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Xylella fastidiosa (Xf) 

Verticillium dahliae (Vd) Kleb 

INTRODUCTION

Both colonize 

vascular tissue

Trigger similar symptoms

• General tree decline
• Foliar discoloration
• Wilting of apical shoots
• Dieback of twigs
• Dieback of branches

(Carlucci et al., 2013)

Xylella fastidiosa and Verticillium dahliae infections trigger similar symptoms in olive trees
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Trees infected by Xylella Fastidiosa

Trees infected by Verticillium dahliae
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INTRODUCTION

Symptoms triggered by  both diseases can be confounded with water-induced stress responses

and similar

to water stress responses

Water induced stress

(Hopkins, 1989; Klosterman et al., 2009) 

Xylella fastidiosa (Xf) 
Both colonize 

vascular tissue

Trigger similar symptoms

• General tree decline
• Foliar discoloration
• Wilting of apical shoots
• Dieback of twigs
• Dieback of branches

(Carlucci et al., 2013)

Verticillium dahliae (Vd) Kleb 
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Xylella fastidiosa (Xf) 

Verticillium dahliae (Vd) Kleb 

INTRODUCTION

Cost-effective approaches for large scale detection

Remote sensing technologies

Early detection

(Zarco-Tejada et al., 2018)

(Poblete et al., 2020)

(Hornero et al., 2020)

(Calderón et al., 2013)

(Calderón et al., 2015)
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Xylella fastidiosa (Xf) 

Verticillium dahliae (Vd) Kleb 

INTRODUCTION

Cost-effective approaches for large scale detection

Remote sensing technologies

Early detection

Nevertheless, no studies have attempted to discriminate symptoms caused by both 
pathogens

(Zarco-Tejada et al., 2018)

(Poblete et al., 2020)

(Hornero et al., 2020)

(Calderón et al., 2013)

(Calderón et al., 2015)



7

OBJECTIVE

1. To evaluate airborne hyperspectral and thermal imagery collected from Xf-

and Vd-infected olive orchards to assess the potential discrimination of the

physiological symptoms induced by each pathogen.
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OBJECTIVE

1. To evaluate airborne hyperspectral and thermal imagery collected from Xf-

and Vd-infected olive orchards to assess the potential discrimination of the

physiological symptoms induced by each pathogen.

2. To assess the effect of plant water status on the detection of both diseases

comparing traits sensitive to detect water-induced stress with those induced

by the infections.
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METHODOLOGY

Xylella fastidiosa infected zone

Verticillium dahliae infected zone

Puglia, Southern Italy Hyperspectral imagery Thermal infrared imagery

Castro del Río and Écija, 

Southern Spain

Hyperspectral imagery Thermal infrared imagery

- 15 olive orchards monitored

- 7296 olive trees assessed 

- Monitored during 2016-2017

- 11 olive orchards monitored

- 7101 olive trees assessed 

- Monitored during 2011-2013
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Visual assessments of disease incidence and severity of olive trees infected by Xf and Vd

Asymptomatic (SEV=0)

Symptomatic (SEV=1) Symptomatic (SEV=2) Symptomatic (SEV=3) Symptomatic (SEV=4)

Xylella Fastidiosa

Verticillium dahliae

METHODOLOGY

Symptomatic (SEV=1) Symptomatic (SEV=2) Symptomatic (SEV=3) Symptomatic (SEV=4)
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METHODOLOGY

Datasets and modelling parameters

Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)
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METHODOLOGY

Datasets and modelling parameters

Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)

Radiative transfer model inversion
Support Vector machine (SVM)
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Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)

Radiative transfer model inversion

PRO4SAIL (PROSPECT-D + 

4SAIL) (Feret et al., 2017 and Verhoef et al., 

2007)
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METHODOLOGY

Datasets and modelling parameters

Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)

Radiative transfer model inversion
O2-A in-filling Fraunhofer

line depth (FLD) method 

PRO4SAIL (PROSPECT-D + 

4SAIL) (Feret et al., 2017 and Verhoef et al., 

2007)

Sun-induced 

Chlorophyll 

Fluorescence    
(SIF@760)



15

METHODOLOGY

Datasets and modelling parameters

Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)

Sun-induced 

Chlorophyll 

Fluorescence    
(SIF@760)

Narrowband

Hyperspectral 

Indices (NBHI)

Radiative transfer model inversion
O2-A in-filling Fraunhofer

line depth (FLD) method 

PRO4SAIL (PROSPECT-D + 

4SAIL) (Feret et al., 2017 and Verhoef et al., 

2007)

(Zarco-Tejada et al., 2018)

Non-collinear NBHI

Variance Inflation Factor (VIF)
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METHODOLOGY

Datasets and modelling parameters

Hyperspectral imagery

Chlorophyll content (Ca+b )

Anthocyanin content (Anth.)

