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Simple Summary: The germplasm banks of wild species, such as Iberian red deer, are not widespread,
mainly due to the difficulties of collecting and cryopreserving reproductive cells. Optimal freezing
protocols under field conditions could be a breakthrough for these species. In this study, epididymal
sperm was evaluated using two methods of sperm storage during refrigeration (tube and straw);
four equilibration periods (0, 30, 60, and 120 min); and four methods of freezing (cryopreservation
in liquid nitrogen vapors in a tank (control) or box, freezing in dry ice, or freezing over a metallic
plate). The results showed that samples stored in straws during refrigeration produced less apoptotic
spermatozoa and more viable spermatozoa withactive mitochondria. A long equilibration period
(120 min) yielded a higher percentage of acrosomal integrity. Moreover, there was no difference in
sperm quality between freezing in liquid nitrogen vapors in a tank or box. However, a worse quality
was obtained when the samples were cryopreserved in dry ice or over a metallic plate compared to
the control.

Abstract: Creating germplasm banks of wild species, such as the Iberian red Deer (Cervus elaphus
hispanicus) can be challenging. One of the main difficulties is the obtention and cryopreservation of
good-quality reproductive cells when the spermatozoa are obtained from epididymides after death.
To avoid a loss of seminal quality during transport, developing alternative methods for cooling
and freezing sperm samples under field conditions is necessary. The objective of this study was to
evaluate the effects of different durations of equilibrium and different techniques of cooling and
freezing on Iberian red deer epididymal sperm quality after thawing to optimize the processing
conditions in this species. Three experiments were carried out: (I) evaluation of refrigeration in straws
or tubes of 15 mL; (II) study of equilibration period (0, 30, 60, or 120 min); and (III) comparison of
four freezing techniques (liquid nitrogen vapor in a tank (C), liquid nitrogen vapor in a polystyrene
box (B), dry ice (DY), and placing straws on a solid metallic plate floating on the surface of liquid
nitrogen (MP)). For all experiments, sperm motility and kinematic parameters, acrosomal integrity,
sperm viability, mitochondrial membrane potential, and DNA integrity were evaluated after thawing.
All statistical analyses were performed by GLM-ANOVA analysis. Samples refrigerated in straws
showed higher values (p ≤ 0.05) for mitochondrial activity and lower values (p ≤ 0.05) for apoptotic
cells. Moreover, the acrosome integrity showed significant differences (p ≤ 0.05) between 0 and
120 min, but not between 30 and 60 min, of equilibration. Finally, no significant differences were
found between freezing in liquid nitrogen vapors in a tank or in a box, although there was a low
quality after thawing when the samples were cryopreserved in dry ice or by placing straws on a solid
metallic plate floating on the surface of liquid nitrogen. In conclusion, under field conditions, it would
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be possible to refrigerate the sperm samples by storing them in straws with a 120 min equilibration
period and freezing them in liquid nitrogen vapors in a tank or box.

Keywords: cryopreservation; epididymal sperm; Iberian red deer; field conditions

1. Introduction

In the last few decades, progress has been made in establishing Genome Resource Banks
(GRBs), which ensure long-term genetic preservation and variability and improve the repro-
ductive efficiency of wild species and domestic animals [1–9]. This progress is mainly due to
the development of new techniques of sperm cryopreservation, using specifical freezing media
or freezing rates, which altogether have improved sperm cryosurvival [10,11]. However, sperm
cryopreservation is a complex process that involves many factors, both cellular (e.g., shape,
size, membrane lipid composition, sperm source) and dependent on the freezing protocol (e.g.,
cooling and freezing rates or use of cryoprotectants), that may entail some risks of sperm injury
related to osmotic, biochemical, and physicochemical intracellular changes, which hinder the
storage and preservation of sperm reproductive potential [9,11–14]. Some studies have de-
scribed the influence of several factors, from the type of species [11] to methodological aspects,
such as the use of permeable and nonpermeable cryoprotective agents [6,15], cooling and
thawing techniques [16–19], and different methods of semen collection [19,20], on post-thaw
sperm viability. Thus, these studies highlight that, to ensure the survival and viability of the
spermatozoa, all factors involved in semen cryopreservation must be considered.

