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Simple Summary: Reduced oxygen availability generates a number of adaptive features across all
the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for
metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention
was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive
exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid
metabolism to whole energy supply to preserve the aerobic energy production, a better swimming
performance regardless of changes in feed intake, as well as reduced protein turnover and improved
anaerobic fitness with the restoration of normoxia.

Abstract: On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia
(M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two
different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-
HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and
continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes
was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and
after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted
a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher
anaerobic fitness following normoxia restoration. Despite these changes in substrate preference,
M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed
at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown
was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment
to the positive regulation of locomotion and to the catch-up growth response during the normoxia
recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in
gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare
these fish for predictable stressful events.

Keywords: hypoxia; hypo-metabolic state; growth; swimming performance; metabolic landmarks;
muscle transcriptome; glycolysis; lipid metabolism; protein turnover; gilthead sea bream

1. Introduction

Reduced oxygen (O2) availability generates physiological and anatomical changes
that increase ventilation rates, erythropoiesis, and tissue vascularization, with a decrease in
muscle oxidative capacity and a switch in substrate preference towards more O2-efficient
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fuels [1–3]. These adaptive features occur across all the animal kingdom, contributing to
epigenetic mechanisms to depress metabolic rates when individuals are facing predictable
seasonal signals (hibernation, cold hardening, or diapause) or unpredictable episodic
stresses, such as hypoxia, desiccation, or traumatic surgical situations [4–6]. Besides,
epigenetics allows pre-programming of offspring to high-altitude hypoxic environments
by imprinting genes at the embryonic or placental interface, resulting in transgenerational
and/or intra-generational heritable changes that affect gene expression [7,8].

Hypoxia is also a common stressor in aquatic ecosystems [9–11] and “dead zones”
expand rapidly in oceans as climate emergency causes unprecedented O2 losses [12,13].
This will have a strong negative impact on fisheries and aquaculture production [14], and
future selective breeding will need to be directed towards more robust and resilient farmed
fish to mitigate the effects of climate change [15,16]. The first sign of a mismatch between
O2 supply and demand is the reduction of appetite, varying the O2 threshold level for
maximal feed intake in Atlantic salmon (Salmo salar) and gilthead sea bream (Sparus aurata)
between 40% and 75% saturation within the range of temperature tolerance [17,18]. This
threshold level is decreased at high stocking densities [19–21], probably due to the unbal-
anced production and scavenging of reactive O2 species (ROS) [22]. However, acclimation
to one stressor can also improve the capacity to cope with another critical co-occurring
stressor, and warm acclimation improves the hypoxia tolerance in Atlantic killifish (Fun-
dulus heteroclitus) [23]. Meanwhile, cold exposure also facilitates hypoxia adaptation, as
the reduction of metabolic rates is likely accompanied by a reduction in mitochondrial
O2 use [24]. These different metabolic strategies to cope with changing temperature and
reduced O2 availability are also evidenced on a seasonal and developmental basis [25].
Thus, European sea bass (Dicentrarchus labrax) cope with moderate hypoxia at the expenses
of a delayed larval maturation of digestive function [26]. Likewise, early acute hypoxia has
transgenerational impairment effects on the reproductive performance of medaka (Oryzias
latipes) [27]. By contrast, mild-hypoxia exposure during the embryonic development of
zebrafish (Danio rerio) is protective against severe hypoxia insults later in life [28].

It is important to note that hypoxia acclimation affects endurance training in athletes
and other animal models, including fish, usually via increased O2 uptake capacity and
aerobic metabolic capacity [29–31]. In juveniles and fingerlings of farmed gilthead sea
bream, successful adaption to severe and moderate hypoxia has been demonstrated to
occur by the induction of hypo-metabolic states, increased O2-mitochondria affinity, and/or
aerobic/anaerobic metabolic switches in substrate preference as metabolic fuels [20,32–34].
Thus, the goal of the present study is to underline new insights on the mild-hypoxia driving
force for reprograming growth and swimming performance of on-growing juveniles of
gilthead sea bream in order to prepare individuals to better respond to predictable stresses.
For this purpose, the time course of metabolic responses after mild-hypoxia conditioning
and normoxia recovery periods was assessed by changes in blood metabolic landmarks and
muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer.

