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A B S T R A C T   

The early detection of Xylella fastidiosa (Xf) infections is critical to the management of this dangerous plan 
pathogen across the world. Recent studies with remote sensing (RS) sensors at different scales have shown that 
Xf-infected olive trees have distinct spectral features in the visible and infrared regions (VNIR). However, further 
work is needed to integrate remote sensing in the management of plant disease epidemics. Here, we research how 
the spectral changes picked up by different sets of RS plant traits (i.e., pigments, structural or leaf protein 
content), can help capture the spatial dynamics of Xf spread. We coupled a spatial spread model with the 
probability of Xf-infection predicted by a RS-driven support vector machine (RS-SVM) model. Furthermore, we 
analyzed which RS plant traits contribute most to the output of the prediction models. For that, in almond or
chards affected by Xf (n = 1426 trees), we conducted a field campaign simultaneously with an airborne campaign 
to collect high-resolution thermal images and hyperspectral images in the visible-near-infrared (VNIR, 
400–850 nm) and short-wave infrared regions (SWIR, 950–1700 nm). The best performing RS-SVM model 
(OA = 75%; kappa = 0.50) included as predictors leaf protein content, nitrogen indices (NIs), fluorescence and a 
thermal indicator (Tc), alongside pigments and structural parameters. Leaf protein content together with NIs 
contributed 28% to the explanatory power of the model, followed by chlorophyll (22%), structural parameters 
(LAI and LIDFa), and chlorophyll indicators of photosynthetic efficiency. Coupling the RS model with an 
epidemic spread model increased the accuracy (OA = 80%; kappa = 0.48). In the almond trees where the 
presence of Xf was assayed by qPCR (n = 318 trees), the combined RS-spread model yielded an OA of 71% and 
kappa = 0.33, which is higher than the RS-only model and visual inspections (both OA = 64–65% and 
kappa = 0.26–31). Our work demonstrates how combining spatial epidemiological models and remote sensing 
can lead to highly accurate predictions of plant disease spatial distribution.   

1. Introduction 

The bacterium Xylella fastidiosa (Xf), described by Wells et al. (1987), 
is a xylem-limited gram-negative bacterial plant pathogen. Xf (accepted 
subspecies: fastidiosa, pauca, multiplex, sandyi and others, e.g., morus) is 
one of the most dangerous bacteria worldwide for plants. It affects over 
30 families of monocotyledons and dicotyledons (Sherald and Kostka, 
1992) and leads to environmental, social and economic damages. Xf- 
caused diseases are considered a global threat and recent outbreaks in 

Europe and Israel have impacted locally cultivated plants of high eco
nomic value (e.g., olive, plum, almond and cherry trees) as well as 
ornamental plants (e.g., myrtle-leaf milkwort, oleander). The emergence 
of Xf in new areas and the unsuccessful containment of its spread in 
territories where it is already established highlight the need to monitor 
the progress of large Xf outbreaks and develop comprehensive pest 
management strategies. In this regard, remote sensing (RS) methods that 
respond to the plant traits most sensitive to Xf infection (e.g., Zarco- 
Tejada et al., 2018) could help to monitor and mitigate the progress of 
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large Xf outbreaks across a range of crops. 
Remote sensing methods to detect plant pests have greatly advanced 

in recent years (Herrmann et al., 2018; Abdulridha et al., 2019; Poblete 
et al., 2020). Yet, such methods still only rarely take into account the 
nutritional status of the plant host. Both nitrogen deficiency and many 
pathogen infections reduce chlorophyll pigment content (Tartachnyk 
et al., 2006) and consequently photosynthetic activity. Monitoring the 
nutritional, physiological and water status of plants susceptible to a 
particular pathogen can thus help detect when infection occurs. In 
recent years, remote sensing has made significant progress in developing 
methods for the quantification of nitrogen content using the NIR and 
short-wave infrared (SWIR) spectral regions (Herrmann et al., 2010; 
Gnyp et al., 2014; Mahajan et al., 2014; Pimstein et al., 2011; Camino 
et al., 2018a). In parallel, advances in thermography show the feasibility 
of using thermal infrared remote sensing to monitor water status and 
transpiration across an entire crop field (Meron et al., 2010; Gonzalez- 
Dugo et al., 2015). In the last years, sun-induced chlorophyll fluores
cence (SIF) has received increasing attention for the monitoring of 
photosynthetic activity at global (Joiner et al., 2011; Koffi et al., 2015; 
Norton et al., 2017; Frankenberg and Berry, 2018) and local scales 
(Pérez-Priego et al., 2005; Daumard et al., 2012; Zarco-Tejada et al., 
2016; Camino et al., 2019). Most of the existing approaches for 
retrieving SIF – whether at ground level or from airborne or satellite 
sensors – rely on the Fraunhofer Line Discrimination (FLD) principle 
(Plascyk and Gabriel, 1975) by combining solar irradiance and radiance 
emitted by the vegetation through the use of atmospheric O2 absorption 
features (Damm et al., 2015; Meroni et al., 2009; Moya et al., 2004). In 
this regard, recent work (e.g., Sabater et al., 2018; Cendrero-Mateo 
et al., 2019; Pacheco-Labrador et al., 2019) highlighted the re
quirements for fine spectral resolutions (e.g., ≤ 1 nm) to successfully 
retrieve SIF in absolute terms using the main atmospheric oxygen ab
sorption lines. Nevertheless, sensors with coarser spectral resolution 
have been successfully used to estimate SIF through adequate strategies 
for assessing its relative variability in the context of stress detection 
(Damm et al., 2014; Zarco-Tejada et al., 2012, 2016, 2018) and 
demonstrated theoretically by radiative transfer modelling (Damm 
et al., 2011). 

Vegetation indices are commonly designed based on narrow-band 
reflectance to maximize sensitivity to vegetation characteristics such 
as chlorophylls pigments (Haboudane et al., 2002; Zarco-Tejada et al., 
2004; Yu et al., 2015; Wang et al., 2017), carotenoids (Gitelson et al., 
2002; Zarco-Tejada et al., 2013b), anthocyanins (Gitelson et al., 2006) 
and macronutrients (Herrmann et al., 2010; Pimstein et al., 2011; 
Mahajan et al., 2016; Camino et al., 2018a). However, these empirical 
approaches require appropriate modelling strategies to mitigate the 
structural and shadow effects on canopy reflectance. This can be partly 
overcome by using physical radiative transfer models (RTMs), which 
offer greater robustness and transferability (Jacquemoud and Baret, 
1990; Zarco-Tejada et al., 2004; Schlerf and Atzberger, 2006; Wang 
et al., 2015). Several inversion methods for RTMs exist to retrieve leaf 
biochemical and biophysical plant traits at canopy scales. In fact, one of 
the most widely used RTMs is the PROSPECT leaf model (Jacquemoud 
and Baret, 1990) or its most recent version PROSPECT-PRO (Féret et al., 
2020), which enable the quantification of leaf protein content. This 
model can be coupled to homogeneous approximations of canopies, such 
as SAIL (Verhoef, 1984) or used for complex canopy assumptions with 3- 
D simulations such as FLIGHT (North, 1996) or DART (Gastellu-Etch
egorry et al., 1996). 

In recent years, RTM inversion methods have been successfully 
improved using so-called hybrid methods (Berger et al., 2020; Brede 
et al., 2020; De Grave et al., 2020; Upreti et al., 2019). These hybrid 
approaches, described in detail by Verrelst et al. (2019), combine 
physically-based models with advanced non-parametric regression 
models, such as artificial neural networks, random forest (RF) re
gressions, support vector machines (SVM) or Gaussian process regres
sion. As shown in  Verrelst et al. (2019), hybrid inversion methods have 

successfully been used to retrieve plant traits. Doktor et al. (2014), in 
particular, showed that RF approaches are able to retrieve LAI and 
chlorophyll content. Others developed techniques to estimate Cab and 
structural parameters include the use of support vector machines (Liang 
et al., 2016), ensemble techniques that use RF-SVM regressions (Rivera- 
Caicedo et al., 2017) or the bagging trees methods (Upreti et al., 2019). 
Abdel-Rahman et al. (2013) showed the feasibility of RF regression and 
spectral band selection for estimating leaf nitrogen concentration. 
Berger et al. (2020) used a hybrid ML method with Gaussian regression 
to estimate crop nitrogen based on the coupled 4SAIL model with the 
leaf model PROSPECT-PRO. 

Much remote sensing progress has been made using machine 
learning algorithms for detecting plant pests at the ground and orchard 
scales (Calderón et al., 2015; Herrmann et al., 2018; Zarco-Tejada et al., 
2018; Abdulridha et al., 2019). However, most RS methods do not 
consider a priori information on the pathogen’s spatial distribution, host 
landscape connectivity or epidemiological processes, such as pathogen 
dispersal mechanisms. However, disease spread models increasingly 
underpin disease control interventions and make them more targeted. 
Recent studies by Calderón and Parnell (2019) have shown how 
combining remote sensing-based plant health estimates with a stochastic 
disease spread model overcomes the limitations of using each approach 
separately. The disease spread model captured the impact of landscape 
connectivity and spatial disease dynamics building on previous research 
by Parnell et al. (2011, 2017). It resulted in accurate maps of the spatial 
correlations typical of vector-borne transmitted diseases and quantified 
the effect of host spatial structure and landscape connectivity on disease 
distribution in olive trees infected by Xf subsp. pauca in the south of 
Italy. This combination of remote sensing and modelling approaches 
improved the detection rate of pre-visual Xf infections. Given that 
infected but asymptomatic trees contribute as an inoculum to the spread 
of Xf epidemics, such detections of pre-visual infections are critical to 
eradicate the disease. 

Here, our aim was to develop a remote sensing method to map the 
spatial dynamics of Xf outbreaks and, specifically, to optimize the early 
detection of Xf infection in almond trees. To do that, we developed a 
remote sensing-based classification model that relied on a support vec
tor machine (RS-SVM) and was driven by plant traits inverted with 
biophysical models (i.e., leaf nitrogen content, pigments, structural 
parameters) and a set of spectral indices. We then coupled the remote 
sensing model with an iterative stochastic spread model to estimate the 
spatial distribution of Xf in almond orchards. Finally, we assessed which 
of the predictor variables in the RS-SVM classification models were most 
critical to quantifying the Xf symptoms observed across the different 
almond orchards. 

