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Abstract  35 

1. Evaluating data quality and inventories completeness must be a preliminary step in 36 

any biodiversity research, particularly in the case of insects and high biodiversity 37 

areas. Yet, this step is often neglected or, at best, assessed just for only one insect 38 

group, and the degree of congruence for different insect groups of sampling effort 39 

remains unexplored.  40 

2. We assess the congruence in the spatial distribution of the sampling effort for five 41 

insect groups (butterflies, caddisflies, dung beetles, moths, and aquatic beetles) in the 42 

Iberian Peninsula. We identify well-surveyed areas for each taxonomic group and 43 

examine the degree to which the patterns of sampling effort can be explained by a set 44 

of variables related to environmental conditions and accessibility. 45 

3. Irrespective of the general lack of reliable inventories, we found a general but low 46 

congruence in the completeness patterns of the different taxa. This suggests that there 47 

is not a common geographical pattern in survey effort and that idiosyncratic and 48 

contingent factors (mainly the proximity to the workplaces of entomologists) are 49 

differentially affecting each group.  50 

4. After many decades of taxonomic and faunistic work, distributional databases of 51 

Iberian insects are still in a very preliminary stage, thus limiting our capacity to obtain 52 

reliable answers to basic and applied questions.  53 

5. We recommend carrying out long-term, standardized and well-designed 54 

entomological surveys able to generate a reliable image of the distribution of different 55 

insect groups. This will allow us to estimate accurately insect trends and better 56 

understand the full extent of global biodiversity loss.  57 

 58 

  59 
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Introduction 60 

Understanding how biodiversity is distributed in space and time is one of the main challenges 61 

for ecologists, biogeographers and conservation biologists (Cox & Moore, 2004). Reliable 62 

species distributions data provide key information to understand, not only the causes behind 63 

current biodiversity patterns (Gaston, 2000) and future biodiversity loss, but also to guide 64 

efficient conservation planning strategies (Meyer et al., 2015; Kujala et al., 2018).   65 

Insects make up the bulk of terrestrial biodiversity (Stork, 2018). They are a central 66 

component of the living world, and their protection is crucial to maintaining ecosystems and 67 

ensuring food security (Hallmann et al., 2017; Bélanger & Pilling, 2019). It is therefore 68 

difficult to address a global study of biodiversity, or its conservation, without taking into 69 

account this group. However, their hyperdiverse character and the general scarceness and 70 

biases of the available information (Hortal et al., 2015) make this endeavour difficult. Even 71 

though much of the scientific attention has focused on the evidence for and effects of 72 

declining insect biodiversity (Goulson, 2019; Habel et al., 2019; Cardoso et al., 2020; 73 

Wagner et al., 2021), other studies have cautioned against over-extrapolating this current 74 

evidence (Saunders et al., 2020) because of the heterogeneous responses of insects and lack 75 

of comparable inventories (Wagner, 2020). Indeed, the phenomenon of insect decline is  76 

generally poorly understood for many insect groups, and there is an urgent need for more 77 

reliable data to estimate the true extent of global and regional insect decline.  78 

Despite the widely recognized importance of evaluating data quality and inventories 79 

completeness as a preliminary step in any biodiversity study, this process is often neglected. 80 

Only countries with a long-standing tradition of natural history and sufficient resources can 81 

produce good databases and distribution maps based on large volumes of data (Lawton et al., 82 

1994; Griffiths et al., 1999; Sánchez-Fernández et al., 2021). Unfortunately, this is usually 83 

not the case for countries located in the Mediterranean Basin, which despite being included in 84 

one of Earth’s biodiversity hotspots (Myers et al., 2000), are characterized by incomplete, 85 

unreliable or non-existent insect inventories (Ramos et al., 2001, but see for example Ruffo 86 

& Stoch, 2006). This lack of information can be considered the main factor limiting both the 87 

study of biodiversity patterns in these countries and the identification of priority areas for the 88 

conservation of insects. 89 

The examination of faunistic databases carried out to date in the Mediterranean Basin 90 

have reported a dearth of complete and extensive inventories for several insect groups (e.g., 91 

