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Abstract 54 

Theory and experiments support that plant invasions largely impact aboveground 55 

biodiversity and function. Yet, much less is known on the influence of plant invasions 56 

on the structure and function of the soil microbiome of coastal wetlands, one of the 57 

largest major reservoirs of biodiversity and carbon on Earth. We studied the 58 

continental-scale invasion of Spartina alterniflora (SA) across 2,451 km of Chinese 59 

coastlines as our model-system, and found that SA invasion can largely influence the 60 

soil microbiome (across six depths from 0-100 cm), compared with the most common 61 

microhabitat found before invasion (mudflats, Mud). In detail, SA invasion was 62 

positively associated with bacterial richness, but also resulted in important biotic 63 

homogenization of bacterial communities, suggesting plant invasion can lead to 64 

important continental scale trade-offs in the soil microbiome. We found that plant 65 

invasion changed the community composition of soil bacterial communities across the 66 

soil profile. Moreover, the bacterial communities associated with SA invasions where 67 

less responsive to climatic changes than those in native Mud microhabitats, 68 

suggesting that these new microbial communities might become more dominant under 69 

climate change. Plant invasion also resulted in important reductions in the complexity 70 

and stability of microbial networks, decoupling the associations between microbes 71 

and carbon pools. Taken together, our results indicated that plant invasions can largely 72 

influence the microbiome of coastal wetlands at the scale of China, representing the 73 

first continental-scale example on how plant invasions can reshuffle the soil 74 

microbiome, with consequences for the myriad of functions that they support. 75 

 76 
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1. Introduction 81 

Coastal wetlands are considered fundamental blue carbon ecosystems playing key 82 

roles in regulating carbon sequestration, and supporting biodiversity and ecosystem 83 

productivity worldwide (Alongi, 2014; Schuerch et al., 2018). Coastal wetlands are 84 

highly vulnerable to many aspects of climate change and human activity, due to their 85 

pioneering positions in the intertidal zones (Osland et al., 2016). Among these threats, 86 

invasive plant species is one of the most important. Strikingly, although the influences 87 

of plant invasions are well described for aboveground biodiversity and functions 88 

(Chen et al., 2004; He et al., 2007), much less is known their impacts on the structure 89 

and function of the soil microbiome–the largest reservoir of biodiversity on Earth. 90 

Here, we used the invasion of Spartina alterniflora (SA), native to the southeastern 91 

coastline of the United States, through the entire coastline of China as a model system 92 

to investigate the impact of plant invasions on the soil microbiome across contrasting 93 

climatic conditions. 94 

SA was first introduced to China in 1979 for ecological engineering, and has 95 

expanded rapidly and extensively along most coastlines of China over the last few 96 

decades, encroaching large areas of native bare mudflats (vegetation-free, Mud 97 

hereafter) (An et al., 2007; Liu et al., 2018). SA is a perennial herb with a well-98 

developed root system that could reach up to 100 cm underground. The 99 

microenvironment varies greatly across different soil depths, such as oxygen status. 100 

Thus, the study of the vertical distribution of soil microorganisms before and after SA 101 

invasion is important for an in-depth understanding of the ecological consequences of 102 

SA invasion. Currently, the distribution area of SA in mainland China has reached 103 

545.80 km
2
 by 2015 (Liu et al., 2018), ranging from Liaoning province to Guangdong 104 

province across more than 20 latitudes (Liu et al., 2018; Zuo et al., 2012). We 105 

compared the influence of SA to the most common microhabitat found before 106 

invasion (i.e., Mud; Fig. 1). China has approximately 7,474.6 km
2
 of coastal wetlands, 107 

dominated by 5,379.8 km
2
 of Mud microhabitats (Wang et al., 2020). By doing so, we 108 
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conducted the first continental-scale example on how soil microbiome responds to 109 

plant invasions. The extensive occupation of SA in coastal wetlands provides a 110 

suitable experimental platform for this study to assess the ecological impact of plant 111 

invasion on soil microbial communities within its invasive range. 112 

In particular, we carried out a standardized field survey across the coastline of 113 

China to investigate the impacts of a model-system plant invasion on the soil 114 

microbiome. Among all soil organisms, soil bacteria are the most dominant and 115 

diverse organisms of the planet, and support multiple ecosystem functions and 116 

services such as nutrient cycling, waste decomposition and carbon sequestration. 117 

Because of this, we investigated the influence of plant invasions on the diversity, 118 

community composition, ecological networks, and function of soil bacterial 119 

microbiomes (our model organism) across China’s coastline, compared with Mud 120 

microhabitats, which were the most common previously found microhabitat in these 121 

ecosystems (Fig. 1). 122 

To such an end, we conducted a block design study with 12 sites and paired SA 123 

and Mud microhabitats across 20 degrees of latitudes along the Chinese coastline. In 124 

these locations, we analyzed 407 composite soil samples from six soil depths (across 125 

from 0-100 cm). Standardized soil samplings including multiple soil depths at a 126 

continental scale are largely lacking in the literature. Biological homogenization 127 

associated with plant invasions has been previously observed for plant 128 

(Muthukrishnan & Larkin, 2020; Stotz et al., 2019) and animal communities (Leprieur 129 

et al., 2007; Olden & Poff, 2004). Also, recent studies have provided evidences of 130 

biological homogenization for fungal at local scale (Zhang et al., 2021) and nematode 131 

across the coastlines in China (Zhang et al., 2019) associated with plant invasions. 132 

Thus, we hypothesized that the invasion of SA can result in an important biotic 133 

homogenization of bacteria by creating very similar environments associated with SA 134 

microbiomes across the Chinese coast. 135 

 136 
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2. Material and methods 137 

2.1 Study sites 138 

Based on the extent area of SA distribution in China, a total of 12 sites were selected 139 

across more than 20 latitudes (ranging from 20.60 °N to 40.80 °N), including Huludao 140 

(HLD, introduced in 1980s), Tanggu (TG, introduced in 1997), Dongying (DY, 141 

introduced in 1990), Lianyungang (LYG, introduced in 1982), Yancheng (YC, 142 

introduced in 1983), Chongming (CM, introduced in 1995), Yueqing (YQ, introduced 143 

in 1983), Xiapu (XP, introduced in 1980), Yunxiao (YX, introduced in 1999), Zhuhai 144 

