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Non-Gaussian entanglement swapping between three-mode spontaneous parametric
down-conversion and three qubits
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In this work we study the production and swapping of non-Gaussian multipartite entanglement in a setup
containing a parametric amplifier which generates three photons in different modes coupled to three qubits. We
prove that the entanglement generated in this setup is of non-Gaussian nature. We introduce witnesses of genuine
tripartite non-Gaussian entanglement, valid for both mode and qubit entanglement. Moreover, those witnesses
show that the entanglement generated among the photons can be swapped to the qubits, and indeed the qubits
display non-Gaussian genuine tripartite entanglement over a wider parameter regime, suggesting that our setup
could be a useful tool to extract entanglement generated in higher-order parametric amplification for quantum
metrology or quantum computing applications.
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I. INTRODUCTION

Entanglement is the key ingredient to most quantum tech-
nologies being designed today, ranging from teleportation
[1–3] to boson sampling [4] and in general any quantum
computational scheme. Therefore, plenty of present-day lit-
erature deals with how to generate entanglement, and a very
fruitful paradigm at that is parametric amplification. Take, for
example, its role as a primitive ingredient in the recent claim
on boson sampling quantum advantage [5].

The first instances of quantum parametric amplifiers date
back to the 1980s [6,7] in the setting of outperforming quan-
tum measurements with single-mode squeezing. Then, in that
same decade, it was discovered that parametric amplification
could pump energy in two modes at once, leading to the gener-
ation of two-mode squeezing [8], perhaps the simplest form of
continuous-variable (CV) entanglement [9]. During the past
five years, some of us have predicted that such two-mode
squeezing can be used to entangle three modes in a genuinely
tripartite way by applying the process to two pairs at once
[10,11], a prediction that has been experimentally validated
[12]. We denominate this process double two-mode sponta-
neous parametric down-conversion (2-2SPDC). In a recent
work [13], we predicted that a similar process experimentally
demonstrated in [14], capable of generating three photons
on different modes at once, 3SPDC, produces genuine tri-
partite entanglement too. In order to experimentally detect
2-2SPDC entanglement, inspection of the covariances of the
field quadratures was enough, whereas the 3SPDC entangle-
ment requires inspecting higher statistical moments.

As entanglement generation has become a well-established
technology, produced in countless laboratories around the
globe, still interesting theoretical questions remain open.

*soyandres2@gmail.com

Take, for example, the inequivalent entanglement of the three-
qubit W and Greenberger-Horne-Zeilinger (GHZ) states [15].
Those states are entangled in a tripartite way and yet they
cannot be converted into each other by means of stochas-
tic local operations and classical communication (SLOCC).
A generalization of this result to general discrete-variable
(DV) d-level systems has been proposed recently [16], and
the generalization to n qubits is still incomplete, although
we know that there have to be infinitely many SLOCC
classes for N > 3 [15], which therefore have to be gathered
into some finite number of entanglement families (which
proves to be a formidable task even for N=4 [17–20]) whose
physical meaning is not always transparent. Furthermore, ex-
tensions of the above results to mixed states (even for three
qubits) or to continuous variables beyond Gaussian states
remain as open problems. A physically meaningful criterion
to classify quantum entanglement, valid in principle both
for CV and DV systems and for pure and mixed states,
might be the distinction between gaussian and non-Gaussian
entanglement. Besides the theoretical interest, non-Gaussian
entanglement provides also technological advantages, for in-
stance, in quantum metrology [21,22] or quantum computing
applications [23].

In [13] we found that the states generated by 2-2SPDC
and 3SPDC processes have different types of entanglement,
suggesting some sort of continuous-variable equivalence with
the three-qubit W and GHZ classes. In this work we formalize
this insight as well as analyze the swapping of entanglement
from 3SPDC to three qubits. In particular, we provide formal
definitions to Gaussian and non-Gaussian entanglement and
prove both the Gaussianity of 2-2SPDC entanglement and the
non-Gaussianity of the 3SPDC entanglement, finding similar-
ities and differences between GHZ and W classes.

Moreover, we propose an experimental setup in which
3SPDC non-Gaussian entanglement can be swapped to three
qubits. An asymmetric superconducting quantum interference
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device (SQUID) generating 3SPDC is coupled to three sep-
arate resonators, each containing a coupled superconducting
qubit. We show that the entanglement generated among the
qubits is also of non-Gaussian nature, by using a natural
extension of our CV entanglement witness which accom-
modates DV systems. Interestingly, we detect non-Gaussian
qubit entanglement in a wider parameter regime (as compared
to mode entanglement) which suggests that the swapping to
qubits could be an efficient way of extending the technological
usefulness of 3SPDC entanglement.

The structure of this work is as follows. First we introduce
the notions of Gaussian and non-Gaussian entanglement in
such a way that they may be applied to both CV and DV sys-
tems and pure and mixed states. Then we relate these notions
to the widely known W and GHZ states. After that, we present
arguments that can be used to prove the non-Gaussianity of the
entanglement contained in a state and we will apply them to
our three-mode 3SPDC system in the presence of three qubits,
each interacting with a bosonic mode. We will obtain proof of
the tripartite non-Gaussianity of the field’s state as well of the
qubits’. Finally, some concluding remarks and future research
directions will be presented.

II. NON-GAUSSIAN ENTANGLEMENT

We start with a description of non-Gaussian entanglement.
The term is coined after the Gaussian states of quantum optics,
those states represented by Wigner functions that happen to be
Gaussians of the canonical variables.