Romo et al., 2006; Sánchez-Fernández et al., 2008; Bruno et al., 2012; Fattorini, 2013; Lobo 92 

et al., 2018). Within this region, the Iberian Peninsula is an area with an outstanding 93 
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biodiversity and a high level of endemicity (Rosso et al., 2018) due to the climatic conditions 94 

during Late Quaternary and its role as glacial refuge (see Gómez & Lunt, 2004; Schmitt, 95 

2007; Abellán & Svenning, 2014). The few studies conducted so far in the entire Iberian 96 

Peninsula (Romo et al., 2006; Sánchez-Fernández et al., 2008; Lobo, 2008; Lobo et al., 97 

2018) have identified significant geographic data gaps for individual insect groups, but also a 98 

well-defined spatial and environmental pattern in the temporal accumulation of Iberian dung 99 

beetle records (Lobo et al., 2007). However, an examination of both the biases and patterns in 100 

the data collection carried out among different insect groups is lacking so far. One may find 101 

congruence in the spatial and environmental characteristics of the survey effort made by the 102 

naturalists interested in different insect groups because of their common preference for some 103 

attractive places such as protected areas, mountains, accessible places or localities near 104 

research centres and universities (Romo et al., 2006; Sánchez-Fernández et al., 2008; Mair & 105 

Ruete, 2016). If this is the case, we might be more likely to find a general picture of the 106 

distribution of insect survey effort in the Iberian Peninsula, and as a result design shared 107 

sampling campaigns to overcome data gaps. On the contrary, a lack of congruence among the 108 

different geographical patterns of survey effort may arise from specific and contingent factors 109 

related with collectors’ preferences (Dennis & Thomas, 2000) or repeated surveys in 110 

localities characterized by the presence of rare or interesting species (Sastre & Lobo, 2009). 111 

In this later case, it would be difficult to obtain general insect patterns of data accumulation 112 

in the short to medium term, and survey effort should be specific and more expensive.  113 

Despite the potential importance of this topic, to our knowledge, there are no studies 114 

assessing the congruence in the patterns of survey effort (completeness) using databases of 115 

different insect groups. Our general aim is to assess the congruence in the distribution of the 116 

sampling effort carried out for five insect groups in the Iberian Peninsula (true aquatic 117 

beetles, dung beetles, butterflies, moths and caddisflies). Our  aims were: i) to identify the 118 

most probable well-surveyed areas for each taxonomic group, and ii) to examine the extent to 119 

which sampling bias can be explained by a suite of environmental and accessibility related 120 

variables.  121 

 122 

Methods  123 

Data source 124 

This work is based on five up-to-date and exhaustive databases (Table 1) of five taxonomic 125 

groups of insects: caddisflies (Trichoptera), noctuoid moths (Lepidoptera: Noctuoidea), dung 126 

beetles (Coleoptera: Geotrupidae, Scarabaeinae and Aphodiinae), aquatic beetles (Coleoptera: 127 
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Dryopidae, Dytiscidae, Elmidae, Gyrinidae, Haliplidae, Helophoridae, Hydraenidae, 128 

Hydrochidae, Hydrophilidae, Hygrobiidae, Noteridae and Sphaeriusidae), and butterflies 129 

(Lepidoptera: Papilionoidea) from the Iberian Peninsula and Balearic Islands. The five 130 

databases mentioned above compile available georeferenced species records from the 131 

literature, as well as records from museums and private collections, PhD theses, field records, 132 

and various type of grey literature. These databases started some time ago and their first 133 

versions  were published in some cases (Lobo & Martín-Piera, 1991; García-Barros et al., 134 

2004; Millán et al., 2014) and included in GBIF (www.gbif.org/). However, current versions 135 

include a large number of new and revised records. Doubtful records (taxonomically 136 

uncertain or imprecisely georeferenced) were deleted by experts on each taxonomic group, 137 

resulting in 738,496 species records (with caddisflies having the least number (13,961), and 138 

butterflies having the most (423,820)). The five databases cover a total of 2,257 species, 139 

ranging from the least diverse group, butterflies, with 230 species to the most diverse, moths, 140 

with 848 species (see Table1). All these databases will be freely accessible within the 141 