(ZH, introduced in 1980s), Beihai (BH, introduced in 1986), and Zhanjiang (ZJ, 145 

introduced in 1980s) site (Fig. 1a). These sites belong to temperate monsoon climate 146 

or tropical-subtropical monsoon climate, with a mean annual temperature ranging 147 

from 4.17 °C to 23.98 °C (Fig. 1a). 148 

At each site, we sampled soils under paired individuals of Mud and SA 149 

microsites (Fig. 1b). Within each site, the selected Mud and SA habitats are located at 150 

the comparable elevations and experience a similar tidal dynamic. All selected sample 151 

sites were in the mid-tide levels, between the neap high tide and neap low tide levels. 152 

In the present study, the soil bacteriome of Mud and SA habitats were compared to 153 

reflect the ecological consequences of SA invasion on the most common native 154 

habitats before invasion for two reasons: 1) Emerging evidence suggest that the 155 

expansion of SA in China was mainly converted from Mud habitats; 2) The native 156 

plants of China's coastal wetlands are different from North to South, and it is 157 

impossible to find consistent native plants at such a large spatial scale. Due to this 158 

reason, Mud habitats were selected as our reference habitat to exclude the possible 159 

bias caused by native vegetations. 160 

 161 

2.2 Collection of soil samples and environmental variables 162 

Soil samples were collected in October 2018 following a consistent sampling and 163 
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processing scheme. Specifically, a quadrat with 50 × 50 meters was established at 164 

each site for Mud and SA habitats, respectively (Fig. 1b). Within this quadrat, three 165 

replicates for Mud habitat and four replicates for SA habitat were randomly sampled, 166 

with at least 15 meters away in geographical distance from each other. Then, around 167 

each replicate, five intact soil cores (~within 1 m to the centroid point) were randomly 168 

collected by using PVC pipes (5 cm diameter, 100 cm length). Here, considering the 169 

highly developed root system of SA that might alters the microbial distributions 170 

between soil depths, soil in different depths were collected up to 100 cm maximum. It 171 

is important to note that due to the differences in soil textures, individual plots could 172 

only be collected to a maximum depth of 40-60 cm. After achiving the soil cores, they 173 

were then divided into 6 sections (0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 174 

and 80-100 cm) using a stainless steel knife, referring to different soil depths (Fig. 1c). 175 

The corresponding soils from all the 5 soil cores were completely homogenized as a 176 

replicate. Soil samples were sealed immediately after removing gravel stones and 177 

other debris. Finally, a total of 407 soil samples were obtained, of which 177 and 230 178 

samples for Mud and SA habitat, respectively (Table S1). All the soil samples were 179 

stored on ice during the transportation. 180 

A suite of 18 environmental variables were obtained, including 11 soil properties 181 

and 7 climatic factors (Gao et al., 2022). For soil variables, soil temperature of 182 

corresponding sample was determined in-situ using a mercury thermometer. Soil 183 

redox potential (Eh, mV) and salinity/pH were measured by inserting portable probes 184 

into the corresponding depth, by using the ExStikTM RE300 (USA) and ExStikTM 185 

EC500 (USA), respectively. In the laboratory, soil water content was determined by 186 

30 °C oven-drying of 50 g fresh soil to a constant weight. The air-dried soils were 187 

ground into powder and sieved through a 2 mm mesh sieve. Soil electrical 188 

conductivity (EC) was determined at 25 °C by using a conductivity meter (Leici 189 

DDS-307, China). Soil organic matter (SOM) was measured based on the loss on 190 

ignition at 550 °C for 6 h after 105 °C oven-dried (Heiri et al., 2001). Soil total carbon 191 
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(TC), total nitrogen (TN) and total sulfur (TS) were determined using a Vario EL III 192 

Elemental Analyzer (Elementar, Hanau, Germany), and then the carbon-to-nitrogen 193 

ratio (C/N) was calculated. For the climatic factors, the mean annual temperature 194 

(MAT), mean annual precipitation (MAP), isothermality, precipitation seasonality, and 195 

temperature seasonality were compiled from the WorldClim version 2 196 

(https://www.worldclim.org/) at 30 arc-second resolutions. Aridity index and potential 197 

evapotranspiration (PET) were obtained from Global Aridity Index and Potential 198 

Evapotranspiration (ET0) Climate Database v2 (https://cgiarcsi.community), 199 

respectively. 200 

 201 

2.3 Soil DNA extraction and high-throughput sequencing 202 

Soil DNA was extracted by using FastDNA SPIN Kit (MP Biomedicals, Santa Ana, 203 

CA, USA), according to the manufacturer's instructions. Then, the quality and 204 

quantity of the extracted DNA were checked by using NanoDrop2000 205 

spectrophotometer (NanoDrop Tech, Wilmington, USA) and 1% agarose gel 206 

electrophoresis, respectively. The V4-V5 region of the bacterial 16S rRNA gene was 207 

amplified using the primers 515F (5’-GTGCCAGCMGCCGCGG-3’) and 907R (5’-208 

CCGTCAATTCMTTTRAGTTT-3’). PCR reactions were performed on ABI 209 

GeneAmp® 9700 (ABI, Waltham, MA, USA). High-throughput sequencing was 210 

performed on an Illumina MiSeq PE300 platform (Illumina, Inc., San Diego, CA, 211 

USA). All the generated raw sequences have been deposited in the Genome Sequence 212 

Archive in National Genomics Data Center, China National Center for 213 

Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under 214 

the accession number of CRA005208 (https://bigd.big.ac.cn/gsa/browse/CRA005208). 215 

 216 

2.4 Bioinformatic analyses 217 

Raw reads were processed using the amplicon sequence variants (ASV) method by 218 

Quantitative Insight into Microbial Ecology 2 (QIIME2) (Bolyen et al., 2019). 219 

https://www.worldclim.org/
https://cgiarcsi.community/tag/aridity/
https://bigd.big.ac.cn/gsa/browse/CRA005208
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Sequences with poor-quality (read length < 200 bp or average quality score < 25) 220 

were discarded (Ladau et al., 2018). Finally, a total of 23,508,265 sequences were 221 

obtained. The clean sequences were denoised using the DADA2 pipeline (Callahan et 222 

al., 2016), and generated a total of 49,497 ASVs. Representative sequences were used 223 

to construct the phylogenetic tree and for species annotations. SILVA database 224 

(https://www.arb-silva.de/) was applied to assign the taxonomy. All the soil samples 225 

were rarefied to 28,759 sequences (minimum) per sample for downstream analyses. 226 