Lately, there has been significant interest in using artificial reproductive technologies
(ARTs) for the handling of Iberian red deer (Cervus elaphus hispanicus; Hilzheimer, 1909)
populations, not only because of their livestock and recreational hunting interest [6], but
also because they could be used as a model for other related endangered subspecies.
Notably, in wild deer populations within fenced hunting estates, inbreeding has led to
genetic isolation and has resulted in detrimental effects on some components of female
fitness and male reproductive ability [21]. In this situation, the cryopreservation of Iberian
red deer epididymal spermatozoa has offered the possibility of progressing in establishing
genetic resource banks for this species, since they can be obtained from certain types of
hunting [6,7,22–28]. Some studies have demonstrated that it is possible to obtain viable
sperm from the epididymis 24 h after death if the testis is stored at room temperature [29],
or up to 4 days if held at 5 ◦C [26]. The viability of epididymal spermatozoa has been
surprisingly high even after freezing and thawing [27]. However, although progress has
been made in the cryopreservation of deer epididymis semen, improvements are still
needed to maximize its quality after freeze–thaw protocols. This is because most of the
protocols used in the cryopreservation of the epididymis sperm have been adapted from
those used in ejaculate sperm, despite the physiological differences that these present [6].

Therefore, all semen cryopreservation factors, parameters, and phases are required
to assure sperm viability and to develop specific protocols in Iberian red deer epididymal
spermatozoa. The transport containers, diluents, storage techniques during refrigeration,
cryoprotectant agent (CPA), cooling rate, equilibration period, and freezing and thawing
protocols are the key to success in terms of sperm survival.

It has been seen that packing techniques during freezing could affect post-thaw sperm
quality in different species [30–32], and that the surface-to-volume ratio determined by the
method used seems to be decisive [33]. However, there are no studies that have evaluated
the effects of different storage methods during the refrigeration of sperm samples on their
quality.

On the other hand, the effects of the equilibration time have been studied in other
species [34,35], with a variety of results depending on the type and concentration of
the cryoprotectant [36]. The equilibration period encourages sperm membrane stability,
mainly in the acrosomal membrane, due to the adaptation of membrane lipids to cooler
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temperatures [35,37]. Thus, facilitating the movement of the penetrating cryoprotectants
through the membrane and allowing water outlet to the outside of the cell minimizes
the ice formation during the freeze–thaw process and diminishes possible damage [38].
Several studies have been conducted on semen from different species, including sheep [39],
goats [40], and cattle [41], to identify the optimum equilibrium period. Although in Iberian
red deer sperm the usual equilibration period used in freeze–thaw protocols is 120 min [6],
there is a lack of studies about the effects of different equilibration periods on the post-thaw
epididymal sperm quality in this species.

Apart from this, the effects of freezing methods on sperm quality have been widely
studied in various species, with different results among them [42]. Some studies on
ungulates have shown the effects of storage temperature on epididymal and ejaculated
semen [43,44] and the effects of the cooling rate on the freezability of Iberian red deer
sperm [6].

Most Iberian red deer samples are obtained from locations far from the laboratory and
may decrease the sperm quality before processing. A possible solution could be to perform
the freezing process in the field. However, sperm freezing requires large apparatus that
cannot be transported to the sample collection site, so the use of protocols adapted to field
conditions would be a possible solution to avoid decreasing the quality of the samples.

Bearing all this in mind, the overall objective of this work was to develop a specific
protocol for the cryopreservation of Iberian red deer epididymal spermatozoa that im-
proves the outcome and can be used under field conditions. In this regard, three different
experiments were developed: (1) to determine the effects of two storage techniques dur-
ing the cooling phase, (2) to explore the action of four equilibration periods, and (3) to
evaluate possible alternatives to the conventional method of cryopreservation in liquid
nitrogen vapors.