GeoBrink platform (http://geobrink.uclm.es) 142 

 143 

Measuring data quality 144 

Data analyses were conducted using as spatial units the 353 cells with a resolution of 25 145 

minutes, which means an approximate cell size of 36 x 46 km at the average latitude of the  146 

Iberian Peninsula..  147 

A computer application called KnowBR (Lobo et al., 2018) was used to examine the 148 

reliability of biodiversity inventories in each one of the 353 cells for each taxonomic group. 149 

To do this, KnowBR uses “species accumulation curves”, a general approach in which the 150 

number of collected species is related with the increase in survey effort (Soberón & Llorente, 151 

1993; Colwell & Coddington, 1994). This application automatically estimates the final slope 152 

of the accumulation curve for each cell, the completeness of each cell inventory, and the ratio 153 

between the number of database records and the number of species in each cell. 154 

Accumulation curves were calculated after adjusting the data to a linear rational function (see 155 

Flather, 1996 for details) which is simply the ratio of two polynomial functions. Rational 156 

functions have excellent asymptotic properties being able to represent an extremely wide 157 

range of shapes (Bolker, 2008). The asymptotic values were estimated for all these curves to 158 

extrapolate the probable number of species in each cell when the number of records tend 159 

towards infinity. The percentage of species that have been recorded over these predicted 160 

asymptotic values is the completeness value. Completeness values and the final slope of these 161 
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relationships were then used as surrogates for the quality of the survey effort carried out 162 

(Lobo et al., 2018). When these two parameters are derived from different databases, the 163 

slope at the end of the accumulation curve and the completeness values are highly correlated 164 

(Spearman rank correlation rs = -0.981, P<0.0001; Fig. S1 in Supplementary Material). 165 

However, similar low slope values can be attributed to the cells with more than 80% of 166 

completeness values due to the curvilinear relationships between these two parameters (see 167 

Fig. S1). Consequently, we used completeness figures derived from accumulation curves as 168 

the best indicator to measure the reliability of cell inventories.  169 

We measured the quality of cell inventories using six ordinal categories (Table 1): 170 

ignorance cells, very poorly sampled, poorly sampled, moderately sampled, relatively well-171 

sampled and well-sampled. Ignorance cells are those without any record. Very poorly 172 

sampled cells are those with some records but too few to calculate an asymptotic or quasi-173 

asymptotic curve, as the relationship between the number of collected species and the number 174 

of database records is almost linear. The mean ratio between the number of database records 175 

and the number of species in these cells is 1.4 ± 2.3 (SD). Poorly sampled cells were 176 

identified as those with completeness values greater than 1% but less than 50%. Moderately 177 

sampled cells have completeness values from 51% to 75%, while relatively well-sampled 178 

cells have completeness values from 76% to 90%; and well-sampled cells are those having 179 

completeness values higher than 90%. 180 

 181 

Predictor variables 182 

Twelve environmental variables were considered  to explain  the variation in completeness 183 

across  the geography  for each insect group. We used five main climatic variables, annual 184 

mean temperature, maximum temperature of the warmest month, minimum temperature of 185 

the coldest month, annual precipitation, and precipitation of the driest month, derived from 186 

WorldClim v. 2.1 (www.worldclim.org; Fick & Hijmans, 2017). We also used as predictors 187 

the amount of terrestrial area not covered by marine water and the mean elevation of each 25 188 

minute cell Elevation was calculated from a digital elevation model (DEM) downloaded from 189 

the USGS EROS Data Center (https://www.usgs.gov/centers/eros). The different land uses of 190 

level 2, from CORINE Land Cover 2018 ( https://land.copernicus.eu), were reclassified into 191 

four main categories: anthropic areas (including artificial surfaces and agricultural areas), 192 

forests, shrubs, and grasslands. The area of each one of these four land cover categories was 193 

calculated for each cell square. Finally, mean soil pH data for each cell was obtained from the 194 

European Soil Data Centre (http://esdac.jrc.ec.europa.eu/; see Reuter et al., 2008). 195 
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In addition to these environmental variables, a predictor related to accessibility was 196 

calculated. Based on their knowledge about the historical development of the studies in their 197 

group and the distribution of the number of records attributed to the main taxonomists, 198 

collectors and/or research centres, researchers of each insect group subjectively selected three 199 

main localities that acted as study centres. Once the localities were selected, the distance from 200 

the central point of each cell to the nearest locality (out of the three) was used as a predictor 201 

to account for a bias in the recording effort carried out in each insect group (see Fig S2 in 202 