 227 

2.5 Co-occurrence network constructions 228 

All the 407 soil samples were used to construct the co-occurrence networks by using 229 

the WGCNA package (Langfelder & Horvath, 2012). ASVs that occur in less than 5 230 

soil samples were excluded (Gao et al., 2021), leaving a total of 5, 134 ASVs. The 231 

pairwise Spearman correlations matrix among ASVs were calculated, and p values 232 

were corrected using Benjamini Hochberg’s correction (Benjamini et al., 2006). 233 

Nodes with correlations greater than 0.5 and p < 0.001 were retained (Delgado-234 

Baquerizo et al., 2018). The networks were visualized using Gephi (version 0.9.2). 235 

Then, the ecological modules within the network were identified in Gephi, and the 236 

relative abundance of each ecological module was calculated by averaging the 237 

standardized relative abundance (Z-score). Sub-networks were generated from the 238 

original network by preserving the presented nodes and edges of the target samples. 239 

The topological parameters of all the generated networks were calculated, including 240 

betweenness centrality (the number of times a node acts as a bridge along the shortest 241 

path between two other nodes), closeness centrality (the number of steps required to 242 

access all other nodes from a given node), clustering coefficient (a ratio of the number 243 

of links between the neighbors of a node, and the maximum number of links that 244 

could possibly exist between its neighbors) and degree (number of edges connecting a 245 

node to other nodes). The average degree (avgK), represents the average number of 246 

edges per node, was used to describe the network complexity (Yao et al., 2014). 247 

https://www.arb-silva.de/
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Natural connectivity provides a sensitive discrimination of network structural 248 

robustness. Thus, network robustness was estimated by removing nodes in the static 249 

network to assess how quickly the natural connectivity degraded (Peng & Wu, 2016; 250 

Wu et al., 2010). 251 

 252 

2.6 Statistical analyses 253 

To explore the environmental variables affecting bacterial alpha diversity, the 254 

importance of variables was analyzed using the partial correlations method (Kim, 255 

2015). We identified the major environmental factors that influencing the taxa’s 256 

relative abundance (i.e., the top ten phyla and core species). Multiple linear 257 

regressions were fitted separately between taxa’s relative abundance and 258 

environmental variables using the lm function. Backward stepwise regression was 259 

then performed to filter variables using stepAIC in MASS package. For the optimal 260 

model obtained, the contribution of the main environmental variables to the total 261 

variance in taxa’s relative abundance was assessed using the calc.relimp function in 262 

relaimpo package. A classification of random forest model was used to identify 263 

biomarkers between Mud and SA habitats on class level using the randomForest 264 

package (Liaw & Wiener, 2002). Then, the accuracy of the classification model was 265 

assessed by receiver operating characteristic (ROC) and the prediction of confusion 266 

matrix. Those ASVs that occurring in more than 50% samples were defined as core 267 

species for Mud and SA habitat, respectively. Covariate adjusted principal coordinates 268 

analysis (aPCoA) was used to describe pairwise dissimilarity between samples based 269 

on the Weighted Unifrac distance (Shi et al., 2020). Pairwise permutational 270 

multivariate analysis of variance (PERMANOVA) was used to test the significance of 271 

differences in bacterial communities between soil samples. To better understand the 272 

biodiversity patterns and to explore their underlying mechanisms, compositional 273 

dissimilarities (BDtotal) were divided into Repl (species replacement) and RichDiff 274 

(difference in abundance) components using the adespatial package. Dissimilarity-275 
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overlap curve (DOC) was used to test whether the underlying ecological dynamics of 276 

microbiomes are universal across all communities or unique to individual 277 

communities (Kalyuzhny & Shnerb, 2017). We used a variety of methods to explore 278 

the role of environmental factors in influencing bacterial communities. Firstly, the 279 

variation partitioning analysis (VPA) was performed to estimate the effects of space, 280 

depth, climate and soil factors on bacterial community using the vegan package. Then, 281 

Mantel and partial Mantel tests were applied to examine the relationships between 282 

environmental variables and bacterial communities. Finally, these relationships were 283 

tested by the multiple regression on distance matrices (MRM) using the ecodist 284 

packages, after filtering the environmental variables with high multicollinearity 285 

(Spearman ρ
2
 > 0.7) (Wang et al., 2017). Fast expectation-maximization microbial 286 

source tracking (FEAST) analysis was used to estimate the source proportion of 287 

bacteria in SA soils that derived from Mud soils, and vice versa (Shenhav et al., 288 

2019). All analyses involving R software were performed under R version 4.0.5 (R 289 

Core Team, 2018), unless otherwise stated. 290 

Structural equation model (SEM) was used to evaluate the direct and indirect 291 

effects of biotic (i.e., module abundance, bacterial richness, network complexity) and 292 

abiotic factors (i.e., climatic factors, soil properties) on soil TC. The predicted causal 293 

relationships of the SEM were constructed based on prior knowledge (Delgado-294 

Baquerizo et al., 2020). All the environmental variables were treated as independently 295 

observed variables in the SEM, rather than latent variable. Prior to SEM analysis, the 296 

multicollinearity of environmental variables was examined by using the Hmisc 297 

package, and those variables with Spearman ρ
2
 greater than 0.7 were removed. Then, 298 

Random Forest analyses were performed to identify the key predictors that 299 

influencing soil TC by using the rfPermute package. A 1,000 permutation was then 300 

applied to compute the null distribution and calculate the p values. Since most of the 301 

variables were not normally distributed, the bootstrapping method were used to 302 

evaluate the probability that the path coefficients differed from zero (Delgado-303 
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Baquerizo et al., 2017). Then, three indices were used to assess the SEM performance 304 

(Schermelleh-Engel & Moosbrugger, 2003): (1) Chi-square (x
2
) test, a good fit is 305 

defined as 0 ≤ x
2
/df (degree of freedom) ≤ 2, and 0.05 < p ≤ 1.00; (2) Root mean 306 

square error of approximation (RMSEA), in which a good fit is defined as 0 ≤ 307 

RMSEA ≤ 0.05; (3) Bollen-Stine bootstrap test, a good fit is defined as 0.10 < Bollen-308 

Stine bootstrap p ≤ 1.00. The standardized total effect of each predictor on soil TC 309 

was calculated. SEM analyses were performed in AMOS 21 (IBM SPSS Inc., Chicago, 310 

