 〈r〉GOE ≈ 0.5359 [24], and 〈S〉GOE ≈

ln(n/2.07) [35]. Here and below 〈·〉 denotes the average over
an ensemble of random graphs, in the case of k and V×, and the
average over all eigenvalues (eigenvectors) of the correspond-
ing adjacency matrices A in the case of r (S). Specifically,
for each combination of parameters (n, σ, �), we average over
ensembles of 107/n random graph realizations. We want to
add that the predictions for 〈r〉PE, 〈r〉GOE, and 〈S〉GOE
reported above are expected for large n; i.e., finite size effects
should be observed for small n, typically for n < 100 (see,
e.g., Ref. [28]).

III. COMPUTATION OF AVERAGE MEASURES

Now, in Fig. 2 we present 〈V×〉, 〈r〉, and 〈S〉 as a function
of the connection radius � of nonuniform RGGs of size n
(we will consider 〈k〉 later on). In this figure we are using
three values of n: n = 125 (left panels), n = 500 (middle
panels), and n = 2000 (right panels). Each panel displays
14 curves corresponding to different degrees of nonunifor-
mity σ (increasing from left to right). In this figure we can
clearly see the effect of the parameter σ on the properties
of the random graph model: For fixed graph size and fixed
connection radius [see, for example, the left vertical dashed
line in Fig. 2(a) at � = 0.01], the graphs may transit from
mostly connected (see the left-most curve corresponding to
σ = 0.001) to mostly disconnected (see the right-most curve
corresponding to σ = ∞). This panorama was already shown
in Fig. 1; however, in that example the graph does not be-
come disconnected even when σ → ∞ due to the use of a
larger value of �: � = 0.1 [see the right vertical dashed line in
Fig. 2(a)].

Indeed, several facts can be highlighted from Fig. 2:
(i) All curves 〈X 〉 vs � in all panels show a smooth tran-

sition (in semilogarithmic scale) from the PE to the GOE
for increasing �; the PE and GOE limits are indicated as
horizontal dashed lines (lower and upper, respectively). Here
and below X stands for V×, r, or S.

(ii) For fixed n (σ ) the curves 〈X 〉 vs � have a very similar
functional form but they are displaced to the right on the � axis
for increasing σ (n).

(iii) Thus, the onset of the GOE limit is reached for
smaller values of � the larger the values of n and σ are.

(iv) However, once σ � σc, with σc ≈ 1, the curves 〈X 〉
vs � do not change by further increasing σ .

(v) Small-size effects in 〈r〉 are particularly visible when
� → 0 and � → 2 in the case of n = 125 [see Fig. 2(d)].

It is relevant to stress that we validated observation (iv)
for many other graph sizes, which allowed us to conclude
that σc ≈ 1 separates two regimes of the random graph
model: the clustering regime when σ < σc and the uniform
regime when σ � σc. In the clustering regime we do ob-
serve a cluster of vertices around the disk center [see, e.g.,
Figs. 1(a)–1(c)], while in the uniform regime the vertices are
evenly distributed over the unit disk [see, e.g., Figs. 1(d)
and 1(e)].

Moreover, given the similar functional form of the curves
〈X 〉 vs � for different combinations of n and σ , as reported in
Fig. 2, it seems that they could be effectively scaled. That is,
one should be able to find a scaling parameter ξ ≡ ξ (n, σ, �)
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FIG. 2. [(a)–(c)] Average number of nonisolated vertices 〈V×〉, [(d)–(f)] average ratio of consecutive eigenvalue spacings 〈r〉, and
[(g)–(i)] average Shannon entropy 〈S〉 as a function of the connection radius � of nonuniform RGGs of size n: [(a), (d), (g)] n = 125,
[(b), (e), (h)] n = 500, and [(c), (f), (i)] n = 2000. Each panel displays 14 curves corresponding to different degrees of nonuniformity
σ : {0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 1, 10, 100, ∞}, from left to right. Horizontal dashed lines (lower and upper,
respectively) indicate the predictions for the PE and GOE limits. The vertical dashed lines in (a) mark � = 0.01 and 0.1; 0.1 is the value
of � used in Fig. 1. Each data value was computed by averaging over 107/n random graphs.

such that the curves 〈X 〉 vs ξ are invariant, where X is the
properly normalized measure X .

Since in previous studies of RGGs (embedded in the
unit square) the average degree 〈k〉 was shown to play
a prominent role in the scaling of topological properties
[25,36], before performing the scaling analysis of our random
graph model, in the next section we focus on its average
degree.