2. Materials and Methods
2.1. Chemicals and Solutions

Unless otherwise indicated, all the reagents were purchased from Sigma-Aldrich
(Madrid, Spain). Fluorescent stocks were prepared in DMSO, according to the specifications
of the fluorochrome, and placed in the dark at −20 ◦C until needed. The freezing extender
was split into two fractions: fraction A and fraction B. Fraction A contained Tris–citrate–
fructose and clarified egg yolk (EY 20%), and fraction B had the same composition plus
addition of permeant cryoprotector (glycerol 12%) [6]. Bovine gamete medium (BGM-
3) was composed of: 87 mmol/L NaCl; 3.1 mmol/L KCl; 2 mmol/L CaCl2; 0.4 mmol/L
MgCl2; 0.3 mmol/L NaH2PO4; 40 mmol/L HEPES; 21.6 mmol/L sodium lactate; 1 mmol/L
sodium pyruvate; 50 µg/mL kanamycin; 10 µg/mL phenol red; and 6 mg/mL BSA (bovine
serum albumin) (pH 7.5) [45].

2.2. Testes and Sperm Collection

Testes were collected from 25 Iberian red deer for each experiment. All the animals
were adults and were hunted legally during the rutting season in Castilla-La Mancha (Spain)
within the harvest plan of the game reserve according to the Spanish Harvest Regulation,
Law 2/93 of Castilla-La Mancha, which conforms to European Union regulations. The
testes were collected 6 h after slaughter and transported to the laboratory in plastic bags at
room temperature (approximately 15 ◦C). Testes were then removed from the scrotal sac,
and caudal epididymides were separated and transferred into a petri dish.

2.3. Sperm Processing and Fresh Quality Evaluation

Sperm were collected from distal epididymis according to the method described by
Soler et al. [46] and diluted in an exact volume (0.5 mL) of freezing medium fraction
A (Tris–citrate–fructose and clarified egg yolk 20%). Subsequently, sperm concentration
was assisted with a Neubauer chamber (Marienfeld, Lauda-Königshofen, Germany). In
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addition, sperm motility was assessed for each sample as described below. Only ejaculates
with sperm motility higher than 60% were cryopreserved.

2.4. Cryopreservation of Epidydimal Spermatozoa

Briefly, sperm was again diluted in a two-step procedure: first, semen was diluted to
400 × 106 spermatozoa/mL with fraction A, and then fraction B was added until achieving
a final concentration of spermatozoa (200 × 106 spermatozoa/mL) and glycerol (6%). Both
steps took place at room temperature. After dilution, the study was subdivided into three
experiments with the following experimental design (Figure 1). Experiment 1 evaluated
different storage techniques during sample refrigeration. Experiment 2 examined the effect
of different equilibration times, and Experiment 3 determined the effect of several freezing
techniques on post-thaw sperm quality.
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Figure 1. Experimental design: (C) control—samples frozen in liquid nitrogen vapors in tank; (B)
box—samples frozen in liquid nitrogen vapor in polystyrene box; (DY) dry ice—samples frozen in
dry ice inside a polystyrene box; (MP) metallic plate—samples frozen in a solid metallic plate floating
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being frozen, were also loaded in 0.25 mL plastic straws.

2.4.1. Experiment 1: Evaluation of the Spermatozoa Quality in Iberian Red Deer
Epididymal Samples Refrigerated in Collector Tubes of 15 mL or 0.25 mL straws

To determine the effects of two different storage techniques, two aliquots of each deer
were treated and diluted as described above. Once diluted, one aliquot was refrigerated in
a 15 mL collector tube immersed in water at 5 ◦C, and the other was refrigerated in a straw
immersed in water at 5 ◦C. Both samples were refrigerated for 10 min until the temperature
of 5 ◦C was reached. Then, samples were kept at this temperature for 120 min and frozen
in liquid nitrogen vapor in a tank. Note that the samples refrigerated in 15 mL collector
tubes, before being frozen, were also loaded in 0.25 mL plastic straws.
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2.4.2. Experiment 2: Effect of Different Equilibrium Times on Post-Thaw Sperm Quality of
Iberian Red Deer Spermatozoa

To evaluate several equilibration times and their effects on post-thaw spermatozoa
survival, four aliquots of every stag were treated and diluted as described above. After
dilution, samples were refrigerated at 5 ◦C for 10 min in a tube and maintained at this
temperature for 0, 30, 60, or 120 min. Then, they were loaded into 0.25 mL plastic straws
and frozen in liquid nitrogen vapor in a tank.