Supplementary Material). The number of localities selected for each distance map was a 203 

trade-off between simplicity and complexity in the distance maps generated according to the 204 

selected number of study centres.  205 

 206 

Data analysis 207 

To analyse spatial congruence, completeness values for all the taxonomic groups in the 25 208 

minute cells were submitted to a Principal Component Analysis (PCA) in order to 209 

discriminate the main orthogonal variables with eigenvalues higher than one, thus reflecting 210 

the comparative spatial variability among groups in the survey effort. The same completeness 211 

data were also analysed with a Cluster Analysis to better visualise the relationships between 212 

insect groups. Ward’s method was used as linkage rule and 1-Pearson r as the distance 213 

measure to maximise obtaining clusters with similar numbers of objects (Legendre & 214 

Legendre, 2012). 215 

We used Generalized Linear/Nonlinear Models (GLMs; see McCullagh & Nelder, 1989) 216 

to quantify the individual explanatory capacity of each predictor on the presence-absence 217 

(1/0) of “reliable” inventories in 25 minute cells. Unreliable cells (0) were those without 218 

records or with very few records that it was impossible to estimate the accumulation curve 219 

(ignorance and very poorly sampled cells). Reliable cell inventories (1) were delimited as 220 

those belonging to the remaining four cell categories in which it was possible to estimate the 221 

predicted richness and completeness values from accumulation curves (poorly sampled, 222 

moderately sampled, relatively well-sampled and well-sampled). A binomial error 223 

distribution linked to the set of predictors via a logit link function was used in this case. 224 

Subsequently, continuous completeness values in cells with reliable inventories were used to 225 

run another GLM to examine the predictors able to explain the completeness variability in the 226 

surveyed cells. A normal distribution was assumed and a logarithmic link function was used 227 

in this case. The two statistical approaches allowed us to examine whether the explanatory 228 

variables discriminating between cells with and without informative species inventories were 229 
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similar to those explaining degrees of completeness. The goodness-of-fit of the model was 230 

measured by the statistic deviance calculating the percentage of change in deviance from a 231 

null model in which no predictors were included. The Wald statistic was used for testing the 232 

statistical significance of the regression coefficients based on maximum likelihood estimates 233 

(see McCullagh & Nelder, 1989). All the predictors were standardized (to a mean of zero and 234 

standard deviation of one) to eliminate the effect of the measurement scale differences. All 235 

these statistics were performed using StatSoft’s STATISTICA v10.0 (StatSoft Inc., Tulsa, 236 

Oklahoma, USA). 237 

 238 

 239 

Results 240 

The number of cells considered to be well sampled (category 6) represented less than 4% of 241 

the total study area (from 1 to 11 cells depending on the group), except in the case of 242 

butterflies (96 cells; 27.20%), the group with the highest number of records per species 243 

(1,843; Table 1; Fig. 1C). Caddisflies was the group least surveyed, in which almost 69% of 244 

the cells were assigned as very poorly sampled or ignorance areas (categories 1 and 2; Table 245 

1, Fig. 1A). Moths, dung beetles and aquatic beetles shared similar results, with just over half 246 

of their cells categorized as moderately sampled and relatively well sampled (categories 4 247 

and 5) (Table 1; Fig. 1). 248 

Two PCA axes with eigenvalues (>1) were selected, accounting for 53.0% of the 249 

completeness variation (29.8% and 23.2%, respectively) for the five insect groups. Both the 250 

factor loadings and the Cluster Analysis allowed us to separate these five groups into two 251 

main clusters (Fig. 2): one joining the two Lepidoptera groups and another including the 252 

remaining insect groups in which dung beetles were placed in an intermediate position. The 253 

distribution of the six ordinal categories in the cells for each insect group showed that the 254 

quality of the inventories was partially congruent between butterflies and moths (Spearman 255 

rank correlation rs = 0.274, p <0.0001).  Well-surveyed cells for these two groups were 256 

located in north-eastern Iberian Peninsula, while the worst surveyed cells were mainly 257 

distributed across the central and northwest areas of the Iberian Peninsula (Figs. 1C and E). 258 