2. Materials and Methods
2.1. Ethics Statement

All procedures were approved by the Ethics and Animal Welfare Committees of the
Institute of Aquaculture Torre de la Sal (IATS) and CSIC. The study was conducted in the
IATS’s registered aquaculture infrastructure facility (code ES120330001055), in accordance
with the principles published in the European Animal Directive (2010/63/EU) and Spanish
laws (Royal Decree RD53/2013) for the protection of animals used in scientific experiments.

2.2. Experimental Setup of Hypoxia Conditioning

Gilthead sea bream juveniles of Atlantic origin (Ferme Marine du Douhet, Bordeaux,
France) were reared from early life stages (3–5 g initial body weight) in the indoor experi-
mental facilities of the Institute of Aquaculture Torre de la Sal (IATS, CSIC, Spain) under the
natural photoperiod and temperature conditions at our latitude (40◦5′ N; 0◦10′ E). In June
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2017, fish of 21–28 g body weight were randomly distributed in twelve 90 L tanks (n = 20),
connected to two separated recirculating aquaculture systems (RAS) with regulation of
the water temperature (24–26 ◦C) and O2 concentration (Supplementary Figure S1). As
shown in Figure 1, fish were allowed to acclimate to experimental tanks for 5 days before
any manipulation of O2 concentration, keeping the unionized ammonia below 0.02 mg/L.
After this acclimation period, the O2 concentration of one RAS (six 90 L tanks) was ramped
through 20 h to achieve a mild-hypoxia condition (M-HYP: 3–4 ppm, 40–60% O2 saturation),
according to the values of limiting oxygen saturation (LOS, defined as O2 levels where the
maximal metabolic rates start to decrease with further reduction in dissolved O2) reported
for this fish species [17] at a given temperature. The remaining fish, coupled to a second
RAS, were maintained under normoxic conditions (5.5–6 ppm, 85–90% O2 saturation).
These fish constituted two different normoxic groups, depending on if they were fed to
visual satiation (N) or pair-fed (N-PF) to the M-HYP group, fed to visual satiation, with a
commercial diet (EFICO YM 853 3 mm, BioMar, Palencia, Spain) once daily (12:00 a.m., six
days per week).
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After 45 days of mild-hypoxia conditioning (t45H), 12 overnight-fasted fish per experi-
mental condition were randomly selected and anesthetized (between 10:00 and 12:00 a.m.)
with 100 mg/L 3-aminobenzoic acid ethyl ester (MS-222, Sigma, Saint Louis, MO, USA).
Blood was taken from caudal vessels with heparinized syringes in less than 3 min for all
the fish from the same tank. The haematocrit (Ht) and haemoglobin concentration (Hb)
were determined in fresh samples. The remaining blood was centrifuged at 3000× g for
20 min at 4 ◦C, and plasma samples were frozen and stored at −20 ◦C until biochemical
and hormonal analyses were performed. Prior to skeletal muscle collection, fish were
killed by cervical section and representative portions of the dorsal tissue were excised and
immediately snap-frozen in liquid nitrogen and stored at −80 ◦C until extraction of total
RNA and tissue lactate quantification. At this stage, 6–7 additional fish per experimental
condition were used for swim tests (see Section 2.3), and blood and skeletal muscle were
rapidly taken from exhausted fish for biochemical and transcriptomic analyses. The re-
maining fish were kept under normoxia and continued to be fed until visual satiation for
three additional weeks, which constituted the normoxia restoration period with additional
sampling points at Week 1 (t+7N; 6 fish) and Week 3 (t+21N; 7 fish) for swim tests as well as
biochemical and transcriptomic analyses. Data on body weight were retrieved for all fish
at t0, t45H, t+7N, and t+21N (see Figure 1).
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2.3. Swim Tunnel Respirometer