2.4.3. Experiment 3: Effect of Freezing Techniques on Post-Thaw Sperm Quality of Iberian
Red Deer Epididymal Spermatozoa

To search for the most suitable method under field conditions apart from a liquid
nitrogen tank, three alternative freezing techniques were evaluated. In this experiment,
four aliquots of every stag were used, and they were diluted as described above. Once
diluted, samples were cooled to 5 ◦C for 10 min in a tube and held for 120 min at this
temperature to equilibrate them. Following the equilibration period, aliquots were frozen
with different methods. Four groups were conducted within this experiment: control (C),
box (B), dry ice (DY), and metallic plate (MP). The C group was frozen by the standard
methodology (liquid nitrogen vapor in a tank) [6]. The B group was frozen by placing the
straws in a polystyrene box with liquid nitrogen, first at 4 centimeters above the liquid
nitrogen for 10 min, and then dipped in the liquid nitrogen. The DY group was placed
into a polystyrene box with dry ice inside it and maintained for 10 min directly on the
dry ice; once this period had passed, straws were submerged into the liquid nitrogen.
Finally, the MP group consisted of placing straws on a solid metallic plate floating on the
surface of liquid nitrogen for 10 min; after this period, straws were submerged into the
liquid nitrogen.

2.5. Thawing and Evaluation of Post-Thaw Spermatozoa Quality

The thawing procedure was accomplished by placing the straws in a 37 ◦C water bath
for 20 sec. Sperm motility, acrosome status, and plasma membrane integrity were assessed
for each sample to determine sperm quality in vitro.

2.5.1. Sperm Motility Assays

All samples were evaluated for sperm motility by a computer-assisted sperm analyzer
(CASA). A prewarmed (37 ◦C) Makler counting chamber (10 µm depth; Sefi Medical
Instruments, Haifa, Israel) was loaded with 5 µL of the sample. The CASA system consisted
of a trinocular optical phase-contrast microscope (Nikon Eclipse 80i, Nikon Instruments Inc,
Tokyo, Japan) and a Basler A302fs digital camera (Basler Vision Technologies, Ahrensburg,
Germany). The camera was connected to a computer by an IEEE 1394 interface. Images were
captured and analyzed using the Sperm Class Analyzer (SCA 2002) software (Microptic
S.L., Barcelona, Spain) adjusted to ram spermatozoa. The sample was examined with
a 10× objective lens (negative phase contrast) in a microscope with a heated plate, and
five areas were recorded. The following parameters were assessed: percentage of motile
spermatozoa (SM); curvilinear velocity (VCL, µm s−1); straight-line velocity (VSL, µm s−1);
average path velocity (VAP, µm s−1); linearity index (LIN, %); and amplitude of lateral
head displacement (ALH, µm).

2.5.2. Acrosomal Integrity Percentage

Acrosomal integrity was assessed by phase-contrast microscopy (Nikon Eclipse 80i,
Nikon Instruments Inc, Tokyo, Japan) with a 400× objective lens. For this purpose, 5 µL
of the diluted semen was fixed in 2% glutaraldehyde in 0.165 M cacodylate/HCl buffer at
pH 7.3 (1:20 dilution). The percentage of spermatozoa with intact acrosomes (%NAR) was
calculated by counting those with an intact apical rim. At least 100 cells of each sample
were evaluated.
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2.5.3. Assessment of Sperm Viability and Mitochondrial Activity

Analyses of sperm viability, as well as mitochondrial activity, were performed using
YO-PRO-1/propidium iodide (IP), and Mitotracker Deep Red (MT)/YO-PRO-1, respec-
tively [47]. Briefly, the samples were diluted to a concentration of 106 spermatozoa/mL
in BGM-3 solution and stained using the fluorophores. Sperm viability was assessed with
0.1 µM YO-PRO-1 (Invitrogen, Barcelona, Spain) and 10 µM PI, whereas mitochondrial
membrane potential was assessed with 0.1 µM YO-PRO-1 and 0.1 µM MT. The tubes were
left to rest for 20 min in the dark and then analyzed by flow cytometry.