IL, USA). 311 

 312 

3. Results 313 

3.1 Plant invasions causes drastic changes in soil environments and on the 314 

biodiversity and community composition of soil bacteriomes 315 

A total of 18 environmental variables were obtained, including 11 soil properties (i.e., 316 

pH, salinity) and 7 climatic factors (i.e., MAT, MAP) (Table S2). Results show that 317 

environmental variables varied considerably among habitats, sites, and soil depths. SA 318 

soils have higher EC, salinity, total nitrogen (TN), SOM and water content than that 319 

of Mud soils, but lower pH values. We further showed that plant invasions cause 320 

important homogenization in soil environments. In particular, we found that important 321 

soil properties such as Eh, soil temperature, TC, TS, C/N, and water content had 322 

smaller changes in environmental variability than those in Mud soils. Yet, Mud habitat 323 

and SA habitat had similar levels of total carbon (p = 0.08) (Fig. 2a). Both in the Mud 324 

and SA habitats, the soil carbon content had a distinct latitudinal distribution pattern, 325 

showing the highest at approximate 34°N regions. Not only that, compared to SA 326 

habitat, the soil carbon in Mud habitat exhibited a larger increase with increasing soil 327 

depth and then a subsequent decrease (Fig. 2b). Compared to Mud habitat, carbon 328 

accumulation in SA habitats was mainly between the soil surface and 60 cm below 329 

ground. 330 

We then investigated patterns in soil microbial diversity. We used richness 331 
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(observed ASVs) to present the taxonomic alpha diversity of bacteria. Richness (p < 332 

0.05) were significantly higher in SA soils compared with Mud soils, but not for all 333 

the sites (Fig. 3a, Table S3). In general, richness increased with latitude but decreased 334 

with soil depths (Fig. 3b, Fig. S1). We analyzed soil properties against richness for 335 

revealing the main predictors. Three-ways ANOVAs showed that richness was mainly 336 

influenced by the sample site heterogeneity (F = 42.37, p < 0.001) (Table S4). Partial 337 

correlations analyses suggested that soil properties, rather than climatic factors, were 338 

the primary factors in influencing richness (Fig. 3c). Among all the environmental 339 

variables, soil temperature was found to be the best predictor (Fig. S2, Table S5). 340 

Binomial regressions showed that richness decreasing when soil temperature beyond 341 

the optimum ranges (Fig. 3d). 342 

Venn diagram showing the share and unique ASVs, with 15,259 ASVs and 343 

24,591 ASVs unique to Mud and SA soils respectively (Fig. S3a). A total of 60 phyla 344 

were identified from all the soil samples, and the most abundant phyla was 345 

Proteobacteria, Chloroflexi, and Epsilonbacteraeota, and their relative abundances 346 

varied considerably across different sites and depths (Fig S3b). Among the top ten 347 

phyla, SA soils have significantly (p < 0.05) higher relative abundances of 348 

Bacteroidetes, Acidobacteria, Planctomycetes, Gemmatimonadetes, Nitrospirae, and 349 

Latescibacteria than Mud soils, while have lower Epsilonbacteraeota (Fig. 4a). 350 

Distinct latitudinal distributions were observed for these phyla, and the measured 351 

environmental variables could explain 21.43%-74.01% of the variations in their 352 

relative abundances (Fig. 4b, Fig. S4). 353 

We identified 72 classes as the biomarkers between Mud and SA soils (Fig. S5a). 354 

Both the results of area under curve (AUC = 0.77) of ROC and prediction of 355 

confusion matrix (0.21 < error < 0.22) suggested a high accuracy of the classification 356 

model (Fig. S5b, Table S6). These biomarkers included Spirochaetia, Phycisphaerae, 357 

Clostridia, and others (Fig. S5c). In addition, at the 50% occurrence threshold, we 358 

identified 8 and 5 core ASVs for Mud and SA soils respectively (Fig. S6a). Among 359 
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these core ASVs, 7 out of 13 ASVs were belong to class Campylobacteria, and the 360 

other 6 ASVs were belong to class Gammaproteobacteria (Table S7). Although these 361 

core ASVs were present in the majority of soil samples, their relative abundances 362 

were varied across different sites and showed a clear latitudinal pattern, which found 363 

to be mainly influenced by environmental factors (Fig. S6b, c, Fig. S7). 364 

 365 

3.2 Biotic homogenization of soil bacterial communities by S. alterniflora 366 

Our findings further revealed that plant invasions are associated with important 367 

continental-scale homogenizations of the soil bacteriomes of coastlines. First, we 368 

found significant (pseudo-F = 8.54, p < 0.001) differences in the soil bacterial 369 

communities between Mud and SA habitats (Fig. 5a). PERMANOVA suggested that 370 

soil bacterial communities were mainly influenced by the factor of sample sites 371 

(pseudo-F = 23.41, p < 0.001), followed by depths (pseudo-F = 8.84, p < 0.001) and 372 

habitats (pseudo-F = 8.54, p < 0.001) (Table S8). We then showed that, in general, soil 373 

microbiomes in SA microhabitat support less variability (distance of each sample to 374 

its central point) among bacterial communities than Mud soils, suggesting the biotic 375 

homogenization of bacterial community in SA soils compare to Mud soils (Fig. 5b, 376 

Fig. S8). A significant pattern of distance decay relationship (DDR) was observed, 377 

with the slopes of DDR of the SA soils higher than that of Mud soils, suggesting 378 

higher spatial turnover of bacterial community after plant invasion (Fig. 5c). Beta 379 

diversity (represented by BDtotal) includes two components: species replacement 380 

(Repl) and change in abundance (RichDiff). Results showed that Repl dominated the 381 

bacterial community variation, accounting for 80.85% and 79.17% for Mud and SA 382 

soils respectively (Fig. S9). DOC analysis further revealed that these ecological 383 

dynamics of bacterial communities were universal across metacommunities (Fig. 384 

S10a). Microorganisms could spread from one habitat to another. We used FEAST 385 

(source tracking) method to quantify this dispersal event, and found a higher 386 

proportion of Mud was derived from SA than vice versa (Fig. S10b). 387 
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We then used multiple approaches to explore the environmental variables 388 

influencing the bacterial community structure. Firstly, partial Mantel tests 389 

demonstrated the critical role of soil properties and climatic factors in affecting 390 

bacterial communities (Table S9), which were further confirmed by the VPA analyses 391 