IV. AVERAGE DEGREE

We numerically found that the expression for 〈k〉 reported
in Ref. [18], for the particular case of RGGs embedded in the
unit square, works pretty well for our model of nonuniform
RGGs in the unit circle by properly choosing an effective con-
nection radius L. That is, we propose the following heuristic
expression for f (L):

f (L) =
⎧⎨
⎩

L2
[
π − 8

3 L + 1
2 L2

]
, 0 � L � 1

1
3 − 2L2[1 − arcsin(1/L) + arccos(1/L)] + 4

3 (2L2 + 1)
√

L2 − 1 − 1
2 L4, 1 � L �

√
2

1, L �
√

2.

(7)

When setting L = �, Eqs. (1) and (7) provide the average
degree of RGGs embedded in the unit square [see Eq. (2)].
Notice, however, that the last condition in Eq. (7) was included
to fit the random graph model proposed here; it does not apply

to RGGs in the unit square since there � cannot be larger
than

√
2.

Specifically, Eqs. (1) and (7) provide a good approximation
of 〈k〉 of nonuniform RGGs in the unit circle if L = α�/

√
π ,
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FIG. 3. Average degree 〈k〉 as a function of the connection radius
� of nonuniform RGGs of size N = 500 with (a) σ < 1 and (b) σ �
1. Each data value was computed by averaging over 107/n random
graphs. Dashed lines correspond to Eqs. (1) and (7). The inset in (a) is
an enlargement of the cyan rectangle where the data for σ = 0.001
(circles) and σ = 0.4 (asterisks) are shown together with Eqs. (1) and
(7); there, blue, red, and green lines correspond to the first, second,
and third conditions of Eq. (7), respectively.

with α = √
2/3σ for σ < σc and α = 1 for σ � σc, with σc ≈

1. To verify this claim, in Fig. 3 we plot 〈k〉 as a function of �

of nonuniform RGGs in the unit circle with both σ < σc and
σ � σc; there, the good correspondence between numerical
calculations (symbols) and Eqs. (1) and (7) (dashed lines)
is evident. Moreover, in the inset of Fig. 3(a) we show the
contribution of the three conditions of Eq. (7) to the curves
〈k〉 vs � of two examples of nonuniform RGGs. In Fig. 3
we consider the fixed graph size N = 500 but we observed
equivalent plots for any other graph sizes we tested.

We want to recall that σc ≈ 1 indeed separates two regimes
in the nonuniform RGG model we study here: the clustering
regime when σ < σc and the uniform regime when σ � σc.
However, these two regimes will not be evident in the scaling
we will perform below since, through the effective connection
radius L, both are already incorporated in the definition of 〈k〉
(that we will use to find the scaling parameters of 〈V×〉, 〈r〉,
and 〈S〉). Moreover, the two regimes can be clearly identified
in a straightforward scaling analysis, as shown in Sec. V D
[see, e.g., Figs. 12(d)–12(f)].

V. SCALING ANALYSIS

A. Average number of nonisolated vertices

Remarkably, taking as a reference Eq. (3), we found that

〈V×〉 ≈ n [1 − exp(−nπL2)] (8)

approximates well 〈V×〉 of nonuniform RGGs in the unit circle
if L = α�/

√
π , with α = √

2/3σ for σ < σc and α = 1 for
σ � σc; this is in line with the proposal of Eq. (7) from Eq. (2).
Thus, in Fig. 4 we contrast Eq. (8) with numerical data. There
we plot 〈V×〉 as a function of � for RGGs in the unit square,
in the unit circle as well as for two examples of nonuniform
RGGs. In all cases we observe good correspondence between
numerical calculations (symbols) and Eq. (8) (dashed lines).

Moreover, it is interesting to notice that from Eqs. (1) and
(7), when L � 1, we can write 〈k〉 ≈ nπL2 which coincides
with the argument of the exponential in Eq. (8). This allows
us to relate 〈V×〉 and 〈k〉 as

〈V×〉 ≈ n[1 − exp(−〈k〉)]. (9)

FIG. 4. (a) Average number of nonisolated vertices 〈V×〉 as a
function of the connection radius � for RGGs embedded in the unit
circle (circles), RGGs embedded in the unit square (squares), and
nonuniform RGGs with σ = 0.01 (inverted triangles) and σ = 0.001
(triangles), from right to left. In all cases n = 1000 was used. Dashed
lines correspond to Eq. (8). (b) Same as in (a) but in log-log scale to
better observe the region � � 1.