The samples were run through a flow cytometer (Cytomics FC500; Becton Dickinson,
San José, California) furnished with a 488 nm Argon-Ion laser (excitation for YO-PRO-
1 and PI), and a 635 nm He–Ne laser (excitation for MT). The FSC (forward-scattered
light) and SSC (side-scattered light) signals were used to gate out debris (non-sperm
events). Fluorescence from YO-PRO-1, PI, and MT was read using a 525/25BP, 615DSP, and
675/40BP filter, respectively. All the parameters were read using logarithmic amplification.
Ten thousand spermatozoa of each sample were recorded. Flow cytometer data were
analyzed by WEASEL v2.6 (WEHI; Melbourne, Victoria, Australia) software using the
following guidelines: the YO-PRO-1-/PI- and YO-PRO-1+/PI- sperm subpopulations
were considered viable spermatozoa with an intact membrane and apoptotic spermatozoa,
respectively, and the YO-PRO-1-/MT+ sperm subpopulation was considered as live, with
active mitochondria.

2.5.4. Sperm Chromatin Assessment

Samples were diluted in TNE buffer (0.01 M Tris–HCl, 0.15 M NaCl, 1 mM EDTA, pH
7.4) to a final sperm concentration of 2 × 106 spermatozoa/mL and immediately frozen in
liquid nitrogen. Samples were stored at −80 ◦C until use. Chromatin stability was assessed
following the SCSA® (Sperm Chromatin Structure Assay; SCSA diagnostics, Brookings, SD,
USA). This test measures the percentage of sperm with fragmented DNA and the degree
of DNA damage [48]. For analysis by flow cytometry, samples were thawed in a 37 ◦C
water bath, and 200 µL of the sperm sample was submitted to a DNA denaturation step
by adding 0.4 mL of an acid–detergent solution (0.17% Triton X-100, 0.15 M NaCl, 0.08 N
HCl, pH 1.4). After 30 seconds, samples were mixed with 1.2 mL of acridine orange (AO)
solution (0.1 M citric acid, 0.2 M Na2HPO4, 1 mM EDTA, 0.15 M NaCl, 6 µg/mL AO, pH
6.0) and analyzed by flow cytometry after two and a half minutes. AO is a metachromatic
fluorochrome that shifts from green (dsDNA, double-strand) to red (ssDNA, single-strand)
depending on the degree of DNA denaturation. Samples were run through Cytomics FC500,
as described above, using the 488 nm laser and 530/28BP filter for green fluorescence and
620SP filter for red fluorescence. The DNA fragmentation index (% DFItotal) was measured
for every sample to show the amount of red emission produced by a sample regarding total
fluorescence emitted.

2.6. Statistical Analysis

All statistical analyses were performed using SPSS for Windows, version 22.0 (SYSTAT
Software Inc., Evanston, IL, USA). A generalized linear means (GLM-ANOVA) model
that included the method of refrigeration (tube or straw), equilibration time (0, 30, 60, or
120 min), and freezing methods (in liquid nitrogen vapors in a tank or box, in dry ice, or
on a metallic plate) as fixed factors and the sperm quality parameters as an independent
variable was constructed to study the significant differences in post-thaw sperm quality
parameters. Comparison of means was performed using the Bonferroni test. A p-value of
≤ 0.05 was considered statistically significant.

3. Results

The first experiment was performed to determine the effects of the storage methods
during refrigeration on sperm quality. We studied two different methods of storage: in
collector tubes or straws. As reported, no significant differences were found in NAR
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and viability (nonapoptotic) when samples were refrigerated in straws instead of 15 mL
collector tubes (Figure 2). Moreover, the DNA integrity was similar between the two forms
of refrigeration. Nonetheless, apoptotic spermatozoa and viable spermatozoa with active
mitochondria showed significant differences (p ≤ 0.05) between both treatments.
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Regarding the kinematic sperm parameters, there were no differences for VCL, VSL,
VAP, LIN, or ALH when samples were refrigerated in a tube or straw (Table 1).

Table 1. Effects of storage methods (tubes of 15 mL or 0.25 mL straws) during refrigeration of Iberian
red deer epididymal spermatozoa on kinematics parameters. Data represented as mean ± SEM.
VCL—curvilinear velocity (µm/s); VSL—rectilinear velocity (µm/s); VAP—velocity for the corrected
trajectory (µm/s); LIN—linearity (%); ALH—lateral head displacement (µm). Same letter within
columns indicate not significant differences (p ≥ 0.05).