(Fig. S11a). Then, the relationships between bacterial communities and environmental 392 

variables were tested by Mantel tests (Fig. S11b, Table S10). MRM method, an 393 

extension of partial Mantel analysis which offers several advantages over partial 394 

Mantel tests, were applied to explore the key predictors (Table S11, Fig. S12). MRM 395 

revealed that TS and TN were the decisive factors in influencing bacterial 396 

communities for Mud and SA soils, respectively. 397 

 398 

3.3 S. alterniflora invasion reduces the complexity and robustness of co-399 

occurrence networks 400 

Co-occurrence networks were used to identify soil bacterial taxa organized within 401 

closely-linked ecological clusters. The network consists of 4,230 nodes and 41,506 402 

edges, with a high number of major nodes belong to phylum of Proteobacteria 403 

(51.49%), Bacteroidetes (17.02%), Chloroflexi (7.85%), and Epsilonbacteraeota 404 

(6.93%) (Fig. S13a). There are many nodes clustered together (modules) in the 405 

network, of which, there are 7 modules containing more than 300 nodes, namely 406 

Modules #36 (14.96%), Modules #45 (10.47%), Modules #27 (9.57%), Modules #25 407 

(9.27%), Modules #42 (7.75%), Modules #22 (7.71%), and Modules #37 (7.66%) (Fig. 408 

6a, Fig. S13b). Each module contains a wide variety of bacterial taxa, among which 409 

the more abundant class groups include Campylobacteria, Deltaproteobacteria, and 410 

Bacilli (Fig. 6b). The relative abundance of these modules was significantly (p < 0.05) 411 

higher in SA habitats than in Mud habitats, including Modules #22, Modules #42, and 412 

Modules #45 (Fig. 6c). Network properties characterize the physical structure of the 413 

network, and the Mud network has significantly (p < 0.05) higher closeness centrality 414 

(Mud: 0.20; SA: 0.19) and degree (Mud: 19.27; SA: 17.50) than the SA network, 415 
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suggesting a more complex network of Mud habitat (Fig. S14a, b). In addition, the 416 

natural connectivity of the network decreased sharply as the proportion of removed 417 

nodes increases, but the slope of the decline of Mud network was lower than that of 418 

the SA network, means a more stable network of the Mud network (Fig. 6d). In order 419 

to understand the spatial distributions of the network, sub-networks were constructed, 420 

and results showed that the network complexity increases with increasing latitude for 421 

both Mud and SA soils (Fig. 6e, Fig. S14c). 422 

 423 

3.4 Associations between bacterial communities and soil carbon pools 424 

SEM analysis helps us to understand the relationships between soil bacterial 425 

communities and soil TC, while considering a variety of biotic and abiotic factors 426 

simultaneously. Based on the initial model (Fig. S15), a Random Forest analysis was 427 

performed to identify the key environmental factors (Fig. S16). SEM results showed 428 

that soil TC was regulated by a combination of environmental factors, of which, the 429 

most important were soil properties and climatic factors (Fig. 7). Notably, bacterial 430 

community also played an important role in influencing TC, in detail, TC was 431 

significantly and positively correlated with avgK (path coefficient = 0.15 ***) and 432 

module #45 (path coefficient = 0.15 ***), while significantly and negatively 433 

correlated with module #36 (path coefficient = -0.35 ***). Not only that, the presence 434 

of aboveground plants also has a positive effect on soil TC (Fig. 7a). By analyzing the 435 

total effect of each predictor, we found that ST was the most important factor in 436 

regulating soil TC (Fig. 7b). From the results of the linear regression analysis, the 437 

slope of the correlation between module #45 and avgK and TC was reduced in SA 438 

habitats compared to Mud habitats, implying that the role of these bacterial taxa in TC 439 

accumulation was diminished (Fig. 7c). Overall, these results have revealed the strong 440 

associations between bacterial communities and soil TC, and which were reduced 441 

after plant invasion. 442 

 443 
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4. Discussion 444 

4.1 Continental-scale S. alterniflora invasion increases bacterial alpha diversity, 445 

and induces biotic homogenization of soil bacterial communities 446 

Plant invasions are an important threat to local biodiversity conservation and 447 

ecosystem maintenance in the context of global change (Bradley et al., 2010; 448 

Theoharides & Dukes, 2007). In the last few decades, many studies have been 449 

conducted focusing on the effects of SA invasion on plant communities and soil biotas 450 

in coastal wetlands (Chen & Wen, 2021; Yang et al., 2016). However, most of the 451 

previous studies focusing on soil communities have been carried out at a local scale. 452 

Here, we present the first continental-scale study investigating the impacts of plant 453 

invasions on soil microbiomes in blue carbon coastal ecosystems. 454 

We found that SA invasion significantly (p < 0.05) increased bacterial alpha 455 

diversity in Chinese coastal wetlands (Fig. 3). Our results were consistent with 456 

previous local-scale studies which revealed that SA invaded into Mud soils was found 457 

to strongly increase the bacterial alpha diversity, in Fujian coastlines of southeast 458 

China (Chen & Wen, 2021; Liu et al., 2017) and in Jiangsu Yancheng Wetland 459 

National Nature Reserve (Yang et al., 2019). However, studies with inconsistent 460 

results also exist, Gao et al. (2019) found that the bacterial alpha diversity of SA soils 461 

in the Zhangjiang River Estuary Mangrove National Natural Reserve was comparable 462 

to that of the Mud soils. Previous studies were done at a local scale, often impacted by 463 

local environmental contexts, and difficult to interpret at a larger spatial scale 464 

covering contrasting soil and climatic conditions. Unlike for those previous local 465 

studies, our standardized continental survey aimed to capture the environmental 466 

heterogeneity supporting the invasion of plants and their impacts on soil microbiomes. 467 

Here, we provide continental-scale evidences that plant invasions can promote soil 468 

bacterial diversity at the scale of China by introducing new species not previously 469 

present in Mud soils, because plant colonization may provide resources and ecological 470 

niches for the rare biosphere (Chen et al., 2019; Saleem et al., 2016). For instance, 471 
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Venn diagrams showed the share and unique ASVs, with 15,259 ASVs and 24,591 472 