Detecting entanglement in an experiment often involves
measuring some witness, namely, a combination of expecta-
tion values of observables that is bounded by some constant
for states that do not possess the kind of entanglement con-
sidered. An entanglement witness is Gaussian if its algebraic
expression contains only linear and quadratic contributions of
the canonical variables. That way, the witness is only sensitive
to the means and (co)variances of a multipartite wave function
or Wigner quasidistribution. If higher powers of the canoni-
cal variables appear in the witness or the witness cannot be
brought into an algebraic formula of the canonical variables,
then it is non-Gaussian.

The characterization of the entanglement of Gaussian
states is well known [24]. Any entanglement in a Gaus-
sian state will be detected by a Gaussian witness; thus a
Gaussian state can only contain Gaussian entanglement. How-
ever, a non-Gaussian state might have the same mean and
covariances of the canonical variables as some separable
Gaussian state [13]. Then its entanglement would not be de-
tected by a Gaussian witness and so it would be non-Gaussian
entanglement. Finally, we can extend the concept of Gaussian-
ity to DV systems, by replacing any reference to canonical
variables with spin variables.

Interestingly, the concepts of Gaussian and non-Gaussian
entanglement can be related with the two main representatives
of tripartite qubit entanglement, the W and GHZ states. The
W entanglement is Gaussian, since it can be detected by
a Gaussian witness [25], while GHZ entanglement is non-
Gaussian, since we can, for instance, find a state that contains
no entanglement and yet has the same means and covariances

on the spin variables as the GHZ state:

ρmimic GHZ

= 1
12 (|01〉〈01| + |11〉〈11|) ⊗ (|0203〉〈0203| + |1213〉〈1213|)
+ 1

12 (|02〉〈02| + |12〉〈12|) ⊗ (|0103〉〈0103| + |1113〉〈1113|)
+ 1

12 (|03〉〈03| + |13〉〈13|) ⊗ (|0102〉〈0102|+|1212〉〈1212|),
where |0i〉 is the ground state of the ith qubit and |1i〉 its
excited state. Both the GHZ state and ρmimic GHZ have the same
first and second statistical moments of the spin variables〈

Si
x

〉 = 0,
〈
Si

y

〉 = 0,
〈
Si

z

〉 = 0,

�2Si
xS j

x = 0, �2Si
yS j

y = 0, �2Si
zS

j
z = 1

4 ,

where the spin variables are defined by Si
z|0i〉 = −1/2|0i〉 and

Si
z|1i〉 = 1/2|1i〉 and the angular momentum algebra.

III. NON-GAUSSIANITY OF ENTANGLEMENT IN 3SPDC
RADIATION

The 3SPDC process studied in [14] takes place in a system
composed of three bosonic modes subject to time-dependent
boundary conditions, implemented by means of a SQUID,
which behaves as a tunable nonlinear inductor at the edge of a
superconducting waveguide. The SQUIDs inductance is mod-
ulated with the sum of the characteristic frequencies of the
three modes, producing an effective three-mode interaction
described by

H3SPDC RWA =
3∑

i=1

ωia
†
i ai + g0 cos ωdt (a†

1a†
2a†

3 + a1a2a3),

where ω1, ω2, and ω3 are the modes’ characteristic frequen-
cies, a†

i and ai are the creation and annihilation operators on
the ith mode, respectively, g0 is the intensity of the coupling
between the modes, and ωd is the driving to the SQUID,
which is equal to

∑
i ωi. Note that the rotating-wave approx-

imation (RWA) was performed in order to illustrate the main
process induced by this Hamiltonian: parametric creation or
destruction of triplets of photons, one on each mode. The
Hamiltonian is actually an approximation of a more general
Hamiltonian

H3SPDC =
3∑

i=1

ωia
†
i ai

+ g0 cos ωdt (a†
1 + a1)(a†

2 + a2)(a†
3 + a3),

which will be the one that we will study throughout the
text. We use this Hamiltonian for the sake of completeness,
although the RWA Hamiltonian above would suffice to ob-
tain the main results of this work and is generally valid
under experimental conditions. However, using the general
Hamiltonian allows us not to be concerned with the regime
of validity of the RWA. Before we begin proving the non-
Gaussian nature of the entanglement produced among the
three modes, we will extend the system with three qubits,
each one interacting with one mode. This modification is of
interest because it paves the way to experimental production
of non-Gaussian entanglement in both CV systems (the re-
duced state of the three modes) and DV systems (the qubits).
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FIG. 1. Illustration of the system composed of three transmission
lines (depicted as solid meandering lines) that meet at an asymmetric
SQUID (loop with boxes, that is, Josephson junctions, at the sides).
Each one of those transmission lines interacts with a transmon qubit
(colored zippers, not to scale). Control lines have been omitted.
If pumped with the appropriate tone, the asymmetric SQUID will
drive three-mode spontaneous parametric down-conversion among
the three fundamental modes of the transmission lines. Non-Gaussian
tripartite entanglement will be produced between the modes as
proved in Eq. (5) and Fig. 2 for some parameter regimes. Addi-
tionally, non-Gaussian tripartite entanglement will be swapped to
the qubits, as proved in the text and Fig. 3. We show labels for the
parameters that appear in the Hamiltonian (1) for reference.

Such a technological platform could ground our theory on ex-
perimental data and additionally find technical applications as
the primitive for generation of tripartite entanglement between
CV or DV systems.

