

3ºd European Conference on Xylella fastidiosa and XF-ACTORS final meeting

Using hyperspectral imagery and a multi-stage machine learning algorithm to distinguish infection symptoms caused by two xylem-limited pathogens

ens

THE UNIVERSITY O

MELBOURNE

Poblete, T., Navas-Cortes, J.A., Camino, C., Calderón, R., Hornero, A., González-Dugo, V., Landa, B.B., Zarco-Tejada, P.J.

Xylella fastidiosa and Verticillium dahliae infections trigger similar symptoms in olive trees

Xylella fastidiosa (Xf)

Verticillium dahliae (Vd) Kleb

oth colonize	 Trigger similar symptoms General tree decline Foliar discoloration Wilting of apical shoots Dieback of twigs Dieback of branches
ascular tissue	(Carlucci <i>et al.</i> , 2013)

Xylella fastidiosa and Verticillium dahliae infections trigger similar symptoms in olive trees

(Carlucci et al., 2013)

Trigger similar symptoms

Trees infected by Xylella Fastidiosa

Trees infected by Verticillium dahliae

(Xf)	BOLH COIONIZ
× J/	vascular tiss

	•	General tree decline
	•	Foliar discoloration
oth colonize	•	Wilting of apical shoots
ascular tissue	•	Dieback of twigs
	•	Dieback of branches

Verticillium dahliae (Vd) Kleb

Both colonize

Symptoms triggered by both diseases can be confounded with water-induced stress responses

Verticillium dahliae (Vd) Kleb

Dieback of branches ٠

(Carlucci et al., 2013)

to water stress responses

Water induced stress (Hopkins, 1989; Klosterman et al., 2009)

Cost-effective approaches for large scale detection

Remote sensing technologies

Xylella fastidiosa (Xf)

(Zarco-Tejada *et al.*, 2018) (Poblete *et al.*, 2020) (Hornero *et al.*, 2020)

(Calderón *et al.*, 2013) (Calderón *et al.*, 2015)

Verticillium dahliae (Vd) Kleb

Cost-effective approaches for large scale detection

Remote sensing technologies

Xylella fastidiosa (Xf)

Verticillium dahliae (Vd) Kleb

(Zarco-Tejada *et al.*, 2018) (Poblete *et al.*, 2020) (Hornero *et al.*, 2020)

Nevertheless, no studies have attempted to discriminate symptoms caused by both pathogens

1. To evaluate airborne **hyperspectral** and **thermal** imagery collected from *Xf*-and *Vd*-infected olive orchards to assess the potential **discrimination** of the physiological symptoms induced by each pathogen.

- 1. To evaluate airborne **hyperspectral** and **thermal** imagery collected from *Xf*-and *Vd*-infected olive orchards to assess the potential **discrimination** of the physiological symptoms induced by each pathogen.
- 2. To assess the effect of plant **water status** on the detection of both diseases comparing **traits sensitive** to detect **water-induced stress** with those induced by the infections.

Xylella fastidiosa infected zone

Verticillium dahliae infected zone

Thermal infrared imagery

- 15 olive orchards monitored 7296 olive trees assessed
- Monitored during 2016-2017

Puglia, Southern Italy

Hyperspectral imagery

11 olive orchards monitored 7101 olive trees assessed Monitored during 2011-2013

Castro del Río and Écija, Southern Spain Hyperspectral imagery

Thermal infrared imagery

Visual assessments of disease incidence and severity of olive trees infected by Xf and Vd

Xylella Fastidiosa

Asymptomatic (SEV=0)

Symptomatic (SEV=1)

Verticillium dahliae

Symptomatic (SEV=1)

Symptomatic (SEV=2)

Symptomatic (SEV=3)

Symptomatic (SEV=3)

Symptomatic (SEV=4)

Symptomatic (SEV=4)

Datasets and modelling parameters

Hyperspectral imagery

Datasets and modelling parameters

Hyperspectral imagery

Radiative transfer model inversion Support Vector machine (SVM)

Datasets and modelling parameters

Hyperspectral imagery

PRO4SAIL (PROSPECT-D + 4SAIL) (Feret *et al.*, 2017 and Verhoef *et al.*, 2007)

Datasets and modelling parameters

Hyperspectral imagery

Radiative transfer model inversion

O₂-A *in-filling* Fraunhofer line depth (FLD) method

PRO4SAIL (PROSPECT-D +

4SAIL) (Feret *et al.*, 2017 and Verhoef *et al.*, 2007)

Datasets and modelling parameters

Non-collinear NBHI

Datasets and modelling parameters

Hyperspectral imagery

Thermal imagery

Crop Water Stress Index (CWSI)

Datasets for the three-stage classification

- Independent datasets including the hyperspectral and thermal traits were built
 - *Xylella fastidiosa* dataset