ASVs unique to Mud and SA soils respectively (Fig. S3a). These results suggest that 473 

plant invasions can have a previously unreported impact on soil biodiversity, as 474 

previously found for plant and animal diversity. 475 

We further provided unprecedented evidences that continental-scale SA invasion 476 

in China can cause important biotic homogenization of soil bacterial community (Fig. 477 

5a, b, Fig. S8). Biotic homogenization following biological invasions is commonly 478 

found for aboveground biodiversity (Stotz et al., 2019). For example, it has been 479 

shown in many studies that biological invasions could lead to biotic homogenization 480 

across different ecosystems, for animals and plants (Delgado-Baquerizo et al., 2021; 481 

Gossner et al., 2016; Leprieur et al., 2007; Zhang et al., 2019). However, much less 482 

studied are the impacts of plant invasions on soil microbiomes. The occurrence of 483 

biotic homogenization does not conflict with our earlier observation that SA invasions 484 

increase alpha diversity, as increases in local alpha diversity are usually accomplished 485 

at the expense of beta diversity (Whittaker, 1972). Biotic homogenization is a process 486 

whereby some species in a community are replaced by other species (Olden et al., 487 

2004; Olden & Poff, 2003). The invasion of SA could lead to biotic homogenization 488 

of soil microbial community by altering soil physic-chemical properties, making them 489 

more homogenous. In addition, compared to SA habitats, the dominant original native 490 

ecosystems (Mud soils) are not protected by any vegetation, and are more susceptible 491 

to environmental disturbance, which may cause greater microbial fluctuations. Not 492 

only that, but bacteria in SA soils appeared to have a greater dispersal capacity than 493 

that in Mud soils, as indicated by the results of source tracking (Fig. S10b), which 494 

may favor biotic homogenization within the habitats. As a result, biotic 495 

homogenization causes a narrowing of ecological niches within the community, 496 

making microbes more responsive to environmental change and thus accelerating the 497 

spatial turnover of the bacterial community (Fig. 5c). However, it is currently unclear 498 

whether biotic homogenization also occurs at the genetic and functional levels 499 
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following SA invasion, beyond the taxonomic level. It has been shown that biotic 500 

homogenization appears to reduce the multifunctionality in forest ecosystems (Van 501 

Der Plas et al., 2016). Therefore, we speculate that SA invasion along the coastline in 502 

China may impose strong influences on the microbial communities and the 503 

biogeochemical cycles they support, and allow for the weakening or even loss of 504 

certain ecological functions. Such changes would threaten the critical role of coastal 505 

wetland ecosystems in global carbon cycling and climate change regulation. 506 

 507 

4.2 S. alterniflora invasion reduces the complexity and robustness of co-508 

occurrence networks 509 

Soils are home to hundreds of millions of microorganisms interacting with each other 510 

and driving the fundamental soil processes (Faust & Raes, 2012; Layeghifard et al., 511 

2017). Dissecting the structure of soil microbial coexistence is important for a deeper 512 

understanding of the evolution of soil ecological functions in response to 513 

environmental changes. The impact of plant invasion on soil microbial networks has 514 

mostly been studied at the local scale, but works at large spatial scales (i.e., 515 

continental scale) is still lacking (Chen & Wen, 2021; Zhang et al., 2020). Here, we 516 

found that the continental-scale SA invasion causes a significant reduction in 517 

connectivity between nodes within network and a consequent reduction in network 518 

stability (Fig. 6, Fig. S14). Our study was consistent with that of others who also 519 

found a decrease in network complexity of fungal communities after SA invasions in 520 

a salt marsh ecosystem (Zhang et al., 2021). On the contrary, previous study reported 521 

that SA invasion enhanced the bacterial interactions in the Yellow River Estuary of 522 

China (Zhang et al., 2020). There are several reasons that may be used to support our 523 

findings. Firstly, the biotic homogenization after SA invasion can be used to explain 524 

the reduction in network complexity and stability, because microorganisms within a 525 

community become more similar when biotic homogenization occurs and would 526 

outcompete for similar resources, resulting in increased competition within the 527 



 20 

community (Olden et al., 2004). Secondly. SA invasion strongly altered soil physic-528 

chemical properties, and this drastic environmental change exerts a strong selection 529 

pressure on the soil bacterial community, thus excluding more microorganisms from 530 

the network and leading to a simpler network (Ratzke et al., 2020). This seems to be 531 

supported elsewhere by the fact that as the environment changed, more 532 

microorganisms were replaced following the SA invasion (Fig. S9). Thirdly, high 533 

diversity was accompanied by low network complexity. Within a community, 534 

microorganisms can influence each other through competition, mutualism, predation, 535 

and other actions (Faust & Raes, 2012). A community with high diversity means that 536 

the habitat retains a greater diversity of microbial taxa that could compete for the 537 

same type of resource, thus making the network become less complex (Farrer et al., 538 

2019). The reduced strength of the interactions between microorganisms leads to a 539 

more unstable network which, if it collapses, will make it difficult to recover and 540 

maintain normal ecological functioning (Olesen et al., 2007). 541 

 542 

4.3 Changes in the soil bacteriome are associated with those in carbon pools 543 

Coastal wetlands are important blue carbon ecosystems on Earth, with stronger carbon 544 

sequestration than other biomes (Alongi, 2014). Given such a large soil carbon pool in 545 

coastal wetland soils, it’s subtle changes may have important implications for global 546 

climate change. Therefore, it is ecologically important to explore the coupling 547 

relationship between soil microbiome and carbon pools, as microorganisms play key 548 

roles in mediating the carbon dynamic. In this study, we provided evidence that 549 

multiple environmental factors jointly regulate soil total carbon (Fig. 7). Soil TC was 550 

increased after SA invasion (Fig. 2), and this positive effects of SA on soil TC have 551 

been extensively verified in previous studies (Barry et al., 2021; Li et al., 2020; Zhang 552 

et al., 2021). Noteworthy, a positive association between network complexity and TC 553 

was found. A community with high network complexity implies that microorganisms 554 

within the community are more closely linked. The existence of complementarity 555 
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effects between microorganisms, as when species use differentiated resources they are 556 

more likely to co-exist within a community, leading to complementarity effects and 557 

positively contributing to ecological functions (Godoy et al., 2020; Turnbull et al., 558 

2016). 559 

In addition, the relationship between microbes and soil TC was weakened after 560 