When the three qubits are taken into account, the total
Hamiltonian becomes

H3SPDC+3qubits =
3∑

i=1

ωia
†
i ai + �i

2
σz,i + giσx,i(a

†
i + ai )

+ g0 cos ωdt (a†
1 + a1)(a†

2 + a2)(a†
3 + a3),

(1)

where σx,y,z,i are the Pauli matrices for the ith qubit and gi

is the intensity of its coupling to the respective mode. Note
that the qubit-mode interaction takes the form of the Rabi
interaction. An experimental setup that could be effectively
modeled with Eq. (1) is described in Fig. 1. It is composed
of three superconducting cavities joined together from one of
their edges [26–28]. At that meeting point lies an asymmetric
SQUID driven with a single tone of frequency ωd = ∑

i ωi.
In order to prove the non-Gaussianity of the entanglement

produced by the Hamiltonian in Eq. (1) when evolving the
initial vacuum state |0g0g0g〉, where |0〉 is the mode vacuum
state and |g〉 is the qubit ground state, we will examine the
time derivatives of the quadratures and spin covariances, by
making use of the condition

ih̄∂t�
2OiOj = 0

⇔
〈[OiOj, H]〉 = 〈Oi〉〈[Oj, H]〉 + 〈[Oi, H]〉〈Oj〉, (2)

where Oi and Oj are canonical or spin variables, H is the
Hamiltonian of the system and �2OiOj is the covariance
between the measurements of Oi and Oj , that is, 〈OiOj〉 −

〈Oi〉〈Oj〉. Equation (2) is easily derived from the Heisenberg
equation of motion. See Appendix A for further notes on its
derivation. Using the Hamiltonian in Eqs. (1) and (2), we have

∂t�
2xix j =

〈
xi p j

mj
+ x j pi

mi

〉
− 〈xi〉

〈
p j

mj

〉
−

〈
pi

mi

〉
〈x j〉,

∂t�
2 pi p j = −〈

mjω
2
j pix j + miω

2
i xi p j

〉
− ih̄〈g jσx j pi + giσxi p j〉
− ĝ(t )〈pixixk + x j p jxk〉
+ 〈

miω
2
i xi + giσxi + ĝ(t )x jxk

〉〈p j〉
+ 〈

mjω
2
j x j + g jσx j + ĝ(t )xixk

〉〈pi〉,
∂t�

2SxiSx j = �i
〈
σ i

xσ
j

y

〉 + � j
〈
σ i

yσ
j

x

〉
,

∂t�
2SyiSy j = � j

〈
σ i

yσ
j

x

〉 + �i
〈
σ i

xσ
j

y

〉
,

∂t�
2SziSz j = g j

2

〈
σ i

z x jσ
j

y

〉 + gi

2

〈
xiσ

i
yσ

j
z

〉
, (3)

where xi and pi are the quadratures of the ith mode and Sx,y,z,i

are the analogous angular momentum operators along the x,
y, and z axes for the ith qubit. For a detailed derivation of
the covariances time derivatives see Appendix B. In order to
tackle Eq. (3) we consider the projector

P =
1∑

α,β=0

3⊗
i=1

∞∑
n=0

Pi(2n + α) ⊗ Pi,2×2(β ), (4)

where Pi(n) = |n〉〈n| is the projector onto the bosonic mode
state with n photons or excitations and Pi,2×2(q) is |g〉〈g| if
q = 0, the projector onto the qubit ground state, or |e〉〈e|
if q = 1, the projector onto the qubit excited state. We find
that this projector is a conserved quantity of the system.
Consider the following motivation behind its definition: The
Hamiltonian in Eq. (1) allows for some transitions between the
stationary Hamiltonian eigenstates. In particular, it allows for
transitions that change all three modes in one photon (via the
3SPDC process) as well as transitions changing a qubit-mode
pair in one excitation (that is, any combination of creating
or destroying a photon while exciting or relaxing the qubit).
However, there are many other transitions that are not allowed:
creating or destroying a pair of photons but not a third one,
spontaneously exciting or relaxing a qubit without changing
photon number, and so on. Then P is built to project onto all of
the eigenstates the vacuum can transition to, while excluding
those the vacuum cannot leak into. For further information
about the derivation of P, as well as proof of how it commutes
with the Hamiltonian, see Appendix C. The expectation value
of P for the initial state |0g0g0g〉 is 1. Therefore, the time
evolution of |0g0g0g〉 will never leave the subspace P projects
onto, which we denote the dynamical subspace,

ψ (t ) =
1∑

α,β=0

3⊗
i=1

∞∑
n=0

cα,β,i,n(t )|2n + α〉 ⊗ |β〉.

With this we can evaluate many of the expectation values
in the covariances time derivatives in Eq. (3). In particular,
all time derivatives become zero, except for the �2Sz,iSz, j
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FIG. 2. Value of the witness GCV defined in Eq. (6) as a function
of time t and 3SPDC coupling g0 in units of the lowest-frequency
mode ω1 when the initial state |0g0g0g〉 evolves under the Hamil-
tonian in Eq. (1). The other mode frequencies are ω2 = 2ω1 and
ω3 = ω1. The qubits are resonant with their modes so that �i = ωi

and their couplings are all equal gi = 0.01ω1. The witness reports
non-Gaussian entanglement in the modes, that is, it is greater than
zero, for short times. Note that entanglement is 0 at t = 0.

covariance

∂t�
2xix j = 0,

∂t�
2 pi p j = 0,

∂t�
2SxiSx j = 0,

∂t�
2SyiSy j = 0,

∂t�
2Si

zS
j
z = g j

2

〈
σ i

z x jσ
j

y

〉 + gi

2

〈
xiσ

i
yσ

j
z

〉 �= 0. (5)