• Verticillium dahliae dataset

• Water-induced stress dataset

Non-water stressed Water-stress induced

Contribution of thermal and spectral traits on the detection

- Contribution (importance) of each plant trait for detecting both infections and water-induced stress:
 - Xylella fastidiosa

Asymptomatic {SEV=0} vs. Symptomatic {SEV \geq 1} olive trees

• Verticillium dahliae

Asymptomatic {SEV=0} vs. Symptomatic {SEV \geq 1} olive trees

• Water-induced stress

Non-water stress vs. water-stress induced olive trees

Feature-weighted models were built considering the traits importance

Stage I: Detection

Feature-weighted classification models were implemented to include the importance of each trait on the detection of each disease

• Xylella fastidiosa feature-weighted model

• Verticillium dahliae feature-weighted model

Reclassification of uncertain trees (Stage II)

To reduce the uncertainty produced by symptoms confounded with water-induced stress responses.

Stage II: Reclassification

Stage II (Reclassification stage)

Symptoms of trees detected as infected are compared to discriminate between both infections (Stage III)

Stage III: Discrimination

Stage III (Discrimination stage) Divergent spectral traits were obtained to detect and discriminate:

- Xylella fastidiosa over Verticillium dahliae infected trees
- Verticillium dahliae over Xylella fastidiosa infected trees

Schematic representation of the three-stages classification

(Thomas et al., 2021)

Assessing the accuracy on the detection and discrimination of both diseases

Sensitivity test

Sensitivity ——— Correctly identifying True Positives (TP) while avoiding False Negatives (FN)

Specificity test

Specificity ——— Correctly identifying True Negatives (TN) while avoiding False Positives (FP)

Importance of plant traits when detecting *Xf***–infected olive trees**

Importance of plant traits when detecting *Vd***–infected**, *Xf***–infected olive trees**

Importance of plant traits when detecting *Vd*–infected, *Xf*–infected, and water-stressed olive trees

Plant traits used to differentiate both infections from water induced stress

NPQI: Normalized Phaeophytinization Index Anth.: Anthocyanins content SIF: Solar Induced Fluorescence

1

0.75

0.5

0.25

0

Importance

Plant traits used to differentiate *Xf*- over *Vd*- infections

PRIn: Normalized Photochemical Refl. Index CRI700M: Carotenoid Refl. Index BF1: Blue Index CUR: Refl. Curvature Index

Plant traits used to differentiate Vd- over Xf- infections

 C_{x+r} : Carotenoids content **LIDF**: Average leaf angle *B*: Blue Index

Sensitivity tests for detecting *Xf* – and *Vd* – infected olive trees

Sensitivity tests for detecting *Xf*– and *Vd*–infected olive trees

Specificity tests for detecting *Xf***– and** *Vd***–infected olive trees (True negatives rate)**

Specificity tests for detecting *Xf***– and** *Vd***–infected olive trees (True negatives rate)**

Specificity tests for detecting *Xf***– and** *Vd***–infected olive trees (True negatives rate)**

Specificity tests for detecting *Xf*- and *Vd*-infected olive trees (True negatives and False positives rate)

CONCLUSIONS

Despite the **high similarity** between the symptoms triggered by both pathogens these results highlight that a **combination of spectral traits** and a **three-stage** machine learning algorithm can be used to accurately monitor, **detect**, and **differentiate** olive trees infected by *Vd* or *Xf*.

CONCLUSIONS

- Despite the **high similarity** between the symptoms triggered by both pathogens these results highlight that a **combination of spectral traits** and a **three-stage** machine learning algorithm can be used to accurately monitor, **detect**, and **differentiate** olive trees infected by *Vd* or *Xf*.
- When detecting Xf infections, the false positive rate decreased to 4%, with OA of 92%, and a κ of 0.8.

CONCLUSIONS

- Despite the **high similarity** between the symptoms triggered by both pathogens these results highlight that a **combination of spectral traits** and a **three-stage** machine learning algorithm can be used to accurately monitor, **detect**, and **differentiate** olive trees infected by *Vd* or *Xf*.
- When detecting Xf infections, the false positive rate decreased to 4%, with OA of 92%, and a κ of 0.8.
- When detecting *Vd* infections, the **false positive** rate decreased to 9%, yielding an overall accuracy (OA) of 98% and a kappa coefficient (κ) of 0.7.

3ª European Conference on Xylella fastidiosa and XF-ACTORS final meeting

Using hyperspectral imagery and a multi-stage machine learning algorithm to distinguish infection symptoms caused by two xylem-limited pathogens

ens

THE UNIVERSITY O

MELBOURNE

Poblete, T., Navas-Cortes, J.A., Camino, C., Calderón, R., Hornero, A., González-Dugo, V., Landa, B.B., Zarco-Tejada, P.J.