Fish were exercised during hypoxia and normoxia restoration periods in an intermittent-
closed swim tunnel respirometer of 10 L water volume (Loligo®Systems, Viborg, Denmark),
as reported elsewhere [20,31]. To ensure a high water quality, the water bath was connected
to a RAS with water temperature and O2 concentration set at 26± 0.5 ◦C and 60% saturation
(4 ppm), respectively. For the testing procedures, slightly anesthetized fish were transferred
into the swim tunnel, after obtaining their biometrical parameters, and recovered and
acclimated at a swimming speed of 0.5–1.0 body lengths per second (BL/s). Acclimation
was achieved when the O2 consumption rates (MO2) reached a constant low plateau,
which typically happened after 30–45 min with an MO2 around 220–240 mgO2/kg/h [35].
After this acclimation period, the water velocity was increased in 0.5 BL/s steps, and fish
were submitted to controlled speeds until exhaustion. Each swimming interval at a given
velocity lasted 5 min, consisting of “flush–wait–measurement” cycles (60 s flush interval to
exchange the respirometer water = “flush”; 30 s mixing phase in closed mode = “wait”; and
a 210 s MO2 measuring period in closed mode = “measurement”). During the measurement
interval, O2 saturation of the swim tunnel water was recorded every second. MO2 was
automatically calculated by the AutoRespTM software from linear decreases (r2 = 0.98–1.0)
in chamber O2 saturation during the measurement period at each discrete and specific
speed, using the appropriate constants for O2 solubility in seawater (salinity, temperature,
and barometric pressure).

2.4. Blood Biochemistry

Haemoglobin (Hb) concentration was determined with a HemoCue B-Haemoglobin
Analyser®(AB, Leo Diagnostic, Sweden). The haematocrit (Hc) was measured after cen-
trifugation of blood in heparinized capillary tubes at 13,000× g for 10 min in a Sigma 1-14
centrifuge (Sigma). Blood lactate was measured in deproteinized samples (8% perchloric
acid) by an enzymatic method based on the use of lactate oxidase and peroxidase (Ref.
1001330; SpinReact S.A., Girona, Spain). The same kit was used to determine muscular
lactate concentrations after mincing and homogenization of samples by mechanic dis-
ruption in 7.5 volumes ice-cold 0.6 N perchloric acid, neutralized using 1 M KCO3, and
centrifuged at 3000× g for 30 min at 4 ◦C. Plasma glucose was determined by the glucose
oxidase method (ThermoFisher Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions. Plasma triglycerides (TAGs) were determined using lipase/glycerol
kinase/glycerol-3-phosphate oxidase reagent. Plasma free fatty acids (FFA) were analysed
using a commercial enzymatic method (NEFA-C, Wako Test, Neuss, Germany). Plasma
cortisol levels were measured with a commercial Cortisol Enzyme Immunoassay Kit from
Arbor AssaysTM (NCalTM International Standard Kit, DetectX®, K003; Ann Arbor, MI,
USA), following the manufacturer’s instructions. Plasma growth hormone (Gh) was de-
termined by a homologous gilthead sea bream radioimmunoassay (RIA) [36]. Plasma
insulin-like growth factor-1 (Igf-1) was extracted by acid-ethanol cryoprecipitation, and its
concentration was determined by means of a generic fish Igf-1 RIA validated for Mediter-
ranean perciform fish [37].