Therefore, the reduced state of the three modes cannot con-
tain Gaussian entanglement: It has the same covariances as a
clearly separable state, the vacuum |000〉, but the state gets
entangled with time, as we proved in [13] for the qubitless
system. In that work we built a genuine tripartite entanglement
witness defined as

G′
CV = |〈a1a2a3〉| −

∑
i, j,k=1,2,3
i �= j �=k �=i

√
〈a†

i ai〉〈a†
j a ja

†
kak〉,

so that when G′
CV > 0, genuine tripartite entanglement is de-

tected. In fact, since the publication of [13] we have found an
improved witness

GCV = |〈a1a2a3〉| − max
i, j,k=1,2,3
i �= j �=k �=i

√
〈a†

i ai〉〈a†
j a ja

†
kak〉 (6)

by following the derivation in [13] and making use of the fact
that the expectation values of a mixed state cannot be larger
than the largest of its pure components. Figure 2 shows the
value of the genuine tripartite entanglement witness GCV for
different times and 3SPDC coupling strength. We conclude
that the field contains non-Gaussian entanglement at times not
much longer than g0t = 1. For longer times, all we know is
that Gaussian witnesses will fail, but if there is any entangle-
ment in the modes non-Gaussian witnesses might succeed.

FIG. 3. Value of the witness GDV defined in Eq. (7) as a function
of time t and 3SPDC coupling g0 in units of the lowest-frequency
mode ω1 in the same conditions as in Fig. 2. The witness reports
non-Gaussian entanglement in the qubits, that is, it is greater than
zero, for a broad parameter regime. Note that entanglement is 0
at t = 0.

IV. NON-GAUSSIAN THREE-QUBIT ENTANGLEMENT

The nature of the three-qubit entanglement is however
more difficult to determine: Since the z covariances do change
in time we need to answer the question of whether or not a
Gaussian witness exists that uses only the z spin covariances.
We find that the answer is no, and therefore the qubit entan-
glement, if there is any, is non-Gaussian too. See Appendix D
for a proof.

In order to detect whether there is actually entanglement,
we need a suitable non-Gaussian entanglement witness. The
same proof [13] that leads to the construction of GCV in CV
systems can be extended to a DV witness by replacing the
canonical variables with spin variables

GDV = |〈σ−
1 σ−

2 σ−
3 〉| − max

i, j,k=1,2,3
i �= j �=k �=i

√
〈σ+

i σ−
i 〉〈σ+

j σ−
j σ+

k σ−
k 〉,

(7)

which works as GCV but in DV systems; it reports genuine
tripartite entanglement whenever GDV > 0. Figure 3 shows
the value of GDV for different times and 3SPDC coupling
strengths. We conclude that the qubits are indeed entangled
in a non-Gaussian way for a broad parameter regime. Indeed,
it seems that the qubits are entangled in a wider regime of pa-
rameters, suggesting that swapping the entanglement from the
photons to the qubits could be a way to exploit the multipartite
entanglement generated in 3SPDC radiation. However, notice
that there could be other witnesses detecting entanglement
where ours fails. Note also that, as usual, an entanglement
witness only tells us about the existence of entanglement,
not necessarily its degree, which would require the use of an
entanglement measure.

V. CONCLUSION AND OUTLOOK

In summary, we have presented a setup in which three
qubits are coupled to a 3SPDC source. We have shown that
there is genuine tripartite entanglement generated both among
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the three modes of the electromagnetic field and among the
qubits. Moreover, we have proved the non-Gaussian nature of
this entanglement, as well as that of the GHZ state, suggesting
that Gaussianity might be an extension to CV and mixed states
of the W and GHZ classes. We have introduced witnesses
of genuine tripartite entanglement for both the field and the
qubits. Interestingly, in the case of the qubits, entanglement
is detected for a wider regime of parameters, which suggests
that our setup could provide an efficient way of exploiting the
genuine non-Gaussian multipartite entanglement generated in
3SPDC interactions. In particular, qubits with non-Gaussian
entanglement display useful properties for quantum metrol-
ogy and quantum computing applications.
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APPENDIX A: DYNAMICS OF STATISTICAL MOMENTS

In this Appendix we will derive the expression for the time
derivatives of the canonical and spin variable covariances. We
will be particularly interested in the cases when the moments
are constant. If that is the case, Gaussian entanglement cannot
be generated. We start with the Heisenberg equation of motion

ih̄∂t O(t ) = [O(t ), H (t )], (A1)

which immediately yields expressions for the time derivatives
of the first-order statistical moments, the means

ih̄∂t 〈O〉 = 〈[O(t ), H (t )]〉. (A2)

In order to derive a similar expression for second-order statis-
tical moments, that is, variances and covariances, we follow a
similar approach. We recall the definition of the covariances
of two observables Oi and Oj ,

�2OiOj = 〈OiOj〉 − 〈Oi〉〈Oj〉,
and by taking its time derivative we arrive at

ih̄∂t�
2OiOj=〈[OiOj, H]〉−〈Oi〉〈[Oj, H]〉 − 〈Oj〉〈[Oi, H]〉.

This equation gives us conditions systems must follow in
order not to generate or destroy Gaussian entanglement

ih̄∂t�
2OiOj = 0

⇔
〈[OiOj, H]〉 = 〈Oi〉〈[Oj, H]〉 + 〈[Oi, H]〉〈Oj〉. (A3)

Note that if the averages of Oi and Oj are zero, then the
condition states that in order not to change the covariances, the
operator OiOj must be a conserved quantity in the subspace
spanned by the state during all that time.

Summarizing, we have obtained expressions for the time
derivatives of the means and covariances of general ob-
servables. Those equations led to Hamiltonian conditions in
Eq. (2) that will tell when the covariances (and Gaussian

entanglement) are constant in a particular system. We will
consider particular Hamiltonians in the calculations to come.