The distribution of the six ordinal categories in caddisflies and aquatic beetles were also 259 

partly congruent (rs = 0.232, p <0.0001). Wide areas of central and south-western Iberia 260 

remained poorly surveyed for both groups, while some cells of the southern Mediterranean 261 

area of the Peninsula were well surveyed. The case of dung beetles was relatively singular 262 
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(Fig. 1D), with cells with different quality values in their inventories distributed all over the 263 

study area.  264 

The cells with poor surveys (categories 1 and 2) seem to be preferably located in the 265 

central part of the Peninsula, irrespective of the group (see Fig. 1); 27 cells belong to these 266 

categories for at least four insect groups (Fig. 3A). On the other hand, the best surveyed areas, 267 

(categories 5 and 6) seem to be located in the main mountainous systems of the Iberian 268 

Peninsula (Pyrenees, Cantabrian mountains, the Iberian Central System, and along the 269 

Penibaetic System (SE Spain)) (Fig. 1F). However, only two cells are considered as belonging 270 

to these categories for at least four groups (Fig. 3B), and large areas of the Ebro valley (north-271 

west) and the southern plateau in Central Spain do not harbour well-surveyed cells for any 272 

group of insects (Fig. 3B). 273 

The explanatory capacity of the selected predictors on the presence-absence of reliable 274 

inventories oscillates from 8.2% in the case of dung beetles to 24.4% for caddisflies (Table 2).  275 

Elevation and soil pH appear as the most relevant variables, always with positive signs in their 276 

coefficients. Thus, cells with a lower elevation and with more acidic soils have a higher 277 

likelihood of remaining either not surveyed or poorly surveyed (Table 2). Maximum 278 

temperature of the warmest month and the distance to the main research centres are also 279 

relevant variables in some groups with negative signs, i.e., not surveyed or poorly surveyed 280 

cells tend to be located in areas with warmer summers and away from research centres (Table 281 

2). Including the distance to the main research centres in the models   with only the 282 

environmental variables gives a 15.6% average increase in the percentage of explained 283 

variability (max = 60.4%; min = 0.2%).   284 

The explained variation of the selected predictors in the case of continuous 285 

completeness values in the cells with reliable inventories oscillated from 6.5% in aquatic 286 

beetles to around 22% in dung beetles and caddisflies (Table 2). Environmental variables were 287 

relevant to explain the geographical pattern of completeness for only two insect groups. In 288 

general, completeness is higher when the cell elevation and the cell mean temperature increase 289 

in butterflies and dung beetles (Table 2). However, the most outstanding result is related with 290 

the role played by the variable representing the distance to the main research centres. In all the 291 

considered groups, this simple variable appears as statistically significant, always with negative 292 

sign. Thus, places located far away from these research centres have biological inventories 293 

characterized by low completeness values. Models including this distance predictor compared 294 

with those only including environmental variables increase substantially the explained 295 
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deviance in moths (88%) and dung beetles (50%), but also in aquatic beetles (33%), caddisflies 296 

(29%) and butterflies (20%) (mean = 44.1%; Table 2).  297 

 298 

Discussion 299 

Our results show that knowledge on the geographical distribution of insect biodiversity in the 300 

Iberian Peninsula is poor and geographically biased. This indicates that the Wallacean shortfall 301 

clearly emerges in the Mediterranean Basin (Brown & Lomolino, 1998; Whittaker et al., 2005), 302 

most likely one of the best studied biodiversity hotspots in the world (Blondel & Aronson, 303 