2.5. Illumina Sequencing and Sample Quality Assessment

Total RNA from tissue portions of white skeletal muscle was extracted using the
MagMAXTM-96 for Microarrays total RNA isolation kit (Life Technologies, Carlsbad, CA,
USA). The quality and integrity of the isolated RNA was checked on an Agilent Bioanalyzer
2100 total RNA Nano series II chip (Agilent, Santa Clara, CA, USA) with RIN (RNA Integrity
Number) values varying between 8 and 10. Illumina RNA-seq libraries were prepared
from 500 ng total RNA using the Illumina TruSeq™ Stranded mRNA LT Sample Prep Kit
(Illumina Inc. San Diego, CA, USA) according to the manufacturer’s instructions. All RNA-
seq libraries were sequenced on an Illumina HiSeq2500 sequencer as a 1 × 75 nucleotides
single-end (SE) read format, according to the manufacturer’s protocol. Raw sequenced
data were deposited in the Sequence Read Archive (SRA) of the National Center for
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Biotechnology Information (NCBI) under the Bioproject accession number PRJNA679473
(BioSample accession numbers: SAMN16834555-597). Approximately 882 million SE
reads were obtained from the 50 samples sequenced, with an average of ~18 million
reads per sample. Quality analysis was performed with FASTQC v0.11.7 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ accessed on 27 April 2019), and libraries
were filtered with Prinseq [38] for quality > 28 and < 5% of Ns in the sequence. Then,
libraries were mapped and annotated using TopHat2 [39] and the gilthead sea bream draft
genome as reference [40]. A representative transcriptome per sample was constructed
using Cufflinks, with the data quality checked with CummeRbund [41].

2.6. Statistics

Changes in the growth performance and blood parameters through all the experiment
were analysed by t-test or one-way ANOVA followed by Student–Newman–Keuls post-test.
At t45H and t+21N, the differentially expressed (DE) genes were retrieved with normalized
fragment per kilobase per million (FPKM) values using Cuffdiff [41], with false discovery
rates (FDR) adjustment with a cut-off of 0.05. To increase the number of DE genes without
loss of statistical robustness, supervised partial least-squares discriminant analysis (PLS-
DA) and hierarchical clustering of samples were sequentially applied using EZinfo v3.0
(Umetrics, Umea, Sweden) and the R package gplots, respectively. The genes included in
this analysis were filtered by ANOVA p-values < 0.05. The final list of genes contributing to
group separation was determined by the minimum Variable Importance in the Projection
(VIP) values [42,43], driving the right clustering of all individuals in the heatmap analysis.
To discard the possibility of over-fitting of the supervised discriminant model, a validation
test consisting in 500 random permutations was performed using SIMCA-P+ v11.0 (Umet-
rics). The heatmap representation was constructed using the average linkage method and
Euclidean distance.

Genes above the VIP threshold were analysed for gene ontology (GO) with the R
package ShinyGO v0.61 [44], after conversion of the gilthead sea bream annotated se-
quences to human equivalents. Significantly enriched GO categories were obtained after
FDR correction using a cut-off of 0.05. The list of genes associated with enriched GO terms
was introduced in the Search Tool for the Retrieval of Interacting Genes (STRING v.11)
database [45]. Functional protein–protein association networks were considered statis-
tically significant at FDR p-values < 0.05 and a high confidence score of 0.7. The tools
used for the sequencing quality analysis, cleaning, mapping, transcriptome assembly, and
differential gene expression are contained in the GPRO suite [46].