APPENDIX B: DERIVATION OF THE COVARIANCES’
TIME DERIVATIVES

In this Appendix we will take Hamiltonian in Eq. (1) and
compute the covariances’ time derivatives as instructed by
Eq. (2). Note that the Hamiltonian can be written in terms of
the canonical and spin variables alone

H =
3∑

i=1

[
p2

i

2mi
+ 1

2
miω

2
i x2

i + �Si
z

]

+ ĝ0 cos

(∑
i

ωit

)
x1x2x3 +

3∑
i=1

giσ
i
xxi.

Then the field’s position covariances have the time derivatives

[xi, H] = 1

2mi
[xi, p2

i ]

= 1

2mi
([xi, pi]pi + pi[xi, pi])

= ih̄

mi
pi,

[xix j, H] = xi[x j, H] + [xi, H]x j

= ih̄

(
xi p j

mj
+ x j pi

mi

)
,

∂t�
2xix j =

〈
xi p j

mj
+ x j pi

mi

〉
− 〈xi〉

〈
p j

mj

〉
−

〈
pi

mi

〉
〈x j〉. (B1)

For the momentum’s covariances

[pi, H] = miω
2
i

2

[
pi, x2

i

] + giσxi[pi, xi] + ĝ(t )[pi, x1x2x3]

= −ih̄miω
2
i xi − ih̄giσxi

− ih̄ĝ(t )x jxk with i �= j �= k �= i,

[pi p j, H] = pi[p j, H] + [pi, H]p j

= −ih̄
(
mjω

2
j pix j + miω

2
i xi p j

)
− ih̄(g jσx j pi + giσxi p j )

− ih̄ĝ(t )(pixixk + x j p jxk ),

which results in a time derivative of the momenta’s
covariances

∂t�
2 pi p j = −〈

mjω
2
j pix j + miω

2
i xi p j

〉
− ih̄〈g jσx j pi + giσxi p j〉
− ĝ(t )〈pixixk + x j p jxk〉
+ 〈

miω
2
i xi + giσxi + ĝ(t )x jxk

〉〈p j〉
+ 〈

mjω
2
j x j + g jσx j + ĝ(t )xixk

〉〈pi〉. (B2)

The conditions derived in Eq. (2) not only apply to
continuous-variable systems, but discrete ones as well. By
plugging the spin variables Si

x, Si
y, and Si

z and the Hamiltonian
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in Eq. (1) we derive

∂t�
2Si

xS j
x = �i

〈
σ i

xσ
j

y

〉 + � j
〈
σ i

yσ
j

x

〉
,

∂t�
2Si

yS j
y = � j

〈
σ i

yσ
j

x

〉 + �i
〈
σ i

xσ
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〉
.

APPENDIX C: CONSERVED QUANTITIES

In this Appendix we provide proof of the conserved quan-
tity P in Eq. (4). Note that P projects onto the subspace that
contains every eigenstate with the same parity of qubit plus
photon excitation on each pair of qubits and modes. That
is, for every eigenstate in that subspace, the addition of the
number of photons on the first mode plus the number of
excitations on the first qubit (that is, zero for |g〉 or one for
|e〉) will always be the same as the addition of the number of
photons and qubit excitations in the second qubit-mode pair.
The same happens with the third qubit-mode pair. In order
to gain some insight into why that particular projector is a
conserved quantity, we will first argue for its construction
with perturbation theory. Then an actual proof calculating
the commutator with the Hamiltonian is provided. Finally,
we will compute some elementary expectation values within
the image of P that happen to appear in the covariances’ time
derivatives.

1. Construction of a conserved quantity

We will begin with the first-order perturbative corrections
to the time evolution of H3SPDC+3qubits

ψ (1)(t ) = 1

ih̄

∫ t

0
dt ′Hint(t

′)|000ggg〉

= α|111ggg〉 + β|100egg〉 + γ |010geg〉 + δ|001gge〉,
where Hint is the Hamiltonian in the interaction picture. The
important fact to note here is that all kets share some sort
of parity. If we add together the number of photons in the
first mode and the number of excitations in the first qubit, we
obtain 2 or 0, even numbers. The same happens with every
mode-qubit pair and for every ket.

The second-order correction takes the form

ψ (2)(t ) = 1

ih̄

∫ t

0
dt ′Hint(t

′)ψ (1)(t ′)

∈ span(|000ggg〉, |002ggg〉, |020ggg〉, |022ggg〉,
|200ggg〉, |202ggg〉, |220ggg〉, |222ggg〉,
|110gge〉, |101geg〉, |011egg〉, |112gge〉,
|121geg〉, |211egg〉, |211egg〉, |011egg〉,
|000ggg〉, |200ggg〉, |110eeg〉, |101ege〉,
|121geg〉, |101geg〉, |110eeg〉, |000ggg〉,
|020ggg〉, |011gee〉, |112gge〉, |110gge〉,
|101ege〉, |011gee〉, |002ggg〉, |000ggg〉).

Again, all the kets involved in the second-order correction
share a notion of parity, but it appears to be a different, or
more general, parity than the first-order corrections. Some
kets have an even number of photons plus qubit excitations
(e.g., |222ggg〉) and other kets have an odd number of photons
plus qubits excitations (e.g., |110gge〉), but there are no kets
that mix odd and even numbers of photons plus qubit excita-
tions (e.g., there is no |211geg〉).