Equation (9) implies that the scaling parameter, ξ ≡
ξ (n, σ, �), of 〈V×〉 = 〈V×〉/n of nonuniform RGGs is in fact
〈k〉; that is, if we plot 〈V×〉 as a function of 〈k〉, curves cor-
responding to different parameter combinations (n, σ, �) will
fall on top of the universal curve given by Eq. (9). Indeed,
in Fig. 5 we present the curves of 〈V×〉 (divided by n) of
Figs. 2(a)–2(c) but now as a function of 〈k〉 and observe, as
expected, that all curves 〈V×〉 vs 〈k〉 fall one on top of the other
[except for small differences in the interval 1 < 〈k〉 < 10 (see
the insets); these differences are observed when σ < 1]. In all
panels we also plot Eq. (9) as dashed lines and observe a very
good correspondence with the numerical data, which is quite
remarkable since Eq. (9) was expected to work only in the
limit of L � 1.

The scaling of 〈V×〉/n of nonuniform RGGs with the
average degree, see Fig. 5, agrees with the scaling of
several (normalized) topological indices with 〈k〉 as reported
in Refs. [25,36] for Erdős-Rényi graphs and RGGs in the unit
square. However, here we are providing an explicit expression
for the scaling [see Eq. (9)]. Moreover, we expect other topo-
logical indices on nonuniform RGGs to be also scale invariant
with 〈k〉 (see the next section, where it is shown that the
Randić connectivity index also scales with 〈k〉).

B. Randić connectivity index

As already mentioned in the previous section, the scaling
of 〈V×〉/n of nonuniform RGGs with the average degree, see
Fig. 5, makes us expect other topological indices on nonuni-
form RGGs to be also scale invariant with 〈k〉. Thus, in the
following we verify this expectation by the use of the Randić
connectivity index R.

The Randić connectivity index was defined in Ref. [37] as

R =
∑
uv

1√
dudv

, (10)

where uv denotes the edge of the graph connecting the vertices
u and v, and du is the degree of the vertex u. In addition
to the multiple applications of the Randić index in physical
chemistry, being one of the most popular topological indices
(see, e.g., Refs. [38–40] and the references therein), this index
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FIG. 5. Average number of nonisolated vertices 〈V×〉, normalized to n, as a function of the average degree 〈k〉 of nonuniform RGGs.
(a) n = 125, (b) n = 500, and (c) n = 2000. Each panel displays the 14 curves reported in Figs. 2(a)–2(c). The insets are enlargements of the
cyan rectangles of the main panels. Dashed lines correspond to Eq. (9). Vertical dashed lines at 〈k〉 = 0.01 and 10 mark, approximately, the
onset of delocalization and the onset of the GOE regime, respectively.

has found several applications in other research areas and
topics, such as information theory [41], network similarity
[42], protein alignment [43], network heterogeneity [44], and
network robustness [45]. However, its use in the study of
random graphs has been scarce. For recent exceptions see
Refs. [25,36,46], where the average Randić index has been
used to probe the percolation transition in Erdős-Rényi graphs
and RGGs.

In Fig. 6 we present the normalized average Randić index
〈R〉 as a function of the average degree 〈k〉 of nonuniform
RGGs of size n. As for 〈V×〉, we normalize 〈R〉 to the max-
imum value it can take: 〈R〉 ≡ 〈R〉/〈R〉GOE, with 〈R〉GOE =
n/2. As anticipated, we observe that 〈R〉 is properly scaled
with 〈k〉, except for the region of large 〈k〉 (see the insets)
where we observe two sets of curves falling one on top of
the other: one set corresponding to σ < 1 and the other to
σ � 1. This effect is equivalent to that observed for 〈V×〉 (see
the insets of Fig. 5).

At this point it is relevant to recall that in Ref. [25] it was
shown that 〈V×〉 and 〈R〉 on RGGs are highly correlated, which
also occurs for nonuniform RGGs, as can be clearly seen in
Figs. 7(a) and 7(b) where we plot 〈V×〉 vs 〈R〉 for nonuniform
RGGs with σ < 1. Moreover, Fig. 7 also suggests that

〈V×〉 ≈ 2〈R〉 (11)

(see the dashed lines on top of the data in Fig. 7). Thus,
Eq. (11) in addition to Eq. (9) allows us to propose

〈R〉 ≈ (n/2)[1 − exp(−〈k〉)], (12)

which in fact coincides relatively well with the numerical data
reported in Fig. 6 (see the dashed lines), except for the region
of large 〈k〉 where significant differences between Eq. (12) and
the numerical data are evident (see the insets).