2. Material and methods 

2.1. Field data collection 

Incidence and severity of Xf symptoms were visually assessed by 
plant pathologists in 1426 almond trees distributed over 20 orchards 
naturally infected by Xf (subsp. multiplex), in 9 municipalities of Alicante 
province, Spain. The assessment was carried out between 7 and 11 July 
2018. Xf disease severity (DS) assessments consisted of visual inspection 
of Xf foliar symptoms, rating each almond tree on a 0–4 scale based on 
the fraction of the crown canopy with disease symptoms (DS), where 
zero corresponds to no visual symptoms (i.e., asymptomatic), one, two 
and three correspond to trees with visual Xf symptoms in between 1 and 
25%, 25–50% and 50–75% of the tree-crown, respectively, and four 
corresponds to a tree with mostly dead branches (≥75% of the crown 
canopy; with leaf collapse or leaf scorch). Of the inspected trees, 46% 
were asymptomatic (DS0) and 54% showed Xf disease symptoms (sam
ple sizes: nDS0 = 657, nDS1 = 359, nDS2 = 214, nDS3 = 142, nDS4 = 54). 

Quantitative Polymerase Chain Reaction assays (qPCR) confirmed 
the presence of Xylella fastidiosa (subsp. multiplex) in all the almond 
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orchards studied. Of the visually assessed trees, 318 (22%; of which 78% 
positive and 22% negative) – comprising both Xf-symptomatic and 
asymptomatic trees – were randomly selected for qPCR assays from each 
of the 20 orchards. Mature branches and cuttings with attached mature 
leaves were sampled following the standard protocol of the European 
and Mediterranean Plant Protection Organization (EPPO) for Xylella 
fastidiosa: PM 7/24(3). DNA extraction was performed using CTAB 
buffer from 0.5 g of xylem tissue samples. All samples were subjected to 
two qPCR assays using the real-time PCR tests of Harper et al. (2010, 
erratum 2013) and (Francis et al., 2006). 

In a subset of all 1426 almond trees (n = 90) randomly selected for 
qPCR testing regardless of DS, we took leaf physiological measurements, 
in the central areas of the leaves, during the field campaign. Steady-state 
leaf chlorophyll fluorescence (Ft) was measured in 15/25 asymptom
atic/symptomatic leaves per tree using the FluorPen FP-100 device 
(Photon Systems Instruments, Brno, Czech Republic). In total Ft was 
measured on 1135 asymptomatic leaves and 752 Xf-symptomatic leaves. 
For stomatal conductance measurements, we used a steady-state diffu
sion porometer (model SC-1, Decagon Devices, Washington, DC, USA). 
Stomatal conductance measurements, which are highly time- 
consuming, were only taken in 2/3 asymptomatic/symptomatic leaves 
in 10 trees located in the first almond orchard studied. Leaf reflectance – 
within the visible and near-infrared domains (400–800 nm) – was 
measured in 7/10 asymptomatic/symptomatic leaves per tree using the 
PolyPen RP400 handheld spectrometer (Photon Systems Instruments, 
Brno, Czech Republic). In total we measured leaf reflectance in 697 
asymptomatic leaves and 417 symptomatic leaves. In the same trees and 
leaves, chlorophyll content (Cab), anthocyanin content (Anth), flavonoid 
concentration, the nitrogen balance index (NBI) and leaf temperature 
were measured in 15/25 asymptomatic/symptomatic leaves (Table 1; 
n = 2534 leaf samples) per tree using a leaf-clip Dualex 4 sensor (Force- 
A, Orsay, France). The relationship between chlorophyll content and 
Dualex readings for dicotyledon crops found by Cerovic et al. (2012) was 
applied to compute leaf chlorophyll content (μgcm− 2) from the Dualex 
readings. We combined the Dualex readings measured in asymptomatic 
and Xf-symptomatic leaves of 90 almond trees with the information 
provided by the qPCR assays and visual inspections. After that, we 
classifed the Dualex readings into four categories based on the visual 
inspections and the qPCR tests (Table 1). 

We assessed the effects of Xf infection on stomatal conductance and 
leaf fluorescence using ANOVA analysis. For Dualex readings, prior to 
the analyses, we tested the data for normality using the Shapiro-Wilk 
test and for homogeneity of variances using the Kruskal-Wallis test; re
sults of both tests were significant (P < 0.05). Consequently, we per
formed a Kruskal-Wallis test to assess the effects of Xf-infection status on 
Dualex parameters (Cab, Anth and NBI) followed by the Wilcoxon post- 
hoc test with Bonferroni correction to estimate differences (P < 0.05) 
between the four classes shown in Table 1 (Healthy, Asymptomatic Xf- 
infected, Symptomatic Xf-infected and Non-Xf-infected). 

To analyze spectral and pigment changes according to Xf symptoms, 
we measured leaf reflectance and took Dualex readings in asymptomatic 
and Xf-symptomatic leaves with different levels of Xf-symptoms 

(supplementary Fig. 1). To analyses the Xf-symptoms in this leaf dataset, 
we randomly measured 7/10 leaf measurements in different areas of the 
sampled leaves (5–6 leaves per class). This dataset was exclusively used 
to assess how pigments and nitrogen proportions change in leaves as Xf 
symptoms increase. 

2.2. Airborne campaign 

An airborne campaign was conducted on 10 July 2018 in Alicante 
province, central-eastern Spain (total flight area = 20,670 ha), using a 
manned aircraft with two high-resolution hyperspectral sensors (Fig. 1) 
and a thermal sensor installed in tandem: a VNIR micro-hyperspec 
imager (Headwall Photonics, Fitchburg, MA, USA), a micro-hyperspec 
NIR-100 linear-array imager (Headwall Photonics, Fitchburg, MA, 
USA) and the FLIR SC655 thermal camera (FLIR Systems, Wilsonville, 
OR, USA). To minimize differences due to sun angle effects, the flights 
were performed around noon (11–14 local time, range of solar zenith 
angle: 15–30 degrees) in clear-sky conditions. The aircraft flew on the 
solar plane at 250–400 m above ground level (AGL) and a cruising speed 
of 75–110 knots. The configuration of hyperspectral sensors used during 
the airborne campaign is summarized in supplementary Table S1. 

The hyperspectral sensors were radiometrically calibrated in the 
laboratory with the CSTM-USS-2000C integrating sphere (LabSphere, 
North Sutton, NH, USA) at four levels of illumination using six inte
gration times. The full width at half maximum (FWHM) was derived 
after spectral calibration using a Cornerstone 260 1/4 m Mono
chromator (model 74,100; Oriel Instruments, USA) and the XE-1 Xenon 
Calibration Light Source (Oceanic Optics, USA). Hyperspectral imagery 
was atmospherically corrected using the solar incoming irradiance (E) 
measured in the field concurrently with the flights through a handheld 
field spectrometer (FieldSpec Handheld Pro, ASD Inc., Longmont, Col
orado, USA) with 3 nm bandwidth and a cosine corrector-diffuser probe 
for the VNIR sensor and simulated by the SMARTS model (Gueymard, 
1995, 2001) for the NIR-100 sensor. To simulate incoming irradiance, 
aerosol optical measurements (air mass, aerosol optical depth at 550 nm 
and Ångström exponent at 550 nm) and simultaneous readings of rela
tive humidity, temperature and air pressure were acquired at flight time 
with a Microtops II handheld multichannel sun photometer (Solar Light, 
Philadelphia, USA) connected to a GPS-12 model (Garmin, Olathe, KS) 
and a portable weather station (Transmitter PTU30, Vaisala, Helsinki, 
Finland), respectively. In addition, reflectance and radiance measure
ments were acquired at the flight time over three different surfaces 
(black, white and soil targets) using a handheld field spectrometer 
calibrated with a Spectralon white reference panel (SRT-99-180, Lab
Sphere, NH, USA). The non-uniform illumination effects were corrected 
through a cross-track illumination correction. The irradiance was 
resampled through a Gaussian convolution to the bandwidth of each 
sensor. A further step was taken to correct the hyperspectral signal with 
the field spectrometer through an empirical line calibration (Smith and 
Milton, 1999) using the soil reflectance measured in the soil targets. To 
reduce noise in both hyperspectral sensors, we applied a Savitzky–Golay 
filter (Savitzky and Golay, 1964) to the reflectance signal. 

The thermal camera on the aircraft had a resolution of 640 × 480 
pixels with 16-bit radiometric resolution and 13.1 mm focal length, 
providing an FOV of 45 × 33.7◦. This yielded a ground resolution of 
40 cm during this flight (Fig. 1c). The radiometric calibration was per
formed using a blackbody (model P80P, Land Instruments, Dronfield, 
UK) and vicarious calibration performed for the flight using temperature 
measurements during the flight over black, white and soil targets with a 
handheld infrared thermometer (LaserSight Optris, Berlin, Germany). 
After each flight, thermal imagery was processed in the laboratory and 
mosaicked using Pix4D software to generate the entire scene. 

Table 1 
Dualex readings classified into four categories based on Xylella fastidiosa disease 
severity (DS) according to the visual inspections and the qPCR test. A total of 
2534 leaf-level measurements were used.  

Category Leaf sample Visual 
inspection 

qPCR 
tests 

n 

Healthy Asymptomatic DS = 0 Negative 372 
Asymptomatic Xf- 

infected 
Asymptomatic DS ≥ 1 Positive 1113 

Symptomatic Xf- 
infected 

Xf-symptomatic DS ≥ 1 Positive 1016 

Non-Xf-infected Asympt/Xf- 
sympt. 