The reader might have noticed that we are now in po-
sition to finish a proof by induction. We have proven that
the first-order corrections are composed of kets with an even
number of fields plus qubit excitations. We have proven that
the second-order corrections are a superposition of ketrks
with an odd or even number (but no mixtures) of fields plus
qubit excitations. Now we will prove that if the nth-order
correction is such a superposition, the (n + 1)th correction
has that same parity. In order to do so, we will study the
effects each of the pieces of the Hamiltonian has on the parity
of a ket.

First, the 3SPDC piece has the form g(t )(a†
1 + a1)(a†

2 +
a2)(a†

3 + a3). Note that the result of the application of this
piece of the Hamiltonian on a vector with well-defined parity
is to completely change the parity of each mode-qubit pair.
That is, each mode has to change its number of photons in
one unit, up or down, but their interacting qubit will remain
the same. Therefore, the result is a superposition of vectors
with the same parity on each qubit-mode pair.

Second, the Rabi piece has the form gi(t )σ i
x (a†

i + ai ). The
result of applying this piece of the Hamiltonian on a vector
with well-defined parity is a superposition of vectors of the
same parity. This is due to the fact that the ith qubit must
change its quantum number and the same ith mode must
change its number of photons in one unit. Therefore, the parity
of that pair will be the same.

Because of these two facts, the parities of the kets forming
the superposition that is the evolution of the vacuum will
never mix. Therefore, the state must remain in the subspace of
vectors with well-defined qubit plus mode excitation parity.
The operator that projects onto the subspace of vectors with
that well-defined excitation parity is

P =
3⊗

i=1

∞∑
n=0

Pi(2n) ⊗ Pi,2×2(0)

+
3⊗

i=1

∞∑
n=0

Pi(2n + 1) ⊗ Pi,2×2(0)

+
3⊗

i=1

∞∑
n=0

Pi(2n) ⊗ Pi,2×2(1)

+
3⊗

i=1

∞∑
n=0

Pi(2n + 1) ⊗ Pi,2×2(1)

=
1∑

α,β=0

3⊗
i=1

∞∑
n=0

Pi(2n + α) ⊗ Pi,2×2(β ), (C1)

where Pi(n) is the Fock state projector |n〉〈n| and Pi,2×2(q) is
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the projector onto the Sz lower eigenstate if q = 0 or onto the
higher eigenstate if q = 1.

2. Proof that P is a conserved quantity

In this section we let the i indices drop as they are
redundant notation The projector P clearly commutes with
the Hamiltonian’s stationary part. In order to prove that it
commutes with the interacting pieces as well, we need to

introduce some notation

x1x2x3 →
3⊗

i=1

x ⊗ I2×2,

σxx →
3⊗

j=1

[δi jx ⊗ σx + (1 − δi j )I ⊗ I2×2].

First, we will show that x1x2x3 commutes with P,

x1x2x3P =
3⊗

i=1

x ⊗ I2×2

1∑
α,β=0

3⊗
i=1

∞∑
n=0

P(2n + α) ⊗ P2×2(β ) =
1∑

α,β=0

3⊗
i=1

∞∑
n=0

xP(2n + α) ⊗ P2×2(β )

=
1∑

α,β=0

3⊗
i=1

∞∑
n=0

(
√

2n + α|2n + α − 1〉〈2n + α| + √
2n + α + 1|2n + α + 1〉〈2n + α|) ⊗ P2×2(β )

=
1∑

α,β=0

3⊗
i=1

[ ∞∑
n=0

√
2n + α|2n + α − 1〉〈2n + α| +

∞∑
n=0

√
2n + α + 1|2n + α + 1〉〈2n + α|

]
⊗ P2×2(β ),

where we understand that if 2n + α − 1 < 0 then |2n + α − 1〉 = 0. We have split the summation on n into two different
summations. We will perform a change of variables in the first one so that n → n + 1. Note that in that case the summation
index starts at −1,

x1x2x3P =
1∑

α,β=0

3⊗
i=1

([ ∞∑
n=−1

√
2n + α + 2|2n + α + 1〉〈2n + α + 2| +

∞∑
n=0

√
2n + α + 1|2n + α + 1〉〈2n + α|

]
⊗ P2×2(β )

)

Now compare both summations over n. They contain the same ket |2n + α + 1〉 and have different coefficients and bras. Those
coefficients and bras match the result of applying the x operator to the projector P(2n + α + 1) from the right. Therefore,

x1x2x3P =
1∑

α,β=0

3⊗
i=1

([
√

α|α − 1〉〈α| +
∞∑

n=0

P(2n + α + 1)x

]
⊗ P2×2(β )

)
.

The term
√

α|α − 1〉〈α| is due to one of the summations over n starting at n = −1. That term, however, is different from zero
only when α = 1. To regroup the term with the rest of the summations it is easier to study the cases α = 0 and α = 1 separately,

x1x2x3P =
1∑

β=0

3⊗
i=1

([ ∞∑
n=0

P(2n + 1)x

]
⊗ P2×2(β )

)
+

1∑
β=0

3⊗
i=1

([
|0〉〈1| +

∞∑
n=0

P(2n + 2)x

]
⊗ P2×2(β )

)
.

The second line is the one representing the case α = 1. Note that |0〉〈1| is the result of applying x to the projector |0〉〈0| = P(0)
from the right. Additionally, we can change the variable in the summation on n so that n → n − 1 and put P(0)x together with
the rest of the summation

x1x2x3P =
1∑

β=0

3⊗
i=1

([ ∞∑
n=0

P(2n + 1)x

]
⊗ P2×2(β )

)
+

1∑
β=0

3⊗
i=1

([ ∞∑
n=0

P(2n)x

]
⊗ P2×2(β )

)
.