3. Results
3.1. Growth Performance during Mild-Hypoxia and Normoxia Restoration

Control fish (N group) grew during the hypoxia conditioning period (45 days), from
24 g to 79 g, at high specific growth rates (SGR = 2.59) for this species and class of size.
Feed intake (g dry matter/fish) was reduced by 25% in fish exposed to mild-hypoxia,
whereas the feed conversion ratio (FCR = dry feed intake/wet weigh gain) remained
within optimum levels (0.98–0.95) in both N and M-HYP fish (Table 1). Normoxic pair-fed
fish (N-PF) also grew efficiently (FCR = 0.96) at the same growth rate than M-HYP fish
(SGR= 2.24–2.25%). During the first week of the subsequent normoxic and unrestricted
feeding period (t45H–t+7N), the growth performance parameters remained similar in all
groups, although during the last two weeks (t+7N–t+21N), growth rates of N-PF and M-HYP
fish were higher (p < 0.001) than in control fish, as denoted by the SGR values (2.26 and 2.19
vs. 1.79, respectively), helping to compensate, at least in part, the initial growth impairment.
Furthermore, the feed conversion ratio was improved to some extent (p = 0.103), with the
achieved FCR varying between 1.21 in N fish to 1.13–1.14 in M-HYP/N-PF fish.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 1. Effects of mild-hypoxia conditioning on the growth performance of gilthead sea bream juveniles in a 45-day trial
followed by a normoxia recovery period of 21 days. Values are the mean ± SEM of triplicate tanks. The p-values are the
result of one-way ANOVA. Different superscript letters indicate significant differences between the experimental groups
(SNK test, p < 0.05).

N N-PF M-HYP p-Value

Mild-hypoxia conditioning (t0–t45H)
Initial body weight (g) 24.58 ± 0.11 24.1 ± 0.10 24.19 ± 0.03 0.112
Final body weight (g) 78.69 ± 0.79 b 66.13 ± 1.41 a 66.06 ± 0.97 a <0.001

Feed intake (g DM/fish) 53.36 ± 0.15 b 40.77 ± 0.22 a 40.08 ± 0.84 a <0.001
Weight gain (%) 1 220.30 ± 2.03 b 174.51 ± 4.50 a 173.22 ± 3.86 a <0.001

SGR (%) 2 2.59 ± 0.01 b 2.24 ± 0.04 a 2.23 ± 0.03 a <0.001
FCR (%) 3 0.98 ± 0.009 0.96 ± 0.02 0.95 ± 0.008 0.285
Normoxia recovery period (t+7N–t+21N)

Initial body weight (g) 98.76 ± 1.20 b 83.50 ± 0.50 a 82.00 ± 1.14 a <0.001
Final body weight (g) 126.5 ± 1.30 b 114.7 ± 0.33 a 111.3 ± 1.81 a 0.001

Feed intake (g DM/fish) 37.62 ± 1.28 36.57 ± 1.50 35.66 ± 0.50 0.329
Weight gain (%) 1 28.54 ± 0.46 a 37.22 ± 1.33 b 35.50 ± 0.85 b 0.001

SGR (%) 2 1.79 ± 0.03 a 2.26 ± 0.07 b 2.19 ± 0.04 b <0.001
FCR (%) 3 1.21 ± 0.03 1.12 ± 0.02 1.14 ± 0.02 0.103

1 Weight gain (%) = (100 × body weigh increase)/initial body weight; 2 Specific growth rate = 100 × (ln final body weight − ln initial body
weight)/days; 3 Feed conversion ratio = dry feed intake/wet weight gain.

3.2. Blood Patterns at the End of the Mild-Hypoxia Conditioning Period

Data on blood haematology and biochemistry in free-swimming fish at t45H are shown
in Table 2. In this fish group, the reduction of feed intake was associated to lowered
(p = 0.011) Hb concentrations in N-PF fish, but control values were restored with the
combined reduction of feed intake and O2 availability in M-HYP fish. Circulating levels of
lactate were lowered in both N-PF and M-HYP fish, with the lowest levels in fish exposed
to a low O2 concentration (p < 0.001). In contrast, feed intake and O2 availability showed
an opposite effect on plasma levels of FFAs, achieving the highest concentrations in N-PF
fish and the lowest in M-HYP fish (p = 0.029). No statistically significant differences were
found in the other analysed parameters (Hc, glucose, TAGs, cortisol, Gh, Ifg-1), but the
calculated Gh/Igf-1 ratio increased significantly (p < 0.05) from 0.13 in N fish to 0.25 in
M-HYP fish.