It is fair to admit that the log-log scale we used to present
the data in Fig. 7 makes the approximation of Eq. (11) look
very accurate, but it is not. Then, to quantify the accuracy of
Eq. (11) we will make use of the heterogeneity index [44]

h =
∑
uv

(
1√
du

− 1√
dv

)2

, (13)

which can be written in terms of V× and R as

h =
∑
uv

(
1

du
+ 1

dv

)
− 2

∑
uv

(
1√
dudv

)
= V× − 2R. (14)

Note that Eq. (11) implies 〈h〉 ≈ 0 for any combination of
parameters (n, σ, �). Nevertheless, as clearly shown in Fig. 8
(where we plot 〈h〉/n vs 〈k〉 for nonuniform RGGs of differ-
ent sizes and nonuniformity strengths σ ), the curves 〈h〉 vs
〈k〉 develop a two-peak structure for 〈k〉 >∼ 1 with maxima

FIG. 6. Average Randić index 〈R〉 normalized to n/2 for (a) n = 125, (b) n = 500, and (c) n = 2000 as a function of the av-
erage degree 〈k〉 of nonuniform RGGs. Each panel displays 14 curves corresponding to different degrees of nonuniformity σ :
{0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 1, 10, 100, ∞}. Dashed line in all panels is Eq. (12). Each data value was computed
by averaging over 107/n random graphs.
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FIG. 7. Average number of nonisolated vertices 〈V×〉 as a func-
tion of the average Randić index 〈R〉 of nonuniform RGGs of several
sizes n characterized by (a) σ = 0.01, (b) σ = 0.1, and (c) σ = 10.
The dashed line on top of the data is 〈V×〉 = 2〈R〉. Each data value
was computed by averaging over 107/n random graphs.

closer to 0.03. This means that the approximate expression
of Eq. (11) has a maximal error of 3%. Also note that the
two-peak structure changes with n, differently for σ < 1 and
σ � 1, making 〈h〉 nonscalable. We also found that for large
enough n the curves 〈h〉 vs 〈k〉 approach limit curves for
both σ < 1 and σ � 1 (see the green dashed lines in Fig. 8,
which correspond to n = 20 000 and do not evolve for larger
graph sizes).

C. Ratio of consecutive eigenvalue spacings and Shannon
entropy

Once we have concluded that the average degree is the
scaling parameter of 〈V×〉, our first conjecture is that 〈k〉 may
also be the scaling parameter of 〈r〉 and 〈S〉.

First we normalize 〈r〉 and 〈S〉, so that we can compare
them for different graph sizes n. We naturally choose 〈S〉 =
〈S〉/〈S〉GOE with 〈S〉GOE ≈ ln(n/2.07) [35]; however, the
small-size effects observed for 〈r〉 and the fact that 〈r〉 →
const = 0 when � → 0 make us conveniently define 〈r〉 as

〈r〉 = 〈r〉 − 〈r(� = 0)〉
〈r(� = 2)〉 − 〈r(� = 0)〉 ,

where 〈r(� = 0)〉 and 〈r(� = 2)〉, which do not depend on σ ,
are numerically computed for a given n. Evidently, 〈r(� =
0)〉 → 〈r〉PE ≈ 0.3863 [24] and 〈r(� = 2)〉 → 〈r〉GOE ≈
0.5359 [24] for large enough n.

Then, in Fig. 9 we present 〈r〉 and 〈S〉 as a function of 〈k〉;
note that the data shown in Fig. 9 are the same as those of
Figs. 2(d)–2(i). Even though from this figure we can clearly
see that the curves 〈X 〉 vs 〈k〉 fall one on top of the other in
each of the figure panels, there is still a small but measurable
dependence of these curves on n. That is, while they keep their
functional form, they suffer a displacement on the 〈k〉 axis
by increasing n. Therefore, we conclude that 〈k〉 is not the

scaling parameter of the spectral or the eigenvector properties
of the random graph model. Thus, in order to search for the
proper scaling parameter ξ we first establish a quantity to
characterize the position of the curves 〈X 〉 on the 〈k〉 axis.
Since all curves 〈X 〉 vs 〈k〉 transit from zero (PE regime) to
one (GOE regime) when 〈k〉 increases from small to large
values, we choose the value of 〈k〉 for which 〈X 〉 ≈ 0.5 [see
the horizontal dashed lines in Figs. 9(b) and 9(e)]. We label
the value of 〈k〉 at half of the PE-to-GOE transition as k∗.