DS ≥ 1 Negative 33  
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2.3. Fluorescence emission, thermal indicator and plant stress-related 
vegetation indices 

Average tree-crown radiance (L) and reflectance (R) spectra and tree- 
crown temperature (Tc) were extracted from sunlit pure vegetation 
pixels using automated object-based methods. As a first step, the soil 
background and shadow effects within almond tree crowns were 
removed using object-based tree-crown segmentation. The tree crowns 
were segmented using Niblack’s thresholding method (Niblack, 1986) 
and Sauvola and Pietikäinen’s binarization techniques (Sauvola and 
Pietikäinen, 2000). As a second step, a watershed segmentation based on 
the Euclidean distance was applied to separate touching or overlapping 
tree crowns in the images. Radiance spectra in sunlit pure vegetation 
pixels were used to quantify the solar-induced chlorophyll fluorescence 
(SIF) signal using the FLD in-filling method (Plascyk and Gabriel, 1975), 
which was well described by Moya et al. (2004) and Meroni et al. 
(2010). This step is important when attempting to estimate SIF with 
coarser spectral resolution sensors (5–6 nm), mainly because the fluo
rescence signal retrieved from mixed pixels (e.g., branches, shadows) is 
strongly affected by illumination effects and canopy structure (Camino 
et al., 2018b; Aasen et al., 2019) causing an overestimation of the 
fluorescence quantification. The FLD method is based on the SIF 
retrieval using two spectral bands located in and out of the O2–A ab
sorption feature located at 760.5 nm (Fig. 5a). Despite the high spectral 
resolution (< 1 nm) needed to quantify SIF at the O2-A, modelling work 
by Damm et al. (2011) demonstrated that sensors with 5–6 nm band
width within the O2 absorption window can be used to derive chloro
phyll emission using the FLD method, which is typically estimated using 
instruments with a spectral resolution below 0.5 nm. In particular, The 
FLD2 method used Lin (L762 nm) and Lout (L750 nm) from the hyper
spectral VNIR sensor, and solar incoming irradiance Ein (L762 nm) and 
Eout (L750 nm) concurrently measured at the time of the flight with the 
field spectrometer. The average reflectance (Fig. 4b) extracted from pure 
vegetation pixels in single tree crowns was used to calculate several 
commonly used plant-stress spectral indices found in the scientific 
literature. More than 90 narrow spectral indices were calculated using 
420 spectral bands located in the visible-NIR and the short-wave 
infrared regions. These indicators were related to pigment content, 

structure, epoxidation state of the xanthophyll cycle, chlorophyll fluo
rescence emission, blue-green-red ratio indices and nitrogen indices 
(NIs) using the SWIR domain. To reduce the number of narrow spectral 
indices, we conducted a multicollinearity analysis using the variance 
inflation factor (VIF) and Wilks’ lambda scores to identify the non- 
correlated narrow spectral bands that made the most significant 
contribution to early detection of Xf in almond trees (supplementary 
Table S2). The analysis of the variance factor of inflation (VIF) was 
calculated for each narrow-band index by linear regression with the 
other narrow-band indices. After that, the VIF of that regression was 
obtained using the equation VIF = 1/(1-r2; where r2 is the coefficient of 
determination). To reduce the high inter-correlations or inter- 
associations among the narrow-band indices, a VIF threshold ≤10 was 
chosen (Hair et al., 1995). Subsequently, a stepwise forward variable 
selection using Wilks’ Lambda criterion with an approximate F-test 
decision ≤0.15 was performed to select the most significant plant traits 
to distinguish between asymptomatic tree crowns (DS = 0) and tree 
crowns with Xf symptoms (DS ≥ 1). After that, as the spectral data were 
not normally distributed at orchard level, the Kruskal-Wallis test and the 
Wilcoxon post-hoc test with Bonferroni correction were performed to 
evaluate the significant differences in the main spectral indices between 
asymptomatic tree crowns (DS = 0) and tree crowns with Xf symptoms 
(DS ≥ 1). 

2.4. Inversion of plant traits using an RTM-RF hybrid approach 

We retrieved the canopy structural parameters and leaf biophysical 
and biochemical constituents from each tree crown by PROSAIL-PRO 
inversion using the average reflectance spectra extracted from pure- 
vegetation pixels based on similar tree-crown segmentation ap
proaches taken by Zarco-Tejada et al. (2018) and Poblete et al. (2020). 
The PROSAIL-PRO radiative transfer model couples the PROSPECT-PRO 
leaf reflectance model (Féret et al., 2021), with the 4SAIL turbid me
dium canopy radiative transfer model (Verhoef et al., 2007). 
PROSPECT-PRO model enabled the separation of the nitrogen-based 
constituents (proteins) from carbon-based constituents (including cel
lulose, lignin, hemicellulose, starch and sugars). The SAIL model is 
based on the 1-D model developed by Suits (1971) to simulate the 

Fig. 1. Overview of an almond orchard imaged by 
the hyperspectral VNIR sensor (a: composite: 800(R), 
679 (G) and 540 (B) nm) during the airborne 
campaign conducted in Alicante in July 2018. A 
detailed view of the central almond trees is displayed 
in (b), (c, composite: 985 (R), 1285 (G) and 1550 (B) 
nm) and (d) using the hyperspectral VNIR, hyper
spectral NIR/100 and the thermal sensor respectively. 
The spatial resolutions of hyperspectral and thermal 
sensors were 0.30 (a, b), 0.80 (c) and 0.40 (d) cm per 
pixel.   
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bidirectional reflectance of a canopy. 
An RTM-based hybrid inversion with random forest regression was 

used to estimate each biochemical and biophysical parameter using the 
reflectance spectra from the RTM simulations and from the hyper
spectral sensors in the 400–1750 nm spectral domain. To avoid over
fitting on the training sample, a 10-fold cross-validation with 5 repeats 
was used in the RF models to predict each plant trait. The RF machine 
learning approach was based on 40,000 simulations using a look-up 
table (LUT) with the biochemical and biophysical ranges shown on 
Table 2. A uniform distribution was selected for each varied plant 
parameter. The solar geometry – defined by the solar zenith and azimuth 
– and the viewing angles needed to simulate canopy reflectance were 
extracted for the flight date. The solar zenith angle was set between 
0 and 45 degrees to minimize the impact of the viewing geometry at 
each flight date and time. To avoid potential ill-posed inversion solu
tions during the inversion method, we constrained all inputs in the LUT 
based on field measurements, existing literature, and preliminary sim
ulations to make sure that the resulting LUT covered range of the ob
servations made by the hyperspectral sensors over the tree crowns. 

In order to remove data noise affecting model inversion, we applied a 
smoothing of the simulated spectrum at 1 nm resolution using a 
Savitzky-Golay derived calculation method (Savitzky and Golay, 1964). 
After that, we resampled each simulated spectrum to adjust its resolu
tion to the bandwidth of the sensors using gaussian spectral response 
functions defined by the FWHM values of each sensor (FWHM = 6.5 nm 
for the VNIR hyperspectral sensor and FWHM = 6.05 nm for the NIR-100 
hyperspectral sensor). 

Next, we trained a set of RF regression models to estimate plan traits 
from synthetic canopy reflectance data to obtain individual plant traits. 
Resampled reflectance simulations at hyperspectral resolution were 
partitioned using a random selection into two groups: the training 
sample with 75% of the simulations and the testing sample with the 
remaining 25% of simulations. After that, the performance of each RF 
model for retrieving individual plant traits was evaluated by calculating 
the coefficient of determination (r2), the root mean square error (RMSE) 
and the mean absolute error (MAE). 

Finally, we applied the RF regression models to the airborne 
hyperspectral reflectance to estimate plant traits for individual tree 
crowns. Performance for the inversions through PROSAIL-PRO are listed 
supplementary Table S3. We evaluated the uncertainties of the chloro
phyll and anthocyanin concentrations retrieved at tree crown level with 
leaf-level Dualex measurements (supplementary Fig. S2 and S3). For 
that, we assessed the inverted Cab and Anth with the average leaf Dualex 
readings grouped by leaf-level disease severity level (supplementary Fig. 
S2 and S3). In the absence of field measurements, the structural pa
rameters (LAI and LIDFa) could only be compared with related narrow 

band indices (i.e., NDVI and SIF, supplementary Fig. S4). Additionally, 
we used correlation maps based on the normalized difference spectral 
index (NDSI) to analyze the sensitivity of each plant trait (LAI, LIDFa, Cw 
and Cp) to all possible band combinations in the 400–1700 nm region 
(supplementary Fig. S5). Finally, to explore how well individual plant 
traits could distinguish asymptomatic almond trees from those with 
initial or advanced Xf symptoms, we compared all traits to the DS re
ported during the visual inspection (supplementary Fig. S6-S8). The 
statistical analyses were conducted with R software (R Core Team, 
2020); the spectral transformation was performed with the ‘hsdar’ R 
package (Lehnert et al., 2019) and the RFs were implemented with the 
‘caret’ package (Kuhn, 2020). 

2.5. Machine learning classification to detect Xylella fastidiosa infection 

We used non-linear support vector machines (SVMs) to classify dis
ease incidence in almond tree crowns, using the visual assessments as 
reference (n = 1426 trees) and the RS plant traits as predictors. The SVM 
algorithm is based on statistical learning theory and estimates the hy
perplane that optimally separates between classes. The non-linear SVM 
classification method was applied using the radial basis function kernel 
and a cost function to penalize errors associated with the misclassifi
cation of tree crowns. The best radial function and cost parameter were 
found using a grid search method with a cross-validation approach. 

The remote sensing-based SVMs were applied to assess the separa
tion between asymptomatic tree crowns (DS = 0) and Xf-symptomatic 
tree crowns (DS > 0). First, the set of plant trait predictor variables, 
estimated from the remotely sensed images, was reduced by a VIF 
analysis with a threshold ≤10 and Wilks’ lambda method with an F-test 
decision ≤0.15. The VIF- Wilks’ lambda approach allowed us to obtain 
the most parsimonious model with the least number of plant traits for 
each VNIR and SWIR spectral regions. Next, we built the SVM models 
using three different sets of functional plant traits: i) the pigment- and 
structure-based functional traits (PS) composed of selected VIF-Wilks’ 
lambda indices in the VNIR and plant traits retrieved by RTM inversions 
(Cab, Anth, Car, Cw, LAI, and LIDFa); ii) the pigment-structure-based, leaf 
protein content (Cp) and nutrition-based traits selected by the VIF-Wilks’ 
lambda in the NIR-SWIR (PSN); and iii) the pigment-structure-nutrition- 
based traits, fluorescence and thermal-based functional traits (PSNFT), 
which also include the chlorophyll fluorescence emission (described in 
Section 2.3) and crown temperature (Tc) extracted from the thermal 
imagery. In addition, we evaluated the effect of fluorescence, tempera
ture, and Cp individually on the overall accuracy of the PS model. This is 
important from an operational point of view, in order to weigh the costs 
and benefits of installing additional high-resolution sensors on aerial 
platform to detect the Xf outbreaks. 