Table 2. Effects of mild-hypoxia conditioning on blood haematology and blood biochemistry of gilthead sea bream juveniles.
Values are the mean ± SEM of 6–10 fish (2–3 fish per replicate tank). The p-values are the result of one-way ANOVA.
Different superscript letters indicate significant differences between the experimental groups (SNK test, p < 0.05).

N N-PF M-HYP p-Value

Haemoglobin (g/dL) 8.36 ± 0.38 b 6.43 ± 0.64 a 7.88 ± 0.22 b 0.011
Haematocrit (%) 34.7 ± 1.24 33.7 ± 0.99 31.0 ± 1.41 0.175
Lactate (mg/dL) 14.1 ± 0.15 b 6.32 ± 0.57 a 4.18 ± 0.77 a <0.001
Glucose (mg/dL) 57.1 ± 5.98 55.7 ± 2.29 56.8 ± 2.35 0.493

Triglycerides (mg/dL) 2.80 ± 0.28 4.02 ± 0.34 3.02 ± 0.46 0.128
Free fatty acids (nmol/µL) 0.426 ± 0.052 ab 0.595 ± 0.045 b 0.388 ± 0.045 a 0.029

Cortisol (ng/mL) 24.1 ± 5.43 29.3 ± 10.56 14.3 ± 4.71 0.270
Growth hormone (ng/mL) 9.19 ± 3.94 12.4 ± 5.30 13.9 ± 4.87 0.752

Insulin-like growth factor-1 (ng/mL) 69.3 ± 5.74 60.5 ± 3.42 55.5 ± 3.94 0.285
Gh/Igf-1 0.13 ± 0.058 a 0.20 ± 0.081 ab 0.25 ± 0.041 b 0.032

3.3. Swim Tests: Critical Swimming and Blood Patterns after Exhaustive Exercise

Results of the swim tests at different times over the experimental period (t45H, t+7N
and t+21N) are shown in Figure 2. Overall, MO2 increased linearly with the increase of water
speed until a maximum metabolic rate (MMR) that varied non-significantly between 400
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and 357 mgO2/kg/h. Then, fish of all experimental groups showed a sharp decrease in O2
consumption until being exhausted at their own critical speed (Ucrit). At t45H, the achieved
Ucrit was higher (p < 0.01) in M-HYP fish (7.6 BL/s) than in the other two experimental
groups that shared undistinguishable critical swimming (6.8–6.9 BL/s) (Figure 2A). The
subsequent swim tests at t+7N and t+21N were only conducted in control fish and M-HYP
fish, which highlighted persistent higher Ucrit values in M-HYP (p < 0.001) over the course
of all the experimental period (Figure 2B,C). The effect of exhaustive exercise on circulating
levels of metabolites and hormones in N-PF (t45H) and M-HYP fish (t45H, t+7N, t+21N) is
shown as a percentage of change of N fish (Figure 3). Circulating levels of glucose, lactate,
cortisol, Gh, and Igf-1 were lowered in N-PF and/or M-HYP in comparison to N fish at
the end of the hypoxia conditioning period. However, this trend was reversed over time,
especially in the case of lactate (p < 0.05). The opposite pattern was found for circulating
FFAs, which shared raised levels in M-HYP fish at the beginning of the normoxia recovery
period (p < 0.05), with a restoration of values of control fish at the last testing point (t+21N).
Raw data on blood parameters are shown in Supplementary Table S1.