In the insets of Figs. 9(a) and 9(d) we report k∗ vs n as
extracted from the intersection of the curves 〈r〉 vs 〈k〉 and
〈S〉 vs 〈k〉 with the straight lines 〈r〉 = 0.5 and 〈S〉 = 0.5, re-
spectively. Indeed, the linear trend of the data sets (in log-log
scale) k∗ vs n suggests the power-law behavior

k∗ = Cnγ . (15)

As shown in the insets of Figs. 9(a) and 9(d), Eq. (15) provides
excellent fittings to the data; see the dashed lines. From the
fitted exponents, reported in Table I, we can conclude that γ ≈
0.16 for both the ratio of consecutive eigenvalue spacings and
Shannon entropy, for all values of σ .

Finally, we define the scaling parameter as the ratio be-
tween 〈k〉 and k∗, so we get

ξ ≡ 〈k〉
k∗ ∝ 〈k〉

nγ
= n−γ 〈k〉. (16)

Therefore, by plotting again the curves of 〈X 〉 now as a func-
tion of ξ we observe that curves for different graph sizes n
and nonuniformity strengths σ collapse on top of universal
curves (see Fig. 10). Also note that each measure X is char-
acterized by a slightly different universal curve. In particular
we observe that the PE-to-GOE transition is sharper for 〈r〉, as
compared to 〈S〉.

D. Straightforward scaling of V×, r, and S

Above we performed the scaling analysis of V×, r, and S
separately, first for V× in Sec. V A and later for r and S in
Sec. V C. In both cases we took advantage of the previous
knowledge of a heuristic expression for 〈k〉 [see Eqs. (1)
and (7)]. However, in other works we have successfully
performed scaling studies of both topological and spectral
properties of random graph models without any previous in-
sight about the functional form of the scaling parameter (see,
e.g., Refs. [27,29,30,32]). Thus, in this section we perform
a straightforward scaling analysis of the three measures V×,
r, and S and show that we obtain equivalent results as those
reported in Secs. V A and V C.

Taking as a starting point the observations (i–v) made in
Sec. III from Fig. 2, in Fig. 11 we present again the measures
〈X 〉 but now they are conveniently normalized as in Figs. 5
and 9. Note that some of the curves presented in Fig. 11

TABLE I. Values of the exponent γ obtained from the fittings of the curves k∗(X ) vs n of the insets in Figs. 9(a) and 9(d) with Eq. (15).
The average value of γ is reported in the right-most column.

σ = 0.001 σ = 0.002 σ = 0.004 σ = 0.01 σ = 0.02 σ = 0.04 σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.8 σ = 1 σ = ∞ 〈γ 〉
k∗(r) vs n 0.1739 0.1656 0.1659 0.1691 0.1622 0.1672 0.1693 0.1565 0.1461 0.1376 0.1307 0.1297 0.1561
k∗(S) vs n 0.1626 0.1619 0.1614 0.1614 0.1624 0.1613 0.1621 0.1619 0.1509 0.1508 0.1443 0.1455 0.1572
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FIG. 8. Average heterogeneity index 〈h〉 normalized to n for [(a), (d)] n = 125, [(b), (e)] n = 500, and [(c), (f)] n = 2000 as a function of
the average degree 〈k〉 of nonuniform RGGs with [(a)–(c)] σ < 1 and [(d)–(f)] σ � 1. The green dashed lines in [(a)–(c)] [(d)–(f)] correspond
to n = 20 000 and σ = 0.4 [n = 20 000 and σ = 10]. Each data value was computed by averaging over 107/n random graphs.

were already reported in Fig. 2; however, we are including
curves corresponding to additional parameter combinations.
From this figure we can clearly see that when changing n and
σ the curves 〈X 〉 keep their functional form but they suffer
a displacement on the � axis. Therefore, in order to search

for the scaling parameter χ ≡ χ (n, σ, �) we first establish a
quantity to characterize the position of the curves 〈X 〉 on the
� axis. Since all curves 〈X 〉 vs � transit from zero (PE regime)
to one (GOE regime) when � increases from zero to two, we
choose the value of � for which 〈X 〉 ≈ 0.5 (see the horizontal