Each of the three SVM models (PS, PSN and PSNFT), was run over the 
data set in 80 iterations. Each iteration selected 75% of the trees for 
model training, reserving the remainder for testing and maintaining the 
1:1 ratio between symptomatic and asymptomatic of the original dataset 
through balancing techniques. In addition, we included K-fold (10-fold) 
cross-validation to avoid overfitting problems. The classification accu
racies of the different RS-SVM models were evaluated by calculating the 
overall accuracy (OA, in %), the kappa value (Cohe, 1960) and the Area- 
Under-the-Curve (AUC) scores. OA and Cohen’s kappa are calculated 
based on the confusion matrix. The AUC is estimated through the 
receiver operating characteristic (ROC) curves using the prediction 
probabilities of each model and the disease incidence recorded during 
the visual inspections. Moreover, we conducted an importance analysis 
for each SVM (PS, PSN and PSNFT) to analyze the contribution of each 
plant trait in the RS-SVM models based on the weight of coefficients of 
each SVM model. Finally, we assessed the classification accuracy of the 
proposed remote sensing SVM disease detection model and the visual 
evaluation against the results of the qPCR assays in each orchard 
studied. 

Table 2 
Input variables used in the coupled PROSAIL-PRO model.  

Input Parameter Ranges Units 

PROSPECT-PRO 
N Leaf structure parameter 1.5–2.5 [− ] 
Cab Chlorophyll a + b content 0–60 μg/cm2 

Car Carotenoid content 0–15 μg/cm2 

Anth Anthocyanin content 0–7.5 μg/cm2 

Cbrown Brown pigment 0–1 [− ] 
Cw Equivalent water thickness 0.004–0.012 g cm-2 

Cp Leaf protein content 0.0004–0.005 g/cm2 

CBC Carbon-based constituents 0.001–0.002 g/cm2 

SAILH 5B 
LAI Leaf area index 0.5–4 m2 m-2 

LIDFa Leaf angle distribution (a) 30–90 Deg 
LIDFb Leaf angle distribution (b) 1 [− ] 
hspot Hotspot parameter 0–1 Deg 
Tts Solar zenith angle 0–45 Deg 
Tto Observer zenith angle 0–25 Deg 
Psi Relative azimuth angle 0 Deg 
Rsoil Soil reflectance From image [− ]  

C. Camino et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 260 (2021) 112420

6

2.6. Integrating spread modelling and remote sensing to optimize the early 
detection of Xf infection 

We coupled a spatially explicit stochastic epidemic spread model 
with the RS-based infection estimations obtained from the PSNFT 
model. The method uses an iterative stochastic optimization algorithm 
to estimate the spatial distribution of disease from a sample by explicitly 
simulating the individual distance-dependent spread processes between 
the pathogen and its host population (Parnell et al., 2011). Thus, the 
probability of disease for each single unsampled tree is estimated by 
iterating through unsampled individuals at random, updating their 
probability of disease and accepting only map-improving changes. The 
resulting probability of disease was integrated into the epidemic spread 
model to quantify the contribution of host connectivity to the pathogen 
spread throughout the landscape with graph and circuit theories. The 
hosts in the landscape, mapped using the high-resolution imagery, were 
interconnected to build a graph where each tree was connected to its 
eight nearest neighboring trees. Next, the probability of disease was 
allocated to each tree, using RS-based probability estimations in 
unsampled trees and disease status determined by visual inspection in 
sampled trees (i.e., 1 if the disease was present and 0 if the disease was 
absent). We tested the proposed method using multiple random sample 
placements with a range of sample sizes from 5 to 20% of all the 
inspected trees. Pathogen spread across the graph was modelled using 
circuit theory, where the effective distances (deffij) between node pairs 
were used as proxies of effective pathogen dispersion (McRae et al., 
2008). The effective distance between any pair of nodes was defined as 
the resistance distance between the nodes when each graph edge was 
replaced by a resistor, the conductance (Gij) of which means the 
dispersal probability between two individuals as follows: 

Gij = Pi⋅exp
(
− β⋅dij

)
⋅

Pedgeij

∑8

j=1
Pedgeij

(1)  

where Pi is the probability of disease of tree i estimated by RS; Pedgeij is 
the probability of pathogen dispersal across the edge ij, which was 
defined as the area of a rectangular trapezium where the length of the 
side perpendicular to the bases is equal to 1 and the bases were assigned 
Pi and Pj, respectively; dij is the Euclidean distance in meters between 
tree i and tree j; and β is the distance decay coefficient (β > 0) of the 
negative exponential dispersal kernel, which had to be estimated. Based 
on this initial condition, we calculated the initial value of the objective 
function (OF), which was an accuracy metric of the estimated map. In 
this study, sampled trees refers to trees randomly selected from each 
orchard except for those where qPCR tests were performed to assess 
their Xf-infection status; this was the only information that was used to 
assess the accuracy of the estimated map. The deviance, which was 
based on likelihood statistics to make a comparison between binary 
observations and probability estimates (Parnell et al., 2011), was 
selected as the OF. The optimization process to minimize the OF made it 
possible to maximize the accuracy of the map. Subsequently, the itera
tion loop started by choosing an unsampled tree i at random and 
updating its probability of disease according to the function 

Pi = 1 − exp

[

−
∑

j∕=i

Pj⋅exp
(
− α⋅deff ij

)
]

(2) 

Here, deffij was the effective distance between unsampled tree i and 
(sampled or unsampled) tree j, where α was the distance decay coeffi
cient (α > 0), which had to be estimated. Once this change was inte
grated into the system, the OF was recalculated using the eq. [2] the 
previous function to determine the probability of disease for each 
sampled tree by using the probability of disease of all the other trees 
(sampled and unsampled). If this new value of the OF was less than its 
value from the previous iteration, the change was accepted. Otherwise, 

it was rejected, and the previously estimated map and OF were retained. 
The stopping criterion was calculated from the gradient of the OF across 
the previous 1000 iterations of the algorithm. If this threshold gradient 
was <0.01, the algorithm was stopped and the current estimated map 
was considered as the final map. The selected combination of parame
ters was that with the lowest OF that led to the most accurate map. The 
estimated probabilities of disease were converted to binary presence/ 
absence data using the average estimated probability across all unsam
pled trees as the threshold (Parnell et al., 2011). The coupled PSNFT- 
spread model was tested over the 20 orchards. To explore if the 
coupled RS-spread model actually improved the detection of the early 
symptoms at a pre-visual stage, we evaluated the accuracies of the 
PSNFT disease detection model, the coupled PSNFT-spread model, and 
the visual inspection using qPCR assay data obtained in the selected 
orchards. 

3. Results 

3.1. Spectral, pigment, nitrogen and physiological changes at leaf level 

Leaf reflectance and the Dualex readings were assessed in asymp
tomatic and Xf-symptomatic leaves. Leaf reflectance consistently 
increased with leaf DS level (Fig. 2a). The blue region (450–485 nm), the 
green region (495–570 nm), the red region (625–685 nm) and the red- 
edge peak (≃ 705 nm) showed the degradation of the chlorophyll pig
ments as leaf DS increased. In the blue and green regions, the reflectance 
profiles showed the degradation of the carotenoids as Xf symptoms 
worsened and spectral changes in the green region appeared linked to 
high anthocyanins levels (Fig. 2b). The scatterplots between pigments 
and NBI (Fig. 2b and d) showed that as the severity of Xf symptoms 
increased, anthocyanin levels also increased, while the chlorophyll and 
nitrogen content decreased. 

When the Dualex readings were compared to Xf-infection status ac
cording to qPCR assays and visual inspection ratings, the Kruskal-Wallis 
test (Fig. 3; supplementary Table S4) showed significant differences 
(P < 0.05) for anthocyanins, chlorophyll and NBI between healthy 
leaves (qPCR = negative and DS = 0) and asymptomatic/symptomatic 
leaves measured in almond trees, where the presence of Xf bacteria was 
confirmed by qPCR tests (qPCR = positive and DS ≥1). However, it 
showed no significant differences (P ≥ 0.05) between symptomatic 
leaves sampled from non-Xf-infected trees (qPCR = negative and visual 
inspection DS ≥1) and Xf-symptomatic leaves. In general, anthocyanins 
exhibited lower values in healthy leaves (qPCR = negative and DS = 0) 
than in symptomatic Xf-infected leaves (qPCR = positive and DS ≥ 1) 
(Fig. 3a; supplementary Table S4). In fact, anthocyanin levels in healthy 
leaves were similar to those in asymptomatic leaves sampled from 
symptomatic Xf-infected trees (qPCR = positive and DS ≥1). However, 
chlorophyll and nitrogen values were inversely related to the occurrence 
of visible Xf symptoms (Fig. 3c; Fig. 3b and Fig. 2c). 

Leaf stomatal conductance (Gs) measured with the porometer in 
asymptomatic and Xf-symptomatic leaves in one orchard (Fig. 4a) 
showed that stomatal conductance decreased in Xf-infected leaves. 
Healthy asymptomatic leaves yielded maximum Gs values of 345 mmol. 
m− 2.s− 1, compared to 214 mmol.m− 2.s− 1 in leaves with Xf symptoms. 
The ANOVA analysis showed that stomatal conductance differed 
significantly (P < 0.05) between asymptomatic (DS = 0) and Xf-symp
tomatic leaves with DS ≥ 1. 

Steady-state leaf chlorophyll fluorescence measured with the Fluo
rPen FP-100 instrument (Fig. 4b) showed a downward trend as DS 
increased. Xf-symptomatic leaves showed lower Ft values than asymp
tomatic leaves. However, fluorescence is affected by the acquisition 
measurement time and diurnal factors, which varied across DS levels. 
Despite these diurnal differences, a clear pattern was observed between 
asymptomatic and symptomatic leaves in trees infected by Xf, reaching 
an average value of 2020 ± 426 arbitrary units (a.u.) and 1652 ± 544 a. 
u., respectively. The ANOVA confirmed statistically significant 
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differences in Ft between asymptomatic and symptomatic leaves in trees 
at early and middle stages of Xf disease development (P ≤ 4.52 × 10− 9 

for DS 1–3). 