Storage Method VCL VSL VAP LIN ALH

Tube 105.70 ± 9.06 a 32.52 ± 4.97 a 64.12 ± 9.94 a 30.49 ± 3.51 a 4.28 ± 0.45 a

Straw 110.63 ± 21.00 a 32.63 ± 4.97 a 66.97 ± 13.91 a 30.04 ± 3.55 a 4.49 ± 0.83 a

In the second experiment, the same sperm parameters were studied according to dif-
ferent equilibration periods at 5 ◦C (0, 30, 60, and 120 min). No significant differences were
found in SM, viability (nonapoptotic), apoptotic spermatozoa, viable spermatozoa with
active mitochondria, and DNA integrity for 0, 30, 60, and 120 min (Figure 3). Nevertheless,
NAR showed significant differences (p ≤ 0.05) between 0 and 120 min, with higher values
for the longest refrigeration time. Moreover, 120 min of refrigeration yielded values of
VSL and VAP higher in relation to 30 or 60 min of refrigeration or bypassing this process
(Table 2).
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Figure 3. Effect of different equilibration times on the quality of thawed Iberian red deer epididymal
spermatozoa. Sperm parameters were assessed for different equilibration times (0, 30, 60, and 120 min-
utes). Data represented as mean ± SEM. SM—sperm motility index (%); NAR—acrosome integrity
(%); viable (nonapoptotic) spermatozoa (%); apoptotic spermatozoa (%); viable spermatozoa with
active mitochondria (%); DFI—DNA fragmentation index (%). Different letters indicate significant
differences between equilibration times (p ≤ 0.05).

Table 2. Effects of different equilibration times (0, 30, 60, and 120 minutes) on sperm motility CASA
parameters of Iberian red deer epididymal spermatozoa. Data represented as mean ± SEM. VCL—
curvilinear velocity (µm/seg); VSL—rectilinear velocity (µm/seg); VAP—velocity for the corrected
trajectory (µm/seg); LIN—linearity (%); ALH—lateral head displacement (µm). Different letters
within columns indicate significant differences (p ≤ 0.05).

Equilibration
Time VCL VSL VAP LIN ALH

0 min 73.43 ± 4.18 a 22.48 ± 1.21 a 44.22 ± 2.82 a 31.08 ± 1.14 a 3.16 ± 0.16 a

30 min 82.36 ± 4.18 a 25.54 ± 1.21 a 51.18 ± 2.82 a 30.20 ± 1.14 a 3.43 ± 0.16 a

60 min 86.39 ± 4.27 a 26.91 ± 1.23 a 54.71 ± 2.88 a 30.49 ± 1.16 a 3.54 ± 0.16 a

120 min 85.59 ± 4.18 a 28.19 ± 1.21 b 55.42 ± 2.82 b 31.92 ± 1.14 a 3.46 ± 0.16 a

Finally, different freezing techniques were assessed to evaluate their effect on post-
thaw sperm quality. No significant differences were found in SM and NAR for C and B
(Figure 4). Nevertheless, SM and NAR showed significant differences (p ≤ 0.05) between
these treatments and the remaining two groups (DY and MP), with the lowest values
for MP. Concerning viability, apoptotic spermatozoa, and viable spermatozoa with active
mitochondria, no significant differences were found between C, B, and DY, although these
treatments were different (p ≤ 0.05) to MP, with the lowest values for this freezing method
(Figure 4). However, the DNA integrity was not affected by the freezing procedure, with
similar values between treatments.

In the same way as for the other sperm parameters, VCL, VSL, VAP, and ALH showed
lower (p ≤ 0.05) values for the MP freezing method compared to C, B, and DY (Table 3).
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Figure 4. Effect of freezing techniques on post-thaw sperm quality in Iberian red deer epididymal
spermatozoa. C (control—liquid nitrogen vapor in a tank), B (box—polystyrene box with liquid
nitrogen inside), DY (dry ice—polystyrene box with dry ice inside), and MP (metallic plate—solid
metallic plate floating on the surface of liquid nitrogen). Data represented as mean ± SEM. SM—
sperm motility (%); NAR—acrosome integrity (%); viable (nonapoptotic) spermatozoa (%); apoptotic
spermatozoa (%); viable spermatozoa with active mitochondria (%); DFI—DNA fragmentation index
(%). Different letters indicate significant differences between freezing methods (p ≤ 0.05).