Finally, this expression can be formulated in terms of a new summation over α,

x1x2x3P =
1∑

α,β=0

3⊗
i=1

( ∞∑
n=0

P(2n + α)x ⊗ P2×2(β )

)
= Px1x2x3.

Therefore, [P, x1x2x3] = 0.
We are missing a second step to prove that P is a conserved quantity: It has to commute with the interaction Hamiltonians of

the qubits and modes. In order to do so, we will prove that xiσx,iP = Pxiσx,i,
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xiσx,iP =
(

3⊗
j=1

δi jx ⊗ σx + (1 − δi j )I ⊗ I2×2

)
×

(
1∑

α,β=0

3⊗
j=1

∞∑
n=0

P(2n + α) ⊗ P2×2(β )

)

=
1∑

α,β=0

3⊗
j=1

∞∑
n=0

[δi jxP(2n + α) ⊗ σxP2×2(β ) + (1 − δi j )P(2n + α) ⊗ P2×2(β )].

Now we will study the action of x on P(2n + α),

xiσx,iP =
1∑

α,β=0

3⊗
j=1

∞∑
n=0

[δi j

√
2n + α|2n + α − 1〉〈2n + α| ⊗ σxP2×2(β )

+ δi j

√
2n + α + 1|2n + α + 1〉〈2n + α| ⊗ σxP2×2(β )(1 − δi j )P(2n + α) ⊗ P2×2(β )].

As it happened with x1x2x3P, we will make a change in the variable n so that n → n + 1 only in the first line,

xiσx,iP =
1∑

α,β=0

3⊗
j=1

(
δi j

∞∑
n=−1

√
2n + α + 2|2n + α + 1〉〈2n + α + 2| ⊗ σxP2×2(β )

+ δi j

∞∑
n=0

√
2n + α + 1|2n + α + 1〉〈2n + α| ⊗ σxP2×2(β ) + (1 − δi j )

∞∑
n=0

P(2n + α) ⊗ P2×2(β )

)
.

The same way as before, the summation can be rewritten in terms of P(2n + α + 1) acting on x,

xiσx,iP =
1∑

α,β=0

3⊗
j=1

(
δi j

√
α|α − 1〉〈α| ⊗ σxP2×2(β ) + δi j

∞∑
n=0

P(2n + α + 1)x ⊗ σxP2×2(β )

+ (1 − δi j )
∞∑

n=0

P(2n + α) ⊗ P2×2(β )

)
.

Now we will study the action of σx on P2×2(β ),

σxP2×2(β ) = |β − 1〉〈β| + |β + 1〉〈β|,
where we understand that if β − 1 < 0 then |β − 1〉 = 0 and if β + 1 > 1 then |β + 1〉 = 0. Plugging this equation into the last
expression for xiσx,iP results in

xiσx,iP =
1∑

α,β=0

3⊗
j=1

[
δi j

(
√

α|α − 1〉〈α| +
∞∑

n=0

P(2n + α + 1)x

)
⊗ [|β − 1〉〈β| + |β + 1〉〈β|]

+ (1 − δi j )
∞∑

n=0

P(2n + α) ⊗ P2×2(β )

]
.

By doing two different changes of variable in β for each of the terms |β − 1〉〈β| and |β + 1〉〈β| and realizing that only one of
those is nonzero for a particular value of β, we conclude that

xiσx,iP =
1∑

α,β=0

3⊗
j=1

(
δi j

√
α|α − 1〉〈α| ⊗ P2×2(β )σx + δi j

∞∑
n=0

P(2n + α + 1)x ⊗ P2×2(β )σx

+ (1 − δi j )
∞∑

n=0

P(2n + α) ⊗ P2×2(β )

)
.

Finally, we study the cases α = 0 and α = 1 separately,

xiσx,iP =
1∑

β=0

3⊗
j=1

(
δi j

∞∑
n=0

P(2n + 1)x ⊗ P2×2(β )σx + (1 − δi j )
∞∑

n=0

P(2n) ⊗ P2×2(β )

)

+
1∑

β=0

3⊗
j=1

(
δi j |0〉〈1| ⊗ P2×2(β )σx + δi j

∞∑
n=0

P(2n + 2)x ⊗ P2×2(β )σx + (1 − δi j )
∞∑

n=0

P(2n + 1) ⊗ P2×2(β )

)
.
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Again, in the α = 1 case we can regroup the matrix element |0〉〈1| as P(0)x and combine it with the summation on n,

xiσx,iP =
1∑

β=0

3⊗
j=1

(
δi j

∞∑
n=0

P(2n + 1)x ⊗ P2×2(β )σx + (1 − δi j )
∞∑

n=0

P(2n) ⊗ P2×2(β )

)

+
1∑

β=0

3⊗
j=1

(
δi jδi j

∞∑
n=0

P(2n)x ⊗ P2×2(β )σx + (1 − δi j )
∞∑

n=0

P(2n + 1) ⊗ P2×2(β )

)
.

This expression can be condensed again in a summation over α so that

xiσx,iP =
1∑

α,β=0

3⊗
j=1

∞∑
n=0

[δi jP(2n + α)x ⊗ P2×2(β )σx + (1 − δi j )P(2n) ⊗ P2×2(β )] = Pxiσx,i

Therefore, we have proven that [xiσxi, P] = 0.