FIG. 9. Normalized [(a)–(c)] average ratio of consecutive eigenvalue spacings 〈r〉 and [(d)–(f)] average Shannon entropy 〈S〉 as a function of
the average degree 〈k〉 of nonuniform RGGs of size [(a), (d)] n = 125, [(b), (e)] n = 500, and [(c), (f)] n = 2000. Same data as in Figs. 2(d)–2(i).
The insets in panels (a) and (d) show k∗ vs n as extracted from the intersection of the curves 〈r〉 vs 〈k〉 and 〈S〉 vs 〈k〉 with the straight lines
〈r〉 = 0.5 and 〈S〉 = 0.5, respectively. Dashed lines are fittings of the data with Eq. (15). The exponents γ obtained from the fittings are reported
in Table I. Horizontal dashed lines in panels (b) and (e) mark 〈X 〉 = 0.5.
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FIG. 10. (a) 〈r〉 and (b) 〈S〉 as a function of the scaling parameter
ξ = 〈k〉/k∗. Same data as in Fig. 9. Vertical dashed lines at ξ = 0.01
and 10 mark, approximately, the onset of delocalization and the onset
of the GOE regime, respectively.

dashed lines in Fig. 11). We label the value of � at half of
the PE-to-GOE transition as �∗, so we call �∗ the PE-to-GOE
transition point.

Given that �∗ depends on both n and σ , in Fig. 12 we
report �∗ versus n for fixed values of σ (upper panels) and �∗
versus σ for fixed values of n (lower panels). It is interesting
to notice that while �∗ decreases as a function of n (see the
upper panels of Fig. 12) for all the values of σ reported
here, the curves �∗ vs σ show two different behaviors (see
the lower panels of Fig. 12): for σ < 1, �∗ grows with σ ,
but when σ > 1, �∗ ≈ const, with a transition region around
σc ≈ 1. Therefore, we define two scaling regimes: the cluster-
ing regime when σ < σc and the uniform regime when σ > σc.
Note that since σ is given in units of the disk radius, σc can
be indeed interpreted as the disk radius. These two regimes
are exemplified graphically in Fig. 1. In fact, once σ > σc the
random graph model proposed here already reproduces the
random geometric graph model on the disk. Moreover, the
full horizontal lines on top of the data of Figs. 12(d)–12(f)
for σ > σc correspond to the value of �∗ at σ → ∞; that is,
once σ > σc, the properties of our random graph model do not
change anymore by further increasing σ , as already noticed
in Fig. 2.

Indeed, the linear trend of the data sets (in log-log scale) �∗
vs n and �∗ vs σ suggests the power-law behaviors

�∗ = Cn−γ�σ δ. (17)

As shown in Fig. 12, Eq. (17) provides excellent fittings to the
data; see the dashed lines. From the fitted exponents, reported
in Tables II and III, we can safely state that γ� ≈ 1/2 for the
number of nonisolated vertices, while γ� ≈ 0.43 for both the
ratio of consecutive eigenvalue spacings and Shannon entropy,
for all values of σ . Also, δ ≈ 1/2 for σ < σc while δ ≈ 0 for
σ > σc, for all the three measures (V×, r, and S).

TABLE III. Values of the exponent δ obtained from the fittings of
the curves �∗(X ) vs σ (for σ < 1) of Figs. 12(d)–12(f) with Eq. (17).
The average value of δ is reported in the right-most column.

n = 125 n = 250 n = 500 n = 1000 n = 2000 〈δ〉
�∗(Vx ) vs σ 0.4987 0.4989 0.4983 0.4991 0.4987 0.4987
�∗(r) vs σ 0.5013 0.5016 0.5007 0.4994 0.4993 0.5005
�∗(S) vs σ 0.5018 0.5007 0.4996 0.5012 0.5025 0.5011

Finally, we define the scaling parameter χ as the ratio
between � and �∗, so we get

χ ≡ �

�∗ ∝ �

n−γ�σ δ
= nγ�σ−δ�. (18)

Therefore, by plotting again the curves of 〈X 〉 now as a func-
tion of χ we observe that curves for different graph sizes n and
nonuniformity strengths σ collapse on top of universal curves
(see Fig. 13).

It is fair to mention that the scaling we found for 〈S〉 when
σ > σc is very close to that reported in Ref. [30] for RGGs in
the unit square, as expected. There, χ ≡ χ (n, �) ∝ nγ�� with
γ� ≈ 0.425.

At first sight, it seems that in this section we got different
scaling parameters than in the previous one: On the one hand,
recall that in Sec. V C we found ξ = 〈k〉 ∝ nσ−1�2 for 〈V×〉,
while we got ξ = n−0.16〈k〉 ∝ n0.84σ−1�2 for 〈r〉 and 〈S〉 (here
we are using 〈k〉 ∝ nσ−1�2 when L � 1 and σ < σc). On the
other hand, in this section we have obtained χ ∝ n1/2σ−1/2�

for 〈V×〉 and χ ∝ n0.43σ−1/2� for 〈r〉 and 〈S〉. This apparent
mismatch can be understood by noticing that not only ξ but
any function of it should scale the normalized measures 〈X 〉;
thus, since χ ∝ ξ 1/2, for the three measures, our results are
consistent.