Table 3. Effects of different freezing techniques on kinematics parameters of Iberian red deer epididy-
mal spermatozoa. C (control—liquid nitrogen vapor in a tank), B (box—polystyrene box with liquid
nitrogen inside), DY (dry ice—polystyrene box with dry ice inside), and MP (metallic plate—solid
metallic plate floating on the surface of liquid nitrogen). Data represented as mean ± SEM. VCL—
curvilinear velocity (µm/seg); VSL—rectilinear velocity (µm/seg); VAP—velocity for the corrected
trajectory (µm/seg); LIN—linearity (%); ALH—lateral head displacement (µm). Different letters
within columns indicate significant differences (p ≤ 0.05).

Freezing
Technique VCL VSL VAP LIN ALH

C 105.70 ± 9.06 a 32.52 ± 4.97 a 64.12 ± 9.94 a 30.49 ± 3.51 a 4.28 ± 0.45 a

B 103.15 ± 17.74 a 32.18 ± 4.71 a 64.12 ± 9.94 a 30.93 ± 2.25 a 4.18 ± 0.79 a

DY 92.60 ± 15.42 a 28.59 ± 3.82 a 59.11 ± 9.44 a 30.42 ± 2.48 a 3.77 ± 0.60 a,b

MP 54.24 ± 28.46 b 15.97 ± 7.81 b 31.12 ± 16.84 b 28.86 ± 4.47 a 2.44 ± 1.05 b

4. Discussion

Given that a suitable freezing protocol for Iberian red deer epididymal spermatozoa
under field conditions has not yet been published, this study focused for the first time on
evaluating the effects of different storage methods during refrigeration, different equilibra-
tion times, and different freezing techniques on the quality of epididymal spermatozoa
after thawing. All this was carried out with the aim of improving and simplifying the
freezing conditions of epididymal spermatozoa in this species under field conditions.

In this way, Experiment 1 showed that refrigeration in straws seems to be associated
with higher levels of viable spermatozoa with active mitochondria and a significantly lower
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percentage of apoptotic cells in post-thaw samples. These findings align with previous
studies in other species, in which a lower volume of the samples packed before refrigeration
improved the motility parameters and fertility [31]. A lower sample volume could result
in more contact with the refrigerant and with all the cryoprotective components (e.g., egg
yolk, EDTA, citrate), allowing the homogeneous and rapid cooling of the sample [6,49]. A
correct cooling rate enables cells to adapt to temperature changes, reducing the injuries
originated by cold shock. It is known that spermatozoa are very sensitive to a rapid
reduction in temperature from 25 to 5 ◦C, which induces stress in the membranes related
to a reorganization of phospholipids and proteins [6,18,50,51]. This alters their functional
status and permeability, affecting the function of ion channels, producing reactive oxygen
species (ROS), and altering the potential of the mitochondrial membrane [11,52]. Therefore,
cooling the samples in straws instead of tubes could minimize damage to the sperm
during freezing and would also greatly facilitate the development of a freezing protocol for
epididymal sperm samples in the field, where it is more complex to use cooling chambers
at 5 ◦C to pack the straws after the cooling process.

Besides this, in Experiment 2, different equilibration times were studied to simplify
procedures. During the equilibration time, the period following the cooling stage, sperm
membranes are stabilized at 5 ◦C to minimize cold injuries. This is possible because this
period allows water to exit and facilitates the entrance of permeable cryoprotectants (e.g.,
glycerol), which exert their cryoprotective effect on the sperm [35,51–53]. In several studies
of other species, an association has previously been found between an average equilibration
time (2–4 h) and the preservation of the motility and integrity of sperm membranes [52–56].
However, there are no published studies regarding different durations of this stage and
their effect on the thawing of Iberian red deer epididymal spermatozoa, with the most
frequently used equilibrium time being 120 min [6,26]. In the present study, there were
differences in the NAR percentage between samples with no equilibration time and those
kept at 5 ◦C for 120 min, but not between the middle length periods (30 and 60 min) and
the 120 min group. Thus, even though there were no significant differences between the
middle groups, we could observe that all these parameters tended to be better when an
equilibration time was applied. Moreover, the longer equilibration time showed higher
values for VSL and VAP. This shows that in Iberian red deer, a long equilibration time may
be essential to ensure epididymal sperm viability, regardless of its duration.