3.2. Assessment of spectral indices and plant traits to track changes at 
tree-crown level 

The average radiance spectra extracted from images of asymptom
atic and Xf-affected trees (Fig. 5a) showed marked differences from the 
radiance used to estimate solar-induced chlorophyll emission. In 
particular, the FLD region showed higher radiance in asymptomatic 
trees (DS = 0, n = 673 tree-spectra) than in trees with Xf infection 
(1 ≤ DS ≤ 2.5, n = 144 tree-spectra) and advanced Xf-infected trees 
(DS ≥ 2.5, n = 55 tree spectra). This was consistent with the average 
reflectance spectra measured in pure vegetation pixels at tree-crown 
level (Fig. 5b), where asymptomatic trees showed lower reflectance in 
the VIS-NIR spectral region (400–1250 nm) than trees showing initial or 
advanced Xf symptoms. In the spectral range between 1500 and 

1700 nm, the hyperspectral reflectance showed that asymptomatic trees 
had also lower reflectance than symptomatic trees with advanced DS 
levels. 

Based on the VIF analysis and Wilks’ lambda, we found that the 
narrow-band spectral indices most sensitive to Xf-symptom were those 
related to chlorophyll pigments (i.e., TCARI, NPQI, VOG2, Datt- 
CabCx + c), the blue/green ratio (BF1), blue reflectance index (BRI2), 
photosynthetic efficiency (PRIn, PRIM1), chlorophyll fluorescence 
emission (SIF, CUR), and nitrogen content (MCARI1510, CI2, RSI, and 
GnyLi). We evaluated the main narrow-band indices and plant traits at 
the orchard level to evaluate whether they could track differences be
tween asymptomatic and Xf-symptomatic trees under different condi
tions, such as almond varieties, canopy density (e.g., dense tree crowns 
vs. open tree crowns), flight time (e.g., irradiance levels) and soil 
spectral signals. In particular, the PRIn, showed a positive trend as Xf 
severity increased, while the MCARI at 1510 nm, BRI2 and SIF2 showed 
negative trends (Fig. 6). Overall, the Wilcoxon post-hoc (supplementary 
Table S5) test confirmed that the TCARI and PRIn didn’t differ 

Fig. 2. Leaf reflectance measurements (a) and scatterplots (b-d) between pigments (chlorophyll content (Cab) in μgcm− 2 and anthocyanin content in Dualex units) 
and nitrogen balance index (NBI) collected from grouped leaves according to the severity level of leaf scorch symptoms caused by Xylella fastidiosa (Xf) (0–5 and leaf 
completely affected by Xf symptoms). The solid line shows the regression line. 

Fig. 3. Dualex readings of anthocyanin (Anth; a), chlorophyll content (Cab in μgcm− 2; b) and nitrogen balance index (NBI; c) measured in almond leaves classified 
into four categories based on information from qPCR assays and visual inspections. Healthy refers to leaf-level measurements carried out on asymptomatic leaves 
where the absence of Xf bacteria was confirmed (qPCR = negative) and visual inspections assigned DS = 0; Asympt. refers to leaf-level measurements conducted on 
asymptomatic leaves in trees where the presence of Xf bacteria was confirmed by qPCR (positive) and DS ≥1; Sympt. refers to leaf-level measurements conducted on 
symptomatic leaves in trees where the presence of Xf bacteria was confirmed by both methods (qPCR = positive and DS ≥1); Non-Xf-inf. Refers to leaf-level 
measurements conducted on asympt./sympt. Leaves in trees where the visual inspection assigned DS ≥1, yet qPCR was negative. 
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significantly (P ≤ 0.005) between asymptomatic trees (DS = 0) and Xf- 
symptomatic trees in the majority of the orchards. The MCARI at 
1510 nm and SIF2 did not show statistical differences between asymp
tomatic trees (DS = 0) and Xf-symptomatic trees for some orchards 
(Fig. 6d). 

The crown temperature retrieved from pure vegetation pixels in the 
thermal imagery (Fig. 7a) trended similarly to the PRIn. Anthocyanin 
content also showed a positive trend DS levels increased (Fig. 7b). The 
Kruskal-Wallis and Wilcoxon post-hoc tests (supplementary Table S6) 
confirmed that crown temperature, leaf protein content, and anthocy
anin content showed significant differences (P < 0.05) among asymp
tomatic, Xf-symptomatic and advanced Xf-symptomatic trees. The Cw 
and Car (not shown for sake of brevity) also captured the differences 
between asymptomatic trees and those with Xf symptoms. In contrast, 
the structural parameter LAI and chlorophyll content, in contrast, did 
not distinguish well between Xf symptomatic trees and those with 
advanced Xf symptoms in some plots. 

3.3. RS-based SVM models and stochastic epidemic spread model for Xf- 
symptom detection 

We compared the accuracy of the statistical performances of the 
studied RS-based SVM models (i.e., PS, PSN and PSNFT) with the per
formance of the coupled PSNFT stochastic spread model using different 

sample sizes (5, 10, 15 and 20%). Fig. 8 shows the OA, in %), the κ, and 
the AUC scores estimated by the main non-linear SVM models and the 
coupled RS-PSNFT spread model for the testing samples. The PS model 
showed lower average accuracies (OA = 73 ± 2%, kappa = 0.46 ± 0.09 
and AUC = 0.73 ± 0.04) than the PSN model (OA = 74 ± 2%, 
kappa = 0.48 ± 0.04 and AUC = 0.74 ± 0.02), which included four NIR/ 
SWIR-based spectral indicators related to nitrogen status (RSI, CI2, 
GnyLi and MCARI1510) and leaf protein content. When the PSN model 
was combined with thermal-based Tc and solar-induced chlorophyll 
emission in the PSNFT model, performance increased to an average OA 
of 75 ± 2%, kappa = 0.50 ± 0.05 and AUC 0.75 ± 0.02 (supplementary 
Table S7). When the PSNFT model was coupled with the epidemic 
spread model, the overall average accuracy improved 
(OA = 80 ± 0.08%; kappa = 0.48 ± 0.02 and AUC = 0.81 ± 0.02) 
compared to that of RS-based SVM models (Fig. 8). 

To assess the influence of random sample placement and sample size 
(5, 10, 15 and 20%), we estimated disease distribution maps in five 
simulations of the RS-spread model for each sample size. As expected, 
average AUC increased with sample size (AUC = 0.81 ± 0.02% - 
0.83 ± 0.01%), while average OA and k hardly changed 
(OA = 79.9 ± 0.02% - 76.6.4 ± 0.03%, 
kappa = 0.48 ± 0.02–0.45 ± 0.02), indicating that model performance 
was not strongly dependent on sample size (Fig. 8a and b). Interestingly, 
the coupled PSNFT-spread model yielded more accurate disease 

Fig. 4. Stomatal conductance (Gs, in mmol.m− 2.s− 1) (a) and steady-state chlorophyll fluorescence emission (b, in arbitrary units) measured in asymptomatic leaves 
and symptomatic leaves affected by Xylella fastidiosa. The leaf samples were grouped by disease severity (DS) levels on a 0–4 rating scale assigned by the visual 
inspection of each sampled tree. 

Fig. 5. Average tree-crown radiance in 
Wsr− 1 m− 2 nm− 1 (a) and mean tree-crown reflec
tance spectra in % (b) retrieved from hyperspectral 
imagery in tree crowns that were asymptomatic 
(DS = 0, n = 673 tree spectra), had Xylella fastidiosa 
(Xf) symptoms (1.5 <DS ≤ 2.5, n = 144 tree spectra) 
or had advanced Xf symptoms (DS ≥ 2.5, n = 55 tree 
spectra). To reduce noise in the radiance and reflec
tance spectra, the hyperspectral signal was convo
luted using the Whittaker algorithms for this figure.   
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distribution maps than the PSFNT model alone, irrespective of sampling 
sizes. 

The PSNFT model and the coupled PSNFT-spread model, which 
yielded the best performances, were also assessed at the orchard level 
(supplementary Table S8). When the RS-based PSNFT model was built 
with the particular conditions of each orchard, the accuracy of the RS- 
based PSNFT model improved (average OA = 81%); in fact, it excee
ded the performance of the PSNFT-spread model for all orchards 
(average OA = 78–81% and average AUC = 0.83–0.84 for the different 
sample size). The analyses at orchard level indicated that model accu
racy largely depends on the relative proportion of asymptomatic vs Xf- 
symptomatic trees. In general, when the proportion of symptomatic 
trees was higher, the PSNFT model performed best (OA = 77–85% and 
AUC = 0.62–0.82). Conversely, when the proportion of asymptomatic 

trees was greater, the coupled PSNFT-spread model performed better 
(OA = 77–95% and AUC = 0.67–0.98). However, this trend was not 
observed in orchards 1 and 4, in which both models showed a lower 
performance, estimated as OA = 68–79%, kappa = 0.35–0.50 and 
AUC = 0.67–0.72, respectively, for the PSNFT model, and 
OA = 74–79%, kappa = 0.43–0.58 and AUC = 0.79–0.86, respectively, 
for the coupled PSNFT spread model. 