VI. DISCUSSION AND CONCLUSIONS

We performed a detailed scaling study of random geo-
metric graphs (RRGs) in the unit disk characterized by a
nonuniform density of vertices. This random graph model
may serve as a reference model of complex systems em-
bedded in the plane whose components are not uniformly
allocated. The random graph model depends on three param-
eters: the number of vertices, n; the degree of nonuniformity,
σ ∈ (0,∞); and the connection radius � ∈ [0, 2]. This model
produces a cluster around the disk center for σ < σc and
reproduces the uniform RGG model in the disk when σ � σc

(see Fig. 1 and Sec. V D) with σc ≈ 1.
By the use of the average degree 〈k〉, the number of

nonisolated vertices, V×, the ratio of consecutive eigenvalue

TABLE II. Values of the exponent γ� obtained from the fittings of the curves �∗(X ) vs n of Figs. 12(a)–12(c) with Eq. (17). The average
value of γ� is reported in the right-most column.

σ = 0.001 σ = 0.002 σ = 0.004 σ = 0.01 σ = 0.02 σ = 0.04 σ = 0.1 σ = 0.2 σ = 0.4 〈γ�〉
�∗(Vx ) vs n 0.5010 0.5015 0.5007 0.5008 0.5013 0.5008 0.5012 0.5012 0.5007 0.5010
�∗(r) vs n 0.4316 0.4355 0.4353 0.4333 0.4369 0.4350 0.4343 0.4364 0.4375 0.4350
�∗(S) vs n 0.4364 0.4345 0.4348 0.4344 0.4340 0.4346 0.4342 0.4336 0.4331 0.4344
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FIG. 11. Normalized (a) number of nonisolated vertices 〈V×〉, (b) average ratio of consecutive eigen-
value spacings 〈r〉, and (c) average Shannon entropy 〈S〉 as a function of the connection radius � of
nonuniform RGGs. Each panel displays 14 curves corresponding to the following combinations of (σ, n):
{(0.002, 1000), (0.01, 2000), (0.004, 250), (0.04, 2000), (0.02, 500), (0.04, 500), (0.2, 1000), (0.8, 2000), (0.8, 1000), (0.1, 125),(0.8, 500),
(0.4, 250), (0.8, 250), (0.8, 125)}, form left to right. The dashed lines at 〈X 〉 = 0.5 are used to extract �∗; see the text. Each data value was
computed by averaging over 107/n random graphs.

spacings, r, and the Shannon entropy S of eigenvectors we
probe topological as well as spectral properties of our random
graph model. First we propose a heuristic expression able to
properly describe 〈k(n, σ, �)〉 [see Eqs. (1) and (7)]. Then, we
looked for the scaling properties of the properly normalized
average measure 〈X 〉 (where X stands for V×, r, and S). As
a result of the scaling analysis, we were able to define the
scaling parameter, that we label ξ , such that the curves 〈X 〉 vs
ξ are invariant curves. Particularly, in the two graph regimes

separated by the nonuniformity σc, we found that ξ = 〈k〉 for
〈V×〉 while ξ = n−γ 〈k〉, with γ ≈ 0.16, for 〈r〉 and 〈S〉. In
addition, we found that 〈V×〉 = 〈V×〉/n is related to 〈k〉 as
〈V×〉 ≈ 1 − exp(−〈k〉) [see Eq. (9) and Fig. 5].

We stress that the scalings shown in Figs. 5 and 10
have two important consequences in the characterization
of the nonuniform random graph model. First, they allow
us to define regimes: The PE (GOE) regime can be de-
fined for ξ < 0.01 (ξ > 10), while 0.01 < ξ < 10 defines the

FIG. 12. PE-to-GOE transition point �∗ as a function of [(a)–(c)] the graph size n and [(d)–(f)] the nonuniformity σ from [(a), (d)] the
number of nonisolated vertices, [(b), (e)] the ratio of consecutive eigenvalue spacings, and [(c), (f)] the Shannon entropy. Several values of
σ (n) are reported in the upper (lower) panels. Each of the upper panels [(a)–(c)] displays 14 data sets corresponding to different degrees of
nonuniformity σ : {0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 1, 10, 100, ∞}, from bottom to top. The dashed lines are fittings to
the data with Eq. (17); the fitted exponents γ� and δ are reported in Tables II and III, respectively. Dash-dotted vertical lines in the lower panels
indicate a transition region around σc ≈ 1. Solid lines in the lower panels on top of the data for σ > 1 correspond to the value of �∗ at σ → ∞.
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FIG. 13. Normalized (a) number of nonisolated vertices 〈V×〉, (b) average ratio of consecutive eigenvalue spacings 〈r〉, and (c) average
Shannon entropy 〈S〉 as a function of the scaling parameter χ [see Eq. (18)] of nonuniform RGGs. Same curves as in Fig. 11.