SA invasion (Fig. 7c). SA, C4 perennial herb, has a strong carbon sequestration 561 

capacity and can allocate the fixed carbon to the soil through root exudations and litter 562 

input. Although SA invasion significantly impacting the modularity of ecological 563 

networks influencing the relative abundance of specific microbial modules including 564 

multiple soil individual taxa (Fig. 6c). The positive influence of SA on organic carbon 565 

is likely to disconnect the multiple microbial metabolic connections needed to extract 566 

carbon resources in low carbon ecosystems, favoring the proportion of certain 567 

microbial individual taxa (microbial modules within the ecological network) over 568 

others. The disconnection between carbon and soil microbial communities associated 569 

with plant invasions still have unknown consequences for the environment, yet 570 

increase the uncertainty on the capacity of carbon blue ecosystems to regulate global 571 

carbon cycling compared with native environments. Currently, many countries are 572 

actively promoting efforts to achieve carbon neutrality goals. Given the excellent 573 

carbon sink capacity of coastal wetlands, the decoupling of soil microorganisms and 574 

carbon pools after SA invasion may limit the potential of microorganisms in balancing 575 

carbon sink and source. 576 

 577 

5. Conclusions 578 

Our work provides the first continental-scale evidence of the impacts of plant 579 

invasions on soil microbiomes. We show the biogeography of soil bacterial 580 

communities following continental-scale plant invasions, considering diversity, 581 

community structure, co-occurrence network and link with function. Plant invasion 582 

dramatically increased bacterial alpha diversity, while decreased the complexity and 583 
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robustness of the co-occurrence networks. Plant invasion also caused significant 584 

biotic homogenization, and weakened the role of microbes in mediating soil TC 585 

accumulation. Overall, these findings have broadened our knowledge on the soil 586 

bacterial biogeography following plant invasion in Chinese coastal wetlands, which 587 

helps to understand their compositional and functional dynamic under global change. 588 
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Figure legends 610 

Fig. 1| The sample sites and their corresponding MAT along the coastal wetlands in 611 
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China (a). The locations of each replicate in a 50*50 m quadrat for Mud and SA 612 

habitats. Five intact soil cores were randomly collected and completely mixed as a 613 

replicate (b). Schematic diagram of the sampling depth for each sample site (c). Mud: 614 

bare mudflat; SA: Spartina alterniflora; HLD: Huludao; TG: Tanggu; DY: Dongying; 615 

LYG: Lianyungang; YC: Yancheng; CM: Chongming; YQ: Yueqing; XP: Xiapu; YX: 616 

Yunxiao; ZH: Zhuhai; BH: Beihai; ZJ: Zhanjiang; MAT: mean annual temperature. 617 

 618 

Fig. 2| Soil total carbon (TC) content in coastal wetlands. The latitudinal pattern of 619 

soil TC for Mud and SA habitats respectively (a). Variation of soil TC with depth (b). 620 

For abbreviations, see the legends of Fig. 1. 621 

 622 

Fig. 3| The influence of plant invasions on the response of bacterial richness to 623 

environmental variability. Difference in bacterial richness between Mud and SA 624 

habitats, and the significance was examined by Wilcoxon rank sum test (a). Variations 625 

of bacterial richness in various depths (b). Partial Spearman correlations between 626 

bacterial richness and the groups of environmental variables (i.e., space, climate, 627 

habitat, depth and soil) (c). All observed variables were grouped into corresponding 628 

groups and constructed as latent variables. Latent variables were constructed using the 629 

Partial Least Squares Path Modeling (PLS-PM) method. The relationships between 630 

richness and soil temperature (d). Both linear and quadratic models were used to fit 631 

these relationships, and best models were selected based on a low Akaike’s 632 

information criterion (AIC) value. * p < 0.05; ** p < 0.01; *** p < 0.001. For 633 

abbreviations, see the legends of Fig. 1. 634 

 635 

Fig. 4| The relative abundance of the bacterial top ten phyla. Differences in the 636 

relative abundance of the top ten bacterial phyla between Mud and SA habitats (a). 637 

Trends in the relative abundance of the top ten bacterial phyla with latitude (b). * p < 638 

0.05; ** p < 0.01; *** p < 0.001. For abbreviations, see the legends of Fig. 1. 639 
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 640 

Fig. 5| The influence of plant invasions on bacterial community composition and 641 

heterogeneity. Results of the covariate adjusted principal coordinates analysis (aPCoA) 642 

based on the Weighted UniFrac distance revealing the pairwise dissimilarities 643 

between Mud and SA habitats. The significant differences were examined by pairwise 644 

permutational multivariate analysis of variance (PERMANOVA) tests (a). Distance of 645 

soil bacterial community to centroid point within each sample site (b). Distance decay 646 

relationship reveals the relationship between bacterial community similarity and 647 

geographical distance (c). The solid and dashed lines indicate significant and 648 

insignificant relationships, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001. For 649 

abbreviations, see the legends of Fig. 1. 650 

 651 

Fig. 6| The influence of plant invasions on soil ecological networks. Modules (groups 652 

of taxa highly co-occurring with each other) with >300 taxa (nodes) within the 653 

ecological network (a). The community composition for the top microbial modules (b). 654 

The difference in the relative abundance of each ecological module between Mud and 655 

SA habitats, and significance was tested by Wilcoxon test (c). The network structural 656 

robustness assessed by the decline in natural connectivity against the removing nodes 657 

(d). The higher the slope represents the more drastic the decline in network structural 658 

robustness, in other words, the more unstable the network is. The latitudinal pattern of 659 

the network’s average degree (avgK), representing the network complexity (e). * p < 660 

0.05; ** p < 0.01; *** p < 0.001. For abbreviations, see the legends of Fig. 1. 661 

 662 

Fig. 7| Structural equation model (SEM) revealing the direct and indirect effects of 663 

environmental variables on soil TC (a). To obtain a simplified graphic, different 664 

blocks were used to represent the various types of environmental factors, but note that 665 

all variables were treated as observed variables. Numbers within parentheses are the 666 

path coefficients and are indicative of the standardized effect size of the relationship. 667 
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Solid and dashed arrows indicate positive and negative effects, respectively. R
2
 value 668 

means the proportion of variance explained. The standardized total effects of each 669 

predictor attributes on soil TC (b). The relationships between soil TC and bacterial 670 

communities (Mod #36, Mod #45, and avgK) (c). Solid and dashed lines indicate 671 

significant and insignificant correlations, respectively. Long: longitude; Lat: latitude; 672 

Mod: module; Iso: isothermality; MAP: mean annual precipitation; PET: potential 673 

evapotranspiration; avgK: average degree; ST: soil temperature; TN: total nitrogen; 674 

TC: total carbon. * p < 0.05; ** p < 0.01; *** p < 0.001. For abbreviations, see the 675 

legends of Fig. 1.  676 
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Fig. S1| Changes of soil bacterial alpha diversity. Variations of observed ASVs in 

various depths with latitude (a). Variations of observed ASVs with soil depth in each 

site (b). Mud: bare mudflat; SA: Spartina alterniflora; HLD: Huludao; TG: Tanggu; 

DY: Dongying; LYG: Lianyungang; YC: Yancheng; CM: Chongming; YQ: Yueqing; 

XP: Xiapu; YX: Yunxiao; ZH: Zhuhai; BH: Beihai; ZJ: Zhanjiang. 