1999). Despite the wide size of our spatial units (25 minutes), large areas remain poorly 304 

surveyed. The lowlands of the central Iberian Peninsula appear to be particularly under-305 

surveyed, perhaps as a consequence of the secular degree of anthropogenic alteration of these 306 

landscapes and/or their unattractive character for entomologists. Interestingly, when the new 307 

terrestrial animal species described in the Ibero-Balear region from 1994 to 2012 are mapped, 308 

no environmental and land use predictors are able to explain the characteristics of the localities 309 

in which the species have been found, and a large number of new species may be discovered 310 

in a locality when it is subjected to intense survey effort (Payo-Payo & Lobo, 2016). Therefore, 311 

we suspect that the lack of survey effort in the lowlands of the central Iberian Peninsula is 312 

largely due to the preferences of insect collectors. 313 

The biased character of the geographical knowledge about Iberian insects is especially 314 

worrying if we consider that the five insect groups studied are among the groups for which we 315 

have a better knowledge from a faunistic point of view. We must stress the difficulty to get 316 

complete inventories for insects. For example, Sánchez-Fernández et al., (2021) recently 317 

analyzed the database of Great Britain butterfly occurrences, likely the most complete database 318 

for any insect group  in the world (with more than 10 million records for 58 butterfly species), 319 

and found that there are still some areas in Great Britain without complete inventories. The 320 

best way to circumvent this Wallacean shortfall is to invest in biodiversity sampling programs 321 

(Balmford & Gaston, 1999) or, a less preferable alternative, attempt to develop species 322 

distribution models (Guisan et al., 2017) providing reliable geographical predictions. However, 323 

to make these modeling procedures realistic, it is essential to have a minimum of cells with 324 

reliable inventories representing the environmental and spatial spectrum of the study area 325 

(Hortal & Lobo, 2005). 326 

We can establish three sets of taxonomic groups based on the completeness of their 327 

inventories in Iberia: a very poorly studied group, in which more than 68% of the considered 328 

cells do not have data or have very few samples (caddisflies), an intermediate group made up 329 
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of moths, dung beetles and aquatic beetles, in which the percentage of poorly sampled cells fall 330 

around 30%, and a much better sampled group (butterflies) with many records and fewer 331 

species richness.  332 

Irrespective of the lack of reliable inventories for insects and the disparities in the 333 

completeness values of the studied groups, we found a general low congruence among the 334 

different completeness patterns. It is worth noting that the congruence is higher for those groups 335 

that are   taxonomically related (i.e., butterflies and moths, or aquatic and dung beetles) or share 336 

the same type of habitats (i.e., freshwater habitats by aquatic beetles and caddisflies). Anyway, 337 

this general lack of congruence suggests that there is not a common geographical pattern in the 338 

survey effort to known insect distributions, and that idiosyncratic and contingent factors are 339 

differentially affecting each group (see a similar result in Mair & Ruete, 2016 for citizen 340 

biodiversity data). Although the percentages of explained variation are quite different between 341 

the studied groups, our results indicate that the selection of the areas to be sampled at least once 342 

is mainly determined by environmental factors as in other cases (Lobo et al., 2007; Tiago et 343 

al., 2017; Speed et al., 2018). However, the differences in survey effort within these sampled 344 

areas seem to be more associated with sociological factors, such as the distance to research 345 

centres (see Romo et al., 2006; Dennis & Thomas, 2000). Thus, entomologists have surveyed 346 

more intensely mountain areas (with alkaline soils), but the differences in survey effort within 347 

these areas could be conditioned by the proximity to workplaces (i.e., trying to decrease the 348 

fieldwork investment) (Oliveira et al., 2016). Nevertheless, it must be noted that the predictors 349 

used cannot explain almost three quarters of the variation in completeness values. The low 350 

spatial resolution of our analyses could be behind this result, but also the lack of a clear 351 

environmental determinism and the randomness of the survey decisions. Other unique factors 352 

not considered here could also be relevant for explaining the geographical pattern of survey 353 

effort. Of these, the following should be underlined: the location researchers’ second residence, 354 

their taxonomic curiosity (Sastre & Lobo, 2009), the existence of specific research programs 355 

on protected areas, or the presence of locations in which species new to science have been 356 

described (Tulloch et al., 2013; Payo-Payo & Lobo, 2016).  357 

The provided results have deep implications in conservation, such as to estimate 358 

accurately insect trends and to better understand the full extent of global biodiversity loss. 359 

Thus, it is essential to perform an assessments scheme specific to groups and the completeness 360 

of their inventories and the factors that may explain them. Hence, our inability to provide 361 

reliable snapshot estimations of the distribution of a large portion of biodiversity could be 362 

preventing us from taking advantage of the available occurrence data for basic and applied 363 
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purposes. The consequences of declines in insect biodiversity (Cardoso et al. 2020) can be 364 

unpredictable, and call for immediate policy responses (Forister et al. 2019; Harvey et al. 365 