3.4. Analysis of RNA-seq Libraries and DE Genes by Stringent FDR

After trimming and quality filtering, around 3% of all skeletal muscle reads were
discarded, with the remaining reads ranging between 91 million (6.83 Gb) and 121 mil-
lion (9.08 Gb) in all experimental groups (see details in Supplementary Table S2). Up
to 82% of these pre-processed reads were mapped against the reference genome, which
retrieved 33,756 muscle transcripts. At t45H, 151 muscle transcripts (134 unique gene de-
scriptions) were differentially expressed (FDR-adjusted p-value < 0.05) in free-swimming
fish (Figure 4A). Among them, 108 genes were differentially regulated when comparisons
are made between N-PF and N fish, decreasing these numbers to 72 and 21 transcripts
when comparing M-HYP against N-PF fish, and M-HYP against N fish, respectively. After
exercise exhaustion at t45H, the number of DE transcripts was 114 (101 unique gene descrip-
tions) for an FDR-adjusted p-value < 0.05 (Figure 4B). Among them, 18 transcripts were
differentially regulated when comparing N-PF and N fish, 41 when comparing M-HYP
and N-PF groups, and 78 when comparing M-HYP and N fish. The magnitude of change
was apparently decreased over time with only 15 DE transcripts (FDR-adjusted p-value <
0.05) when comparisons are made between M-HYP and N fish at t+21N (Figure 4C).

3.5. Discriminant Classifiers and Enriched GO Terms

For a given sampling time, supervised PLS-DA models of the skeletal muscle tran-
scriptome clearly separated along the X-axis the N fish from M-HYP fish (Supplementary
Figure S2) in the analysis of free-swimming fish at t45H. Otherwise, the two first com-
ponents explained more than 85% and 95% of total variance in forced exercise fish after
conditioning (t45H) (Supplementary Figure S2A,B) and recovery (t+21N) (Supplementary
Figure S2C,D,E,F), respectively. This classifier performance was validated by 500-model
permutation tests (Supplementary Figure S3), which was reinforced by the right hierarchi-
cal clustering of samples when applying different cut-offs for the VIP values. At t45H, such
an approach yielded two main clusters corresponding to N fish and N-PF/M-HYP fish.
However, the number of DE transcripts among groups was increased from 222 (219 unique
gene descriptions) to 421 (400 unique gene descriptions) by exhaustive exercise, decreasing
in parallel the VIP cut-off value from 1.2 to 1 (Figure 5A,B). The VIP cut-off for right
clustering remained low at t+21N, but the number of DE transcripts between N and M-HYP
fish decreased until 180 (179 unique gene descriptions) (Figure 5C).
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Figure 2. Swim tests conducted at the end of the mild-hypoxia conditioning period (t45H) (A), after a
1-week normoxia recovery period (t+7N) (B), and after a 3-week normoxia recovery period (t+21N)
(C). Mild-hypoxia fish (M-HYP) are in red, pair-fed fish (N-PF) are in violet, and normoxic fish (N)
are in blue. Values showing oxygen consumption (MO2), maximum metabolic Rate (MMR), and Ucrit

are the mean ± SEM of 4–6 fish. Asterisks indicate statistically significant differences among groups
(one-way ANOVA, SNK test, ** p < 0.01; *** p < 0.001).
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Figure 3. Changes in circulating levels of glucose (A), lactate (B), free fatty acids (C), cortisol (D), Gh (E), and Igf-I (F)
in hypoxic (M-HYP, red) and pair-fed fish (N-PF, violet) following exhaustive exercise at the end of the mild-hypoxia
conditioning period (t45H) and over the course of the normoxia recovery period (t+7N, t+21N). Values are the mean ± SEM of
4–6 fish. Asterisks indicate statistically significant differences with N fish at each experimental time (SNK test, * p < 0.05).
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Figure 4. Differential expression analysis results at the end of the mild-hypoxia conditioning pe-
riod (t45H) (A), after exhaustive exercise at t45H (B), and after a 3-week normoxia recovery period
(t+21N) (C). Numbers over or next to the arrows indicate differentially expressed genes (ANOVA,
p < 0.05) between groups. Numbers between parentheses indicate differentially expressed genes
(FDR-adjusted p-value < 0.05) between groups.
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Figure 5. Clustering and gene enrichment analysis. Heatmap showing the abundance distribution
(z-score) of the DE genes identified to be driving the separation between groups at the end of the
mild-hypoxia conditioning period (t45H) before (A) and after exhaustion exercise (B), and at the end
of the normoxia recovery period (t+21N) after exhaustion exercise (C). Venn diagrams show the level
of overlapping of enriched GO-BP categories at the end of the mild-hypoxia conditioning period
before (D) and after exhaustion exercise (E), and at the end of the normoxia recovery period after
exhaustion exercise (F).