Summarizing, the projector P as defined in Eq. (4) com-
mutes with each of the ingredients that compose the full
3SPDC + 3qubits Hamiltonian of Eq. (1). We conclude that
P is a conserved quantity, and since the initial value of 〈P〉 for
the initial state of vacuum |0g0g0g〉 is 1, it must remain one at
all times. In other words, the state remains in the subspace that
the projector P projects on at all times, regardless of whether
or not the RWA is taken on any interaction:

ψ (t ) =
1∑

α,β=0

3⊗
i=1

∞∑
n=0

cα,β,i,n(t )|2n + α〉 ⊗ |β〉. (C2)

We define the dynamical subspace as the subspace that con-
tains ψ at all times, that is, the image of P.

3. Some expectation values in the dynamical subspace

With a closed expression of the dynamical subspace, that
is, the subspace that contains the time evolution of vacuum
under the Hamiltonian (prior to any RWA), it is possible to
compute some expectation values, in particular single, pairs,
and triplets of ladder operators, involving the fields or the
qubits.

The expectation values of single creation operators on the
modes are zero. In Eq. (C2) all eigenbras of the superposition
ψ (t ) will be orthogonal to all eigenkets of that same super-
position if a photon is added to each of them. That is, the
a†

i operator will produce kets with mixed parities and there
are no bras at the other side of the expectation value with
mixed parities. A similar argument holds for the annihilation
operators on each mode,

〈ai〉 = 〈a†
i 〉 = 0.

The expectation values of single creation operators on the
qubits are zero too, because of the same argument

〈σ+
i 〉 = 〈σ−

i 〉 = 0.

The expectation values of pairs of creation or annihilation
operators on modes are zero only if they act on different
modes. If that is the case, the result is zero because of the same
argument as before. If the operators act on the same mode, we
are talking about the expectation value of the number operator,
which must not be zero, as there is photon generation and that

operator does not mix parities of the kets.

〈a†
i a†

j〉 = 〈aia
†
j〉 = 〈a†

i a j〉 = 〈aia j〉 = 0 provided i �= j.

The expectation values of pairs of ladder operators on the
qubits are zero if and only if they act on different qubits,
because of the same argument as for the modes,

〈σ+
i σ+

j 〉=〈σ+
i σ−

j 〉=〈σ−
i σ+

j 〉=〈σ−
i σ−

j 〉 = 0 provided i �= j.

The expectation values of pairs of ladder operators on one
mode and on one qubit are zero only if the former acts on
a mode that does not interact with the qubit the latter acts on,
that is,

〈a†
i σ

+
j 〉 = 〈a†

i σ
−
j 〉 = 〈aiσ

+
j 〉 = 〈aiσ

−
j 〉 = 0 provided i �= j.

The reason is the same as before: Each operator will change
the parity of two different pairs of modes and qubits, but will
leave one pair with the previous parity.

The expectation values of triplets of ladder operators on the
modes are zero as long as they act on two modes. If that is the
case, one of the ladder operators acts on one mode, and by
the same argument as before, that expectation value must be
zero,

〈a†
i aia j〉 = 0 provided i �= j

With these expressions we have enough information to prove
that the covariances in the fields’ canonical variables and
qubits’ x and y spin variables are constant in time.

APPENDIX D: THE z SPIN COVARIANCES ALONE ARE
NOT GAUSSIAN ENTANGLEMENT

In this Appendix we will prove that any three-qubit mixed
state that has the same x and y covariances as a separable
state and only different z spin covariances has no Gaussian
entanglement. The argument is very similar to those presented
before: Separable states have access to a particular range of
values of the z spin covariance. If general three-qubit states
have access to a bigger range of the z spin covariances, then
a Gaussian witness paying attention to only the z covariances
could report entanglement; however, if the separable and gen-
eral ranges are the same, then no witness can tell the difference
between those states with only one covariance. Then a state
that differs only in those z covariances from a separable state,
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as is the case of the qubits state in the main text, cannot contain
Gaussian entanglement.

For separable states the bound on the z spin covariances
is given by classical probability theory, in particular, the
Cauchy-Schwarz and Popoviciu inequalities

|�2OiOj | �
√

�2Oi�2Oj

� 1
4 (sup Oi − inf Oi )(sup Oj − inf Oj ),

where sup O and inf O are bounds to the values a measurement
of the observable O may take. In particular, for spin variables
we have

|�2SziSz j | � 1
4 .

The question remains whether this classical bound can be
violated by some entangled state. The reader might sus-
pect that the answer is negative, as in the many years of
research on entanglement there are no Bell-like inequali-
ties or witnesses built from covariances on only one axis.
To prove that intuition, consider a pure two-qubit state

ψ = ∑1
q1=0

∑1
q2=0 cq1,q2 |q1, q2〉 and the fact that the covari-

ances of the spin variables can be expressed in terms of the
covariance of the excitation projector’s covariance

�2SziSz j = �2PeiPe j

= (1 − |c10|2 − |c01|2)|c11|2 − |c11|4 − |c01|2|c10|2,
where Pei is the projector onto the excited state of the ith
qubit and cq1q2 are the coefficients of a two-qubit pure state
in the computational basis. It is a simple exercise to find the
pure two-qubit state that maximizes the covariance, which is
a Bell state ψ = 1√

2
[|00〉 + |11〉], which yields a covariance

�2Sz1Sz2 of 1
4 . Two-qubit mixed states cannot violate this

bound and the expectation value of a mixture is never larger
than the largest of its pure components. General systems that
contain two qubits cannot beat this bound either, as their
expectation values will be the same as those of the reduced
density matrix on the two qubits.

Therefore, we have proven that no witness will be able
to report entanglement by inspecting the z covariances alone
and a state that differs from a separable state only in those
covariances will not contain Gaussian entanglement.
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