2020). However, after many decades of taxonomic and faunistic work, our biodiversity 366 

databases are still preliminary in many different aspects, and far from being able to provide 367 

useful information to solve basic and applied guidance by themselves, i.e., we are still unable 368 

to discriminate areas with low richness from those that simply are badly sampled. Novel and 369 

integrative applications should thus be restricted to certain taxonomic groups and regions with 370 

higher numbers of quality records (Ball-Damerow et al., 2019). New extensive sampling fields 371 

(from long-term standardized and well-designed entomological surveys; Montgomery et al., 372 

2021), continued data digitization, publication, enhancement, and quality control efforts will 373 

continue to be necessary to make biodiversity science more efficient and relevant for 374 

conservation purposes. Besides, citizen science and community-based monitoring programs as 375 

well as remote sensing approaches (Chandler et al., 2017) could also be very useful  to get a 376 

reliable picture of the  biodiversity distribution in the Mediterranean basin in the near future. 377 

Certainly, the corollary is that the scientific community and the public need more 378 

entomological culture in general (Basset & Lamarre, 2019). 379 

 380 
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Table 1.- Number of database records (R), species (S) and percentages of the cells with a 577 

resolution of 25 minutes, belonging to six different ordinal categories according to  578 

completeness values. Cells without any observation were categorized as 1, while cells with 579 

very few records so that their completeness cannot be calculated are categorized as 2. The 580 

remaining categories are established according to the progressively increasing completeness 581 

(C) values, from 1% to 100%. 582 

 583 

   

  1<
C

<
50

 

50
<

C
<

75
 

75
<

C
<

90
 

C
>

90
 

 R S 1 2 3 4 5 6 

Caddisflies 13,961 444 44.76 24.08 15.86 11.33 3.68 0.28 

Moths 168,507 848 24.08 11.90 30.88 19.26 10.76 3.12 

Dung beetles 68,710 242 22.10 9.35 24.36 26.91 14.45 2.83 

Aquatic beetles 63,498 493 18.41 10.76 33.71 27.76 8.78 0.57 

Butterflies 423,820 230 9.63 1.42 10.20 18.70 32.86 27.20 

Total 738,496 2,257       
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Table 2.- Results of the Generalized Linear Models  estimating the individual explanatory 
capacity of each predictor on the presence-absence (1/0) of reliable inventories in  25 minute 
square cells (binomial), and on the continuous completeness values in the cells with reliable 
inventories (continuous). %Dev is the percentage of change in deviance in a null model with 
no predictors. %Dev in brackets indicates the explained deviance considering only 
environmental variables as predictors (i.e., without the distance to the main centres of research). 
The values for each predictor are the parameter estimates and Wald statistic values, and their 
associated probabilities are indicated in brackets. Only those with an associated probability ≤ 
0.05 are included. E = Elevation; GRAS = grasslands; AMT = annual mean temperature; DIST 
= distance to main centres of research; MTWM = maximum temperature of the warmest month; 
AP = annual precipitation; DMP = driest month precipitation. 
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Figure 1. Categories related to the values of completeness (C) for different insect databases 

(A: Caddisflies; B: Aquatic beetles; C: Butterflies; D: Dung beetles; E: Moths; F: averaged 

values) at a spatial resolution of 25 minute cells.  
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Figure 2. Position of the five insect groups in the space delimited by the factor loadings of the 
two main axes of a Principal Component Analysis of completeness values for all 25 minute 
cells of the Ibero-Balearic area. MO = Moths; BU = Butterflies; DB = Dung beetles; AB = 
Aquatic beetles; CA = Caddisflies. Lines connecting the five groups represent the grouping 
results of a Cluster Analysis based on the completeness values of these taxa. Numbers are the 
linkage distance among the different clusters. 
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Figure 3. Number of insect groups by which each cells is identified as A) badly surveyed cells 
(categories 1 and 2; see Table 1) and B) relatively and well-surveyed cells (categories 5 and 6; 
see Table 1). 
 

 

 

 

 

 

 

 