Similarly, other research studies in Gyr bulls [57] obtained better post-thawing sperm
quality when implementing an equilibration period, no matter its length. This apparent
cryoresistance of the epididymal spermatozoa may be due to their morphological and
biophysical properties in their lipid membrane compared to ejaculated spermatozoa, as
well as their smaller size [1,8,58]. The latter would imply a higher osmotic tolerance
by the epididymal spermatozoa, due to a lower water volume, facilitating the flow of
cryoprotectants and water during shorter equilibrium times [8].

Finally, the last factor we assessed in this study was the freezing methodology, to
facilitate its development under field conditions. To date, no study has evaluated different
freezing techniques for Iberian red deer epididymal sperm, for which the methods used are
adapted from sheep and goats [59]. In these species, the conventional techniques widely
used are based on nitrogen vapor freezing, in which samples are suspended in nitrogen
vapor for approximately 15 min (with the cooling speed being on average 16–25 ◦C/min)
and then rapidly immersed in liquid nitrogen at −196 ◦C for storage [6,60]. Studies in
some wild ruminant species such as mouflon and fallow deer have shown promising
results in semen thawing using this methodology compared to other ultrarapid freezing
techniques [8,61]. Herein, we compared three alternative freezing methods (B, DY, and MP)
using the same semen sample packaging conditions (plastic straws) as the conventional
nitrogen vapor freezing in a tank. The results showed that only the metallic plate method
(MP) obtained significantly worse outcomes in post-thaw semen quality (see Figure 4). This
lower sperm quality in the MP procedure may be due to the high conductivity of the metal,
which would determine a faster loss of cold compared to other materials. In addition, the
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fact that the straws were placed directly on the metal plate would have led to a high cooling
rate on the side in direct contact with the plate and a much lower cooling rate on the top
side, which was not in direct contact. Therefore, no homogenous freezing would occur [62].

In contrast, the polystyrene-box-frozen samples gave comparable results without
significant differences to the control group (C), which could make them a suitable alternative
to tank-freezing with liquid nitrogen. Some studies have reported similar results between
dry ice and nitrogen vapor liquid [63]. It should be said that, despite the recent interest in
ultrafast freezing techniques, also known as vitrification techniques, as they are easy to
perform and low-cost, they have not been considered in the deer species. This is not only
because of the significant effect that high concentrations of cryoprotectants have on the post-
thaw quality of the sperm [8,62,64], but also because they are not very profitable. In most
cases, the vitrification techniques involve freezing a small volume of semen, which requires
more advanced reproductive techniques such as ICSI, which needs only one spermatozoon
per oocyte to be fertilized. On the other hand, in most wild ruminant species, such as the
Iberian red deer, artificial insemination (AI) and in vitro fertilization (IVF) are the most
frequently used reproductive techniques, which require a larger volume of semen sample
for their execution. For this reason, we thought that freezing in a polystyrene box would
present some advantages, as it requires a material that can be handled in field conditions,
which facilitates the preservation of sperm samples collected outside the laboratory for
species where vitrification is not an option or needs to be optimized.

5. Conclusions

Typically, the collection and processing of Iberian red deer sperm samples are carried
out on captured males under field conditions. In this work, we introduce variations to the
standard technique to develop a specific protocol that is both easy to develop under field
conditions and preserves sample quality. The best conditions, according to our findings,
were: (1) storing samples in straws prior to refrigeration, as it minimizes cell damage
due to temperature fluctuations; (2) considering a long equilibration time for the samples;
(3) freezing samples in liquid nitrogen vapors using a polystyrene box, which has some
advantages, as it is cheaper and more manageable. Thus, the protocol established can
be improved and made more specific and more appropriate for application under field
conditions, which would ultimately help establish a Genome Resource Bank for deer
species, making possible not only the genetic improvement of the Iberian red deer but also
the preservation of other related endangered subspecies.
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