  



 
Fig. S2| Random forest analysis was used to identify the key environmental factors in 

affecting observed ASVs. The relative importance of the environmental factors was 

ranked in a descending order. ASVs: amplicon sequence variants; Eh: redox potential; 

ST: soil temperature; EC: electrical conductivity; TN: total nitrogen; TC: total carbon; 

TS: total sulfur; SOM: soil organic matter; WC: water content; MAP: mean annual 

precipitation; MAT: mean annual temperature; PET: potential evapotranspiration.  



 

Fig. S3| The number of unique and shared ASVs of Mud and SA habitats (a). The 

relative abundance of identified bacterial phyla (b). Different colors of the columns 

represent different bacterial phyla. For abbreviations, see the legends of Fig. S1.  



 
Fig. S4| Contributions of soil properties to the differences in relative abundances of 

microbial phyla based on correlation and best multiple regression model. The heat 

map represents the Spearman correlation coefficients between soil properties and 

phyla. The bars represent the total contribution of soil properties in explaining 

microbial variation, and the circle size indicates the importance of soil properties, 

which is obtained by multiple linear regression and variance decomposition analysis. 

For abbreviations, see the legends of Fig. S1 and Fig. S2. * p < 0.05; ** p < 0.01; *** 

p < 0.001. 

  



 
Fig. S5| Random Forest analysis demonstrating biomarkers in Mud and SA soils. The 

cross-validation error as a function of the number of input classes used to classify 

against group (a). AUC score for evaluation of random forest classification models (b). 

Biomarkers ranking in a descending order of their importance to the accuracy of the 

model (c). The colors of the classes represent the phyla to which they belong to. For 

abbreviations, see the legends of Fig. S1. 

  



 
Fig. S6| Identification of core species. Relationship between changes in the number of 

core species and their proportional occurrence in the samples (a). Variation in relative 

abundance of core species with latitude (b). Contributions of soil properties to the 

differences in relative abundances of core species based on correlation and best 

multiple regression model. The heat map represents the Spearman correlation 

coefficients between soil properties and core species. The bars represent the total 

contribution of soil properties in explaining microbial variation, and the circle size 

indicates the importance of soil properties, which is obtained by multiple linear 

regression and variance decomposition analysis (c). For abbreviations, see the legends 

of Fig. S1 and Fig. S2.  



 

Fig. S7| Heat map showing the relative abundance of core species in all samples for 

Mud (a) and SA (b) soils. The lower-case letters in the diagram represent their 

corresponding ASVs. For abbreviations, see the legends of Fig. S1.  



 
Fig. S8| Results of the covariate adjusted principal coordinates analysis (aPCoA) 

based on the Weighted UniFrac distance revealing the pairwise dissimilarities 

between Mud and SA habitats for each soil depth (a). Distance of soil bacterial 

community to centroid point for each soil depth (b). For abbreviations, see the legends 

of Fig. S1. * p < 0.05; ** p < 0.01; *** p < 0.001. 

  



 

Fig. S9| Variation in the relative contribution of beta diversity components with 

geographic distance. For abbreviations, see the legends of Fig. S1.  



 

Fig. S10| Dissimilarity Overlap curve was used to examine whether the ecological 

dynamics of the bacterial communities are universal across all communities or unique 

to individual communities (a). Fast expectation-maximization microbial source 

tracking (FEAST) analysis reveals the proportion of sources in Mud or SA habitats, 

respectively (b). For abbreviations, see the legends of Fig. S1. * p < 0.05; ** p < 0.01; 

*** p < 0.001. 

  



 

Fig. S11| The results of variation partitioning analysis (VPA) showed the dependent 

and independent effects of space, depth, climate and soil factors in influencing 

bacterial communities (a). The Spearman correlations between environmental factors, 

and the Mantel correlations between bacterial communities and soil properties, for 

Mud and SA habitats respectively. The thickness and the color of the line represents 

the magnitude of the Mantel’s r and p value (b). For abbreviations, see the legends of 

Fig. S1 and Fig. S2.  



 

Fig. S12| To avoid the effect of multicollinearity, the redundancy of environmental 

variables was evaluated. The dashed line is Spearman ρ
2
 equal to 0.7, and the 

environment variables marked in red font are those deleted in the subsequent analysis. 

For abbreviations, see the legends of Fig. S2.  



 

Fig. S13| Co-occurrence network of soil bacterial communities. The colors of the 

nodes represent the different dominant bacterial phyla (a). The percentage in 

parentheses represents the percentage of bacteria of that phylum within the network. 

The color of the nodes represents the different ecological modules (b). Modules with 

more than 300 nodes are marked with different colors. The percentage in parentheses 

represents the percentage of that module within the network.  



 

Fig. S14| Bacterial co-occurrence network for Mud and SA soils respectively. Venn 

diagram showing the number of unique and shared ASVs for Mud and SA networks 

(a). The color of the nodes represents the different ecological modules. The 

differences of topological parameters between Mud and SA networks (b). The 

latitudinal distribution of co-occurrence network for Mud and SA soils respectively 

(c). p < 0.05 *; p < 0.01 **. For abbreviations, see the legends of Fig. S1.  



 

Fig. S15| The initial model of structure equation modeling analysis. The arrows 

indicate the predicted causal relationships.  



 

Fig. S16| Random Forest analyses were conducted to identify the most important 

predictors in influencing soil TC. The graphic shows importance scores scaled by 

ranked importance. For abbreviations, see the legends of Fig. S2. 