We estimated predictor importance in the PS, PSN and PSNFT-SVM 
models to assess the usefulness of the plant traits to detect Xf symp
toms (Fig. 9a; supplementary Table S9). However, the orchards differed 
in the composition of almond varieties, physiological status, water stress 
regimes and nutritional deficiencies, all of which may have influenced 
the detectability of Xf symptoms. Therefore, we also estimated the 
importance of each predictor at the orchard level (Fig. 9b; 

Fig. 6. Blue reflectance index BRI2 (a), nutritional MCARI index at 1510 nm (b), PRIn (c) and chlorophyll fluorescence emission (d) retrieved from hyperspectral 
imagery from tree crowns assessed as asymptomatic (DS = 0), with Xylella fastidiosa symptoms (1 ≤ DS ≤ 2.5), and with advanced Xf symptoms (DS ≥ 2.5) in almond 
orchards grouped by spatial location (seven groups labelled with numbers). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 7. Tree-crown temperature (in Kelvin, a) and anthocyanin content (in μg/cm2, b) of tree crowns estimated using thermal imagery and RTM inversion, 
respectively, from tree crowns assessed as asymptomatic (DS = 0), with Xylella fastidiosa symptoms (1 ≤ DS ≤ 2.5) and with advanced Xf symptoms (DS ≥ 2.5) in 
almond orchards grouped by spatial location (seven groups labelled with numbers). 
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supplementary Table S10) and using the qPCR samples (n = 318 trees; 
supplementary Table S9) for the PSNFT-SVM model, which had the 
complete set of plant traits. The analysis conducted in the PS model 
revealed that the chlorophyll indicators from reflectance bands (i.e., 
TCARI, NPQI, VOG2 and Datt-CabCx + c) and the chlorophyll content 
retrieved from RTM inversion were the plant traits that contributed most 
to this model, reaching up to 30%. These were followed by indicators 
related to photosynthetic efficiency-xanthophyll cycle (PRIn, PRIM1), 
blue bands (BRI2), structural traits (LAI and LIDFa) and anthocyanins, 
with a contribution of 20%, 16%, 15% and 7%, respectively. When leaf 
protein content and nitrogen indices (RSI, CI2, GnyLi and MCARI1510) 
were included in the model, the weight of chlorophyll decreased to 
23–22% for the PSN and PSNFT models respectively. The leaf protein 
content and NIs along with chlorophyll pigments contributed most in the 
PSN model (See supplementary Table S8). Furthermore, when leaf 
protein content and NIs were included in the model, the contribution of 
the structural traits and anthocyanin pigments decreased to 11% and 
5%, respectively. When the thermal-based water stress trait (Tc) and 
FLD2-based chlorophyll were included in the PSNFT model, the 
remaining plant traits reduced their contribution; with the exception of 
structural traits, which increased to 14%. The leaf protein content and 
nutritional indices contributed 27% (Fig. 9a), compared to 7% for SIF 
(5%) and Tc (2%) together. When we conducted the analysis at the or
chard level (Fig. 9b), we found that the plant trait contribution varied 
between orchards. These variations between functional plant traits 

followed the same trend as when we globally analyzed the PSNFT model 
(Fig. 9a). 

3.4. RS-based SVM model coupled with a stochastic epidemic spread 
model for early detection of Xylella fastidiosa in almond trees 

We assessed the PSNFT model and the coupled PSNFT-spread model 
against the presence of Xf infection determined visually and also by 
qPCR test (n = 318 trees) on samples collected in the orchards. (Table 3). 
In most orchards, the coupled PSNFT-spread model classified the 
greatest number of trees correctly with respect to the qPCR tests. In 
general, the fraction of well-classified trees was higher for the coupled 
PSNFT-spread model (72% for a sample size of 5%) than for the visual 
(64%) or PSNFT model (63%). We further explored whether, compared 
to the PSFNT model, the RS-spread model improved the detection of 
early symptoms at a pre-visual stage by (i) evaluating the accuracy of its 
disease distribution estimations using qPCR assay data (Table 4); and (ii) 
counting the number of trees identified as Xf-symptomatic by the RS- 
spread model and confirmed by qPCR assay data but showing no 
visible Xf symptoms at field level. 

The assessment of the PSNFT-spread model validated with the tree- 
level qPCR dataset yielded an average OA and kappa that ranged be
tween 64 and 72% and 0.23–0.33, respectively, for the five sample sizes 
(depending on sample size, Table 4). The performance of the PSNFT (OA 
63% and kappa 0.26) and the visual inspection (OA 64% and kappa 0.1) 

Fig. 8. Overall accuracy (a), kappa (b) and area under the curve (AUC; c) for the RS-based SVM models (PS, PSN, PSNFT) and the coupled PSNFT-spread model. The 
RS-SVM models were tested with 25% of the 1426 almond trees in orchards affected by leaf scorch caused by Xylella fastidiosa using 80 random splits in the entire 
database. The coupled PSNFT-spread model (PSNFT-SP) was tested using multiple random sample placements at a range of sample sizes from 5 to 20% (step = 5). 

Fig. 9. Plant-trait contribution for detecting Xylella 
fastidiosa symptoms for the RS-based SVM models 
(PS, PSN, PSNFT) using the training samples (a) and 
at orchard scale for the PSNFT model (b). In (a), each 
RS-based SVM model refers to i) pigment- and 
structure-based functional traits (PS), ii) pigment- 
structure and nutritional traits (PSN) and iii) 
pigment, structure, nutritional-fluorescence and 
thermal-based functional traits (PSNFT). The impor
tance analysis was conducted using the average of 
training samples (n = 1091 almond trees).   
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showed a lower accuracy compared to Xf-infection status determined by 
qPCR, indicating a lower efficacy than the combined PSNFT-spread 
model. 

At orchard level, we focused on orchards 1 and 4, which showed the 
lowest disease incidence levels (~45% and ~ 36% of diseased trees, 
respectively). This was done because these orchards lowered the 

performance of the PSFNT models at orchard level; thus, it was thought 
that they could provide insights into the limited performance and that 
the implementation of early detection would be more relevant in these 
orchards. The performance of the PSNFT-spread model at orchard level 
(Table 3) verified with the tree-level qPCR dataset yielded an average 
OA ranging between 64% and 72% for the range of sample sizes, and 
71% and 59% for orchards 1 and 4, respectively. However, when 
compared against the Xf-infection status confirmed by qPCR, the PSNFT 
model (OA of 56% and 52% for orchard 1 and 4) and the visual in
spection (OA of 61% and 55% for orchard 1 and 4) had lower accuracies 
than the PSNFT-spread model. 

The disease distribution maps generated from the PSNFT-spread 
model improved the detection of Xf-infected asymptomatic trees 
(Fig. 10c) that did not show visible symptoms (Fig. 10a) and were 
missed by the PSNFT model (Fig. 10b). The PSNFT-spread model 
detected asymptomatic Xf-infected trees (qPCR = 1; DS = 0) with an 
overall accuracy of 55–80% and 36–39% for the range of sample sizes 
and for orchards 1 and 4, respectively. By contrast, the PSNFT model 
yielded an OA of 17% and 3% for orchards 1 and 4. 

Table 3 
Number of almond trees with different disease status and tested by qPCR to determine Xylella fastidiosa infection and percentage of trees correctly classified by the 
PSNFT model and the coupled PSFNT-spread model at orchard levels (ntotal = 1426 trees). The orchards located in the same area were grouped to simplify the analysis.   

1 2 3 4 5 6 7 8 Total 

Asymptomatic: DS = 0 63 26 81 299 23 95 32 38 657 
Symptomatic: DS ≥ 1 52 77 151 166 56 155 83 30 769 
qPCR 39 35 31 72 19 91 28 3 318 
Negative 9 4 10 16 1 31 1 1 73 
Positive 30 31 21 56 18 60 27 2 245  

% well-classified trees according to the qPCR assay 
Visual (n = 318) 62 66 84 55 63 58 86 100 65 
PSNFT 56 68 81 52 64 57 90 33 62 
PSNFT+ spread (5%) 71 79 99 59 68 65 91 53 72 
PSNFT+ spread (10%) 65 78 99 59 68 59 83 47 68 
PSNFT+ spread (15%) 66 64 99 57 68 56 73 33 64 
PSNFT+ spread (20%) 68 62 97 56 68 57 72 33 64  

Table 4 
Assessment of the model predictions (OA and kappa) for early detection of 
Xylella fastidiosa symptoms (DS = 0–1) vs. qPCR assay (n = 318 trees). 
‘Asymptomatic infections’ (AF) refers to the proportion of trees classified as 
symptomatic by the PSNFT model and the coupled PSNFT-spread model that 
showed no visual symptoms in the field (DS = 0; n = 168 trees) but were positive 
by qPCR (n = 105 trees).  

RS-models/Visual inspection OA kappa AF 

Visual inspection 64.5% 0.31 – 
PSNFT 63.4% 0.26 17% 
PSNFT+ spread (5%) 71.7% 0.33 58.6% 
PSNFT+ spread (10%) 68.3% 0.32 56.1% 
PSNFT+ spread (15%) 64.4% 0.25 47.6% 
PSNFT+ spread (20%) 64.4% 0.23 46.2%  

Fig. 10. Location of almond trees in orchard 4 affected by leaf scorch caused by Xylella fastidiosa (Xf) according to their disease status (asymptomatic vs. symp
tomatic after visual inspection) and Xf-infection status determined by qPCR test (a), predicted by the RS-PSFNT model (b) and estimated by the PSNFT coupled with 
the stochastic spread model using a 5% sampling size (c). 
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4. Discussion 

4.1. Leaf-level Xylella fastidiosa assessment using physiological 
measurements 

Leaf-level assessments showed that Xf symptoms induced spectral 
changes in the VNIR region due to the degradation of chlorophyll and 
carotenoids (Figs. 2 and 3). The changes in chlorophyll and anthocya
nins as Xf infection increased confirmed the previous results of Zarco- 
Tejada et al. (2018) in olive trees. The increase of anthocyanins when Xf- 
symptoms worsened is due to the protective role that anthocyanins play 
against damage induced by plant pathogens or environmental stress. We 
further found a strong link between N and chlorophyll at leaf level, 
which is widely supported in the scientific literature (e.g., Serrano et al., 
2002; Herrmann et al., 2010; Tremblay et al., 2011; Homolová et al., 
2013). Our results also agree with those of Purcino et al. (2007) and 
Ribeiro et al. (2004), who reported that Xf bacterium has a detrimental 
effect on the nitrogen metabolism and photosynthesis in orange leaves 
infected by Xf. When we compared the pigments and nitrogen levels 
with the qPCR assays and visual inspections, we found that chlorophyll 
and nitrogen levels dropped in symptomatic leaves sampled from non- 
Xf-infected trees (Fig. 3b and c). This may indicate that chlorosis or 
nitrogen deficiency symptoms alone are not specific of Xf infection and 
can be induced by other biotic or abiotic stress factors. This suggests that 
for Xf-symptoms to be successfully detected, pigments and nutritional 
indicators should be complemented with additional plant traits in order 
to distinguish Xf-symptoms from other stress conditions, such as water 
stress. 