PE-to-GOE transition regime. Here, the PE regime is char-
acterized by mostly disconnected vertices and localized
eigenvectors while the GOE regime corresponds to almost
complete graphs and delocalized eigenvectors. Thus, ξ =
0.01 and ξ = 10 (see the vertical dashed lines in Figs. 5 and
10) mark, approximately, the percolation transition, or the
onset of eigenvector delocalization, and the onset of the GOE
limit, respectively. Second, it allow us to make predictions:
Given a combination of parameters (n, σ, �), if ξ < 0.01 we
know that 〈V×〉 ≈ 0, 〈r〉 ≈ 0.3863, and 〈S〉 ≈ 0, while if ξ >

10 we expect 〈V×〉 ≈ n, 〈r〉 ≈ 0.5359, and 〈S〉 ≈ ln(n/2.07).
It is important to add that the scaling study of spectral

and eigenvector properties of nonuniform RGGs shown in
Secs. V C and V D could also be done with standard binary
adjacency matrices. Indeed, we should arrive at equivalent
conclusions. However, when using binary matrices one has
to be careful to properly handle the highly degenerate spectra
in the limits � → 0 and � → 2, or simply avoid those limits.

We also want to note that the number of nonisolated ver-
tices as well as the Randić connectivity index (see Sec. V B)
have provided us with equivalent information as standard
RMT measures; that is, we were able to clearly identify both
the PE and the GOE regimes, as well as the PE-to-GOE transi-
tion regime, by means of the universal curves of 〈V×〉 and 〈R〉
vs ξ . Thus we give further evidence of the usefulness of topo-
logical indices in the statistical characterization of random
graphs. In addition, we found that 〈V×〉 is highly correlated
with 〈S〉, with a Pearson correlation coefficient approximately

equal to one (as for standard RGGs [25]); therefore, we can
guarantee that the randomly weighted adjacency matrix of
Eq. (6) indeed describes the corresponding graph model.

Finally, it is relevant to add that once the scaling parameter
of the quantities studied here was defined, it is expected that
other properties related to the same quantities could also be
scaled by the same scaling parameter. As an example, we val-
idate the universality of the scaling parameter ξ by applying
it to ρ(r), the probability distribution function of r. In Fig. 14
we present histograms of the probability distribution function
of r, ρ(r). Each panel displays six histograms for different
combinations of σ and n, while � is tuned in order to produce
the same value of ξ . Since the six histograms in each panel
fall one on top of the other we can safely say that ρ(r) is
invariant for fixed ξ . In addition, we also include in each panel
of Fig. 14 the corresponding predictions for ρ(r) for the PE
and the GOE [24]:

ρPE(r) = 2

(1 + r)2
(19)

and

ρGOE(r) = 27

4

r(1 + r)

(1 + r + r2)5/2
, (20)

respectively. Note that there is a perfect agreement of ρ(r)
with ρPE(r) and ρGOE(r) when ξ = 0.1 and ξ = 3, re-
spectively. As expected, for ξ = 1, i.e., in the PE-to-GOE
transition regime, we observe that the shape of ρ(r) is in
between the PE and the GOE predictions.

FIG. 14. Histograms of the probability distribution function of the ratio of consecutive eigenvalue spacings ρ(r) for three
values of the scaling parameter ξ . Each panel displays six histograms corresponding to the following combinations of (σ, n):
{(0.2, 125), (0.04, 250), (0.1, 500), (0.001, 800)(0.02, 1000), (0.01, 2000)}. Each histogram was computed from 106 ratios. Dashed lines
correspond to ρPE(r) and ρGOE(r) [see Eqs. (19) and (20)].
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We hope that this work may motivate further analytical
as well as numerical studies on nonuniform random network
models and their applications to real-world systems.
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mation, AKCE Int. J. Graphs Comb. 15, 307 (2018).

[42] N. Nikolova and J. Jaworska, Approaches to measure chemical
similarity–a review, QSAR Comb. Sci. 22, 1006 (2003).
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