Carotenoid content (Cx+c )

Leaf Area Index (LAI)

Average leaf angle (LIDF)

Radiative transfer model inversion
O2-A in-filling Fraunhofer

line depth (FLD) method 

Thermal imagery

Crop Water Stress Index (CWSI)

PRO4SAIL (PROSPECT-D + 

4SAIL) (Feret et al., 2017 and Verhoef et al., 

2007)

(Zarco-Tejada et al., 2018)

Sun-induced 

Chlorophyll 

Fluorescence    
(SIF@760)

Narrowband

Hyperspectral 

Indices (NBHI)
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• Independent datasets including the hyperspectral and thermal 

traits were built 

• Xylella fastidiosa dataset

• Verticillium dahliae dataset

• Water-induced stress dataset

METHODOLOGY

Datasets for the three-stage classification

Asymptomatic {SEV=0}

Symptomatic {SEV≥1}

Asymptomatic {SEV=0}

Symptomatic {SEV≥1}

Non-water stressed

Water-stress induced
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Contribution of thermal and spectral traits on the detection

METHODOLOGY

(Thomas et al., 2021) 

• Contribution (importance) of each plant trait for detecting both

infections and water-induced stress:

• Xylella fastidiosa

• Verticillium dahliae

• Water-induced stress

Asymptomatic {SEV=0} vs. Symptomatic {SEV≥1} olive trees

Asymptomatic {SEV=0} vs. Symptomatic {SEV≥1} olive trees

Non-water stress  vs. water-stress induced olive trees
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Feature-weighted models were built considering the traits importance

METHODOLOGY

Feature-weighted classification models were implemented to include the

importance of each trait on the detection of each disease

• Xylella fastidiosa feature-weighted model

• Verticillium dahliae feature-weighted model
Stage I 

(Detection stage)

Stage I: Detection
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Reclassification of uncertain trees (Stage II)

METHODOLOGY

To reduce the uncertainty produced by symptoms confounded with water-induced stress responses.

Stage II (Reclassification stage)

Stage II: Reclassification
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Symptoms of trees detected as infected are compared to discriminate between both infections (Stage III) 

METHODOLOGY

Stage III 

(Discrimination stage)

Divergent spectral traits were obtained to detect and 

discriminate:

• Xylella fastidiosa over Verticillium dahliae infected trees

• Verticillium dahliae over Xylella fastidiosa infected trees

Stage III: Discrimination
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Schematic representation of the three-stages classification

METHODOLOGY

(Thomas et al., 2021) 

Stage I    Stage II   Stage III
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Sensitivity test

Sensitivity               Correctly identifying True Positives (TP) while avoiding False Negatives (FN)

Trevethan (2017)

Specificity test

Specificity               Correctly identifying True Negatives (TN) while avoiding False Positives (FP)

Assessing the accuracy on the detection and discrimination of both diseases

METHODOLOGY



24

RESULTS

Importance of plant traits when detecting Xf–infected olive trees
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RESULTS

Importance of plant traits when detecting Vd–infected, Xf–infected olive trees
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RESULTS

Importance of plant traits when detecting Vd–infected, Xf–infected, and water-stressed olive trees
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RESULTS

Plant traits used to differentiate both infections from water induced stress

NPQI: Normalized Phaeophytinization Index Anth.: Anthocyanins content SIF: Solar Induced Fluorescence
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RESULTS

Plant traits used to differentiate Xf- over Vd- infections

PRIn: Normalized Photochemical Refl. Index CRI700M: Carotenoid Refl. Index BF1: Blue Index CUR: Refl. Curvature Index

PRIn   CRI700M   

BF1   CUR
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RESULTS

Plant traits used to differentiate Vd- over Xf- infections

Cx+c: Carotenoids content LIDF: Average leaf angle B: Blue Index

B

Cx+c   LIDF
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Sensitivity tests for detecting Xf– and Vd–infected olive trees

RESULTS

Verticillium dahliae classification accuracy
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Sensitivity tests for detecting Xf– and Vd–infected olive trees

RESULTS
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RESULTS

Specificity tests for detecting Xf– and Vd–infected olive trees (True negatives rate)
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RESULTS

Specificity tests for detecting Xf– and Vd–infected olive trees (True negatives rate)
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RESULTS

Specificity tests for detecting Xf– and Vd–infected olive trees (True negatives rate)
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RESULTS

Specificity tests for detecting Xf– and Vd–infected olive trees (True negatives and False positives rate)
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 Despite the high similarity between the symptoms triggered by both pathogens these results

highlight that a combination of spectral traits and a three-stage machine learning

algorithm can be used to accurately monitor, detect, and differentiate olive trees infected by

Vd or Xf.

CONCLUSIONS
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 Despite the high similarity between the symptoms triggered by both pathogens these results

highlight that a combination of spectral traits and a three-stage machine learning
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 When detecting Xf infections, the false positive rate decreased to 4%, with OA of 92%, and

a κ of 0.8.
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 Despite the high similarity between the symptoms triggered by both pathogens these results

highlight that a combination of spectral traits and a three-stage machine learning

algorithm can be used to accurately monitor, detect, and differentiate olive trees infected by

Vd or Xf.

 When detecting Xf infections, the false positive rate decreased to 4%, with OA of 92%, and

a κ of 0.8.

 When detecting Vd infections, the false positive rate decreased to 9%, yielding an overall

accuracy (OA) of 98% and a kappa coefficient (κ) of 0.7.

CONCLUSIONS
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