Reduction in stomatal conductance was also observed when Xf 
symptoms increased (Fig. 4a). Colonization of xylem vessels by Xf in
terferes with transpiration and leads to a decrease in stomatal conduc
tance to the point of stomatal closure. This reduces the rate of 
photosynthesis and transpiration, preventing evaporative cooling and 
consequently increasing leaf temperature (Berni et al., 2009). This is in 
agreement with previous studies, which have found a relationship be
tween Xf infection and water stress in orange trees (Ribeiro et al., 2004), 
olive trees (Zarco-Tejada et al., 2018) and Virginia creepers (Partheno
cissus quinquefolia) (McElrone and Forseth, 2004). We hypothesized that 
the reduction in fluorescence (Fig. 4b) may have been due to a combi
nation of photosystem photo-inhibition and the early onset of leaf 
senescence. In agreement with McElrone and Forseth (2004), this hy
pothesis was supported by the reduction of nitrogen content and chlo
rophyll pigments when anthocyanin production increased. These 
pigment changes in the leaves affected by X. fastidiosa initiated a pho
toprotective process due to the water stress derived from the Xf infection 
and the senescence of the leaves. This study conducted at leaf level show 
that stomatal conductance, leaf temperature, pigments (Cab and Anth), 
nitrogen and chlorophyll fluorescence emission are valuable indicators 
to discriminate between asymptomatic and Xf-symptomatic leaves. 

4.2. Plant traits and spectral indices to detect tree crowns with Xylella 
fastidiosa 

The plant traits retrieved from model inversions, along with the 
spectral indices and thermal-based index, enabled the detection of Xf 
symptoms in almond trees. In particular, based on VIF analysis and 
Wilks’ lambda tests, we identify the most parsimonious models in each 
spectral domain (VNIR and SWIR). 

Our results suggested that photosynthetic indices, leaf protein con
tent, nitrogen indices, pigments and water stress indicators all can 
contribute to Xf detection in almond trees. At crown scales, we also 
showed that anthocyanins gradually increased as Xf symptoms wors
ened (Fig. 7b; supplementary Fig. S7c). We highlight that inverted leaf 
protein content also tracked the differences between trees with and 
without Xf symptoms. This finding is in agreement with Purcino et al. 
(2007), who showed that Xf infection significantly changed the nitrogen 

metabolism of leaves (e.g., glutamine synthetase) and the accumulation 
of nitrogen compounds into the xylem. 

Concerning narrow-band indices used in the PS model, we found that 
blue/red spectral indices (i.e.: BRI2) differed between asymptomatic 
trees and those showing either initial or advanced leaf scorch symptoms 
caused by X. fastidiosa. These results confirm those of previous studies 
that identified blue/red spectral indices for early detection of red leaf 
blotch caused by the fungus Polystigma amygdalinum in almond trees 
(López-López et al., 2016), Verticillium wilt in olive trees (Calderón 
et al., 2013, 2015) and X. fastidiosa in olive trees (Zarco-Tejada et al., 
2018; Poblete et al., 2020). The chlorophyll degradation-based spectral 
trait (NPQI) is related to the degradation of chlorophyll via phaeophy
tinization (Barnes et al., 1992; Penuelas et al., 1995). The PRI indices are 
associated with light use efficiency (LUE) at leaf scale (Guo and Trotter, 
2004). Overall, The PRIn normalized by crown chlorophyll (Fig. 6c) and 
the crown thermal-based trait (Fig. 7a) are inversely related to stomatal 
conductance and water potential (Zarco-Tejada et al., 2013a; Gonzalez- 
Dugo et al., 2019). A reduction in stomatal regulation, transpiration and 
photosynthetic rate caused by infection and colonization of xylem ves
sels by X. fastidiosa led to a strong decrease in fluorescence emission at 
leaf and crown scales (Figs. 4b and 6d, respectively). Therefore, in
dicators of gas exchange dynamics contribute strongly to early detection 
of Xf infection in almond trees. 

Although, the NIR/SWIR-based nitrogen indices (MCARI1510, CI2, 
RSI, and GnyLi) had a coarse spatial resolution (80 cm/pixel), they were 
also capable of detecting Xf symptoms not only in advanced stages but 
also in early ones, with higher nitrogen values in asymptomatic trees 
than in symptomatic ones. The NIs used in the PSN and PSNFT-SVM 
models to detect Xf symptoms were based on bands close to the red- 
edge region (the CI2 and RSI), which is highly correlated with chloro
phyll pigments (Gitelson et al., 2002). Other NIs were based on spectral 
bands associated with the nitrogen absorption peak (MCARI at 
1510 nm). The GnyLi index uses spectral bands (900 nm and 1050 nm) 
related to biomass (Peñuelas and Fillela, 1998) and spectral bands 
(955 nm and 1220 nm) sensitive to plant moisture (Clevers et al., 2010). 
Reflectance at 1020 and 1510 nm responds particularly strongly to ni
trogen content due to the first overtone of the N–H band vibration, 
generating an absorption feature of N and proteins (Curran 1989), and 
provides a useful nitrogen content proxy (e.g., Serrano et al., 2002; 
Herrmann et al., 2010). 

4.3. RS and epidemic models for Xylella fastidiosa detection 

The PSNFT model (Fig. 8), which combined nutritional traits (Cp and 
NIs) with Tc and solar-induced chlorophyll emission, improved the 
average overall accuracy of the predictions by around ~2% (OA ≥ 75%, 
kappa = 0.50), compared to PS model (OA ≥ 73%, kappa = 0.46), We 
found that coupling the epidemic spread model and the RS-based model 
increased accuracy by around 5% (OA = 80%, kappa = 0.48) compared 
to the PSNFT model. In comparison to the PS model based on plant traits 
in the VNIR, the coupled PSNFT-spread model increased accuracy by 
more than 7% in OA. These results highlighted the moderate improve
ments yielded by coupling the PSNFT model with the stochastic spread 
model for the most accurate detection of Xf infection. 

In addition, we evaluated the parsimony of the main RS models (PS, 
PSN and PSNFT) adding more spectral indices not selected by VIF 
analysis in each RS-based SVM model. In all the cases analyzed, the 
proposed RS models were the most parsimonious ones (not shown for 
the sake of brevity). This fact indicates that adding more variables to the 
RS models does not automatically yield the most parsimonious model. 
Consequently, the use of the VIF-Wilks’ test reduced overfitting in the RS 
models. Additionally, we assessed different combinations of the PS 
model by adding SIF (VNIR sensor), thermal-based Tc index and leaf 
protein content (measured with the NIR-100 sensor) in the PS model 
(supplementary Table S7). In general, when we added these indicators, 
the performance of the PS model increased. Nonetheless, in any case the 
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performance was not superior to the PSNFT model. We noted that when 
the three indicators (SIF + Tc + Cp) were added together to the PS 
model, the model had an average OA close to 75%. It is also worth noting 
that the PSNFT model without thermal information performed more 
poorly than the PSNFT model (OA = 74%, kappa = 0.48). However, it 
yielded higher performance than those models based only on pigments 
and structural parameters (supplementary Fig. S9 and supplementary 
Table S7). Overall, the RS models predict Xf symptoms better in almond 
trees when they included fluorescence, leaf protein content and thermal 
information as predictors. 

Our results show that high-resolution SWIR imagery can help to 
quantify parameters related to leaf protein content and structural pa
rameters that can improve Xf-detection compared to VNIR hyperspectral 
imagery alone. However, using high-resolution SWIR cameras in oper
ational RS applications remains challenging because the higher cost of 
these sensors. In this context, it is worth noting that complementing a 
VNIR sensor with a thermal sensor can generate results similar to those 
from a more complex or costly sensor combination. 

4.4. Coupling RS models with an epidemic model 

The analysis at orchard level showed that, when the relative pro
portion of symptomatic trees was higher than that of asymptomatic 
ones, the RS-based SVM PSNFT model and the coupled PSNFT-spread 
model performed best (supplementary Table S8). This indicates that 
both models captured early and advanced symptoms of Xf infection 
particularly well. However, when the asymptomatic/Xf-symptomatic 
proportion changed towards asymptomatic trees (i.e., orchards 1 and 4), 
the accuracy of the PSNFT model and the coupled PSNFT-spread model 
decreased (supplementary Table S8). This phenomenon could be 
explained by the difficulties detecting visual symptoms at the very early 
stage of symptom development and the unusual high proportion of 
asymptomatic infections. This was confirmed when the visual in
spections were compared to qPCR in a specific orchard, such as orchard 
4 (DS0 = 299; DS≥1 = 166), where 70% of trees (31/56 trees) showed 
the existence of asymptomatic infections. Similarly, in orchard 1, the 
PSNFT model and the coupled PSNFT-spread model exhibited poor ac
curacy (OA = 77% for PSNFT model and OA = 76–79% for the coupled 
PSNFT-spread model), likely due to the high proportion (67%; 12/18 
trees) of trees with asymptomatic Xf infection. 

4.5. Plant trait contributions in RS-SVM models for the detection of 
Xylella fastidiosa 

The importance analysis suggested that the most reliable functional 
traits to distinguish between asymptomatic and Xf-symptomatic trees 
were plant traits related to nutritional-pigment changes. In particular, 
the chlorophyll indicators made the greatest contribution in the PS 
model (30%). This is consistent with earlier studies focused on the VNIR 
domain (Zarco-Tejada et al., 2018; Poblete et al., 2020). We further 
highlight that pigment-nutritional functional plant traits (i.e., anthocy
anins, chlorophylls, NIs and leaf protein content) represented more than 
55% of the contributions in the PSNFT model, compared to photosyn
thesis, water-stress and photosynthetic efficiency plant traits, which 
reached ≃ 20%. 

The variable importance analysis conducted at orchard level (sup
plementary Table S10) showed that the plant trait contribution varied 
among orchards. These differences could be associated with water stress, 
nutritional condition, photosynthesis activity and canopy structures of 
the orchards (Figs. 6 and 7). The contribution of anthocyanins increased 
in orchards (i.e., orchard 3 and 7) with a greater ratio of trees with 
advanced Xf symptoms (DS ≥ 1) compared to asymptomatic trees (DS 
=0). When we analyzed the contribution of the plant traits in the subset 
of trees with qPCR tests (n = 318 trees; where 78% positive and 22% 
negative), we found that nutritional plant traits have a greater contri
bution than chlorophylls (supplementary Table S9). These findings 

suggest that monitoring the nitrogen available for remobilization among 
plant parts could be the key to detect changes associated with Xf- 
symptoms. This is in agreement with Purcino et al. (2007) who sug
gested that Xf symptoms could modulate the absorption, assimilation, 
and distribution of nitrogen in the host plant. Interestingly, structural 
indices made a smaller contribution to the orchard-level model than to 
the model that used 75% of the studied trees across orchards (supple
mentary Table S9). This finding was consistent with those obtained by 
Calderón et al. (2015) who found that structural indices were not 
selected by stepwise linear discriminant analysis to distinguish between 
Verticillium wilt severity levels in olive trees by SVM-based classifica
tion at orchard level. The non-selection of structural indices may be due 
to the fact that crown structure varies less within orchards than between 
orchards. 

4.6. Uncertainties of the inverted plant traits in remote sensing models 

Uncertainties in the plant traits inverted through biophysical 
modelling with RTMs, may propagate into predictive models relying on 
those traits. Here, we reduced the uncertainties of the RTM inversion by 
constraining parameters in the LUT table to realistic ranges. This elim
inates unexpected parameter combinations and thus alleviates the ill- 
posed problem. The validation of chlorophyll and anthocyanin content 
at crown level with the leaf Dualex readings (supplementary Fig. S2 and 
S3) showed that the ML inversion minimized the uncertainty associated 
with the spectral response of the sensors, as well as atmospheric and 
background differences. The significant relationships obtained between 
the structural parameters (LAI and LIDFa) and narrow-band indices 
(NDVI and SIF) suggests that structural plant traits were adequately 
retrieved by biophysical modelling. However, without reference field 
measurements, the uncertainties of the structural traits are ultimately 
unknown, and may reduce the accuracy of the RS models. We highlight 
that the relation found between SIF and LIDFa is due that LIDFa and 
together with LAI and chlorophyll content determines the large vari
ability of the chlorophyll fluorescence emission (Verrelst et al., 2015). It 
furthermore suggests that the SIF emission retrieved at coarse spectral 
resolution (6 nm) could be a mixture between SIF and structural 
parameters. 

The RF inversions used the entire spectral range (400–1700 nm) of 
our measurements to retrieve Cp and Cw. The maps of the Person’s 
correlation with NDSI (supplementary Fig. S5) showed that the bands 
most correlated with Cp were those beyond 1500 and 1700 nm, which is 
the optimal subdomain for estimating leaf proteins as shown in Féret 
et al. (2021). Cw, in turn, correlated significantly with bands placed in 
the subdomain of 1000–1700 nm, which is the spectral region for water 
absorption. Nevertheless, for the further improve estimates of leaf pro
tein content, high-resolution is required to separate all influencing 
constituents in the 1500–1700 nm spectral subdomain, especially when 
upscaling machine learning methods from the leaf to the top of tree 
crowns level. We remark that the proposed machine learning approach 
could be valid for plant traits that we were not able to be validated with 
field data. Nevertheless, it is advisable for future research to take 
additional field measurements to quantify the unknow uncertainties of 
the machine learning inversions. 

4.7. Early detection of Xylella fastidiosa through qPCR assays 

The qPCR test revealed that the coupled PSNFT-spread model yiel
ded a higher percentage of correctly classified trees than the PSNFT 
model or the visual inspection conducted in most orchards (Table 3). 
Overall, the performance of the PSNFT-spread model improved when 
the random sample was smaller. However, the visual inspections of 
symptoms reflected infection status quite well overall, with a true- 
negative rate of 87% (i.e., qPCR-negative trees classified as asymptom
atic) and a true-positive rate of 58% (i.e., qPCR-positive trees classified 
as symptomatic). 
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Early detection of new infections is critical to mitigating the impact 
of Xf on crops. The PSNFT model did not guarantee the detection of early 
symptoms that visual inspections cannot yet identify. The combination 
of the PSNFT model with an explicit stochastic epidemic spread model 
improved the detection of infected trees at early stages of Xf disease 
development in the almond orchards studied. Moreover, when the 
spread model was coupled with the PS model for the same size sample 
(5%), in an orchard with low disease incidence (supplementary Fig. 
S10), the performance was lower (OA = 71% and kappa =0.41) than 
when it was coupled with the PSNFT model (OA = 74% and 
kappa = 0.46). This suggests that the adequate selection of plant traits in 
the RS models improve the accuracy of the coupled RS-spread model to 
detect Xf infection. The disease distribution maps estimated by the 
PSNFT-spread model yielded higher accuracies than those of the PSFNT 
model on its own for all sample sizes. In contrast to the PSFNT model, 
the PSNFT-spread model classification showed less sensitivity when 
compared to visual inspection (77% by the PSNFT and 75–77% by the 
RS-spread model with increasing sample size). This lower sensitivity in 
the classification may have been due to (i) error and uncertainty 
inherent to the RS-spread model to detect infected trees; and (ii) trees 
that were infected by Xf but showed no symptoms at the time of visual 
inspection. 

We further explored the asymptomatic Xf-infected trees confirmed as 
symptomatic by qPCR assays. We found that trees that showed no visual 
symptoms but were confirmed as symptomatic trees via qPCR (n = 104) 
were detected with an accuracy of 16% by the PSFNT model. Yet, the 
PSNFT-spread model improved the accuracy of the predictions from 
46% to 59% with a decrease in sample size. Thus, the coupled RS-spread 
model is particularly useful in orchards at early stages of disease 
development in which infected plants may be in the incubation period (i. 
e., pre-symptomatic infections). This was demonstrated in the Xf sce
nario of the south of Italy, where subsp. pauca was infecting olive trees 
(Calderón and Parnell, 2019). The integration of RS information in 
spread modelling demonstrated the accurate mapping of spatial corre
lations, typical for a vector-borne transmitted disease, and the capture of 
the effect of host spatial structure and landscape connectivity on disease 
distribution. These results obtained by RS-spread modelling and vali
dated with qPCR data suggested that coupling the PSNFT with an 
epidemiological spread model improved the ability of the RS model to 
detect trees in the incubation asymptomatic period or at an early stage of 
the disease that cannot be detected by visual evaluations. 

Future research should focus on the combination of remote sensing 
with spatial epidemic models in surveillance and the parameterization 
and design of predictive models for emerging epidemics. These models 
traditionally rely on parameters estimated from extensive epidemio
logical data collected via ground surveys and visual inspection, which 
are costly and non-exhaustive. The incorporation of remote sensing data 
into spatial epidemic modelling could be a step change in terms of the 
ability to quickly capture epidemic characteristics over vast areas. 
Moreover, given a parameterized model, it is possible to infer the 
effectiveness of different surveillance and disease management sce
narios (Parnell et al., 2017). It is for all these reasons that well param
eterized epidemiological models and optimization techniques based on 
remote sensing can be used to optimize surveillance programs in order 
to maximize performance and minimize the costs involved. 

5. Conclusions 

This study demonstrates that coupling a remote sensing model based 
on pigment, structural plant traits, leaf protein content, NIR-SWIR-based 
nitrogen indicators, fluorescence and thermal information with a sto
chastic epidemic Xf-spread model improved the detection of Xylella 
fastidiosa (Xf) in almond orchards under severe rainfed conditions. In 
comparison to the best RS-based SVM model, the coupled RS-based 
SVM-spread model increased overall accuracies by more than 5%. The 
promising results obtained with the coupled RS-spread models for the 

early detection of Xf highlighted the suitability of this methodology for 
assessing the symptoms caused by Xf and other plant pests at large 
scales. 

The integration of RS estimations in spatial spread modelling also 
demonstrated the accurate mapping of spatial correlations, typical for a 
vector-borne transmitted disease. They improved pre-visual detection of 
Xf infection due to the capture of the effect of host spatial structure and 
landscape connectivity on disease distribution. This study makes prog
ress in the surveillance of emerging plant diseases and provides the basis 
for future use of well-parameterized epidemiological models based on 
remote sensing data in surveillance programs. 
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Homolová, L., Malenovský, Z., Clevers, J.G.P.W., García-Santos, G., Schaepman, M.E., 
2013. Review of optical-based remote sensing for plant trait mapping. Ecol. 
Complex. 15, 1–16. https://doi.org/10.1016/j.ecocom.2013.06.003. 

Jacquemoud, S., Baret, F., 1990. PROSPECT: a model of leaf optical properties spectra. 
Remote Sens. Environ. 34, 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z. 

Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., Middleton, E.M., 2011. 
First observations of global and seasonal terrestrial chlorophyll fluorescence from 
space. Biogeosciences 8, 637–651. https://doi.org/10.5194/bg-8-637-2011. 

Koffi, E.N., Rayner, P.J., Norton, A.J., Frankenberg, C., Scholze, M., 2015. Investigating 
the usefulness of satellite-derived fluorescence data in inferring gross primary 
productivity within the carbon cycle data assimilation system. Biogeosciences 12, 
4067–4084. https://doi.org/10.5194/bg-12-4067-2015. 

Lehnert, L.W., Meyer, H., Obermeier, W.A., Silva, B., Regeling, B., Thies, B., Bendix, J., 
2019. Hyperspectral Data Analysis in R: The hsdar Package. J. Stat. Softw. 89 (12), 
1–23. https://doi.org/10.18637/jss.v089.i12. 

Liang, L., Qin, Z., Zhao, S., Di, L., Zhang, C., Deng, M., Lin, H., Zhang, L., Wang, L., 
Liu, Z., 2016. Estimating crop chlorophyll content with hyperspectral vegetation 
indices and the hybrid inversion method. Int. J. Remote Sens. 37, 2923–2949. 
https://doi.org/10.1080/01431161.2016.1186850. 
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Goldhamer, D., Fereres, E., 2013a. A PRI-based water stress index combining 
structural and chlorophyll effects: assessment using diurnal narrow-band airborne 
imagery and the CWSI thermal index. Remote Sens. Environ. 138, 38–50. https:// 
doi.org/10.1016/j.rse.2013.07.024. 

Zarco-Tejada, P.J., Guillén-Climent, M.L., Hernández-Clemente, R., Catalina, A., 
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