After gene clustering, a functional enrichment analysis was performed at each sam-
pling time. The enriched categories in Biological Processes (BP), together with their al-
located genes annotation and expression values in each comparison, are shown in Sup-
plementary Table S3. For mild-hypoxia in free-swimming fish (Figure 5D), the enriched
processes were (1) small molecule metabolic process, mainly lipid metabolism (GO:0044281;
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33 allocated genes); (2) tissue development (GO:0009888; 34 allocated genes); (3) apoptosis
signalling pathway (GO:0097190; 13 allocated genes); and (4) vesicle-mediated transport,
mainly endocytosis (GO:0016192; 12 allocated genes). After exhaustive exercise at t45H
(Figure 5E), the enriched processes were (1) muscle contraction (GO:0006936; 42 allocated
genes); (2) generation of precursors of metabolites and energy (GO:0006091; 30 allocated
genes); and (3) regulation of ATPase activity (GO:0043462; 7 allocated genes). After nor-
moxia recovery and exhaustive exercise at t+21N (Figure 5F), the enriched processes were
(1) positive regulation of locomotion (GO:0040017; 12 allocated genes); (2) ribosome bio-
genesis (GO:0042254; 15 allocated genes); (3) protein folding (GO:0006457; 5 allocated
genes); (4) response to abiotic stimulus (GO:0009628; 33 allocated genes); and (5) protein
conjugation or removal (GO:0070647; 29 allocated genes).

3.6. Linking Enriched Processes with Gene Expression Patterns

According to the protein–protein network analysis, a total of 31 interactions corre-
sponding to 32 genes allocated to enriched processes were disclosed in free-swimming
fish after the mild-hypoxia conditioning period (Figure 6A). One major link comprised
molecules linked to endocytosis (KEGG: ko04144; 7 genes) and apoptotic signalling in
response to DNA damage processes (GO:0008630; 6 genes), with ubiquitin-60S ribosomal
protein L40 (uba52) connecting up to 8 genes involved in both processes. However, there is
not a clear gene expression pattern associated with reduced O2 availability or restricted
feed intake (Figure 6D). Conversely, most lipid-related genes of the interaction plot dis-
closed a clear upregulation in M-HYP fish. The peroxisome proliferator-activated receptor
gamma (pparγ) worked as a pivotal molecule connecting up to 4 genes, all of them framed
in the PPAR signalling pathway (KEGG: ko03320). This pivotal gene was significantly
upregulated in the comparisons of M-HYP vs. N and M-HYP vs. N-PF. A similar ex-
pression pattern was found for diacylglycerol O-acyltransferase 2 (dgat2), 2-acylglycerol
O-acyltransferase 2-A-like (mogat2), NADP-dependent malic enzyme (me1), farnesyl py-
rophosphate synthase (fdps), diphosphomevalonate decarboxylase (mvd), 3-ketoacyl-CoA
thiolase B, peroxisomal (acaa1), and alcohol dehydrogenase 5 (adh5). The long-chain-fatty-
acid–CoA ligase 1 (acsl1) and prostaglandin E synthase 3 (ptges3) were equally upregulated
in both M-HYP and N-PF fish in comparison to N fish. By contrast, in comparison to the
controls, the expression of carnitine O-palmitoyltransferase 2 (cpt2) was activated in N-PF
fish but not in M-HYP fish.

After the swim test following mild-hypoxia conditioning, the number of connections
increased up to 146 with 40 genes in the enriched GO terms (Figure 6B), which indicates an
increased cohesion pattern between DE genes following stringent exercise. Besides, such
physiological response rendered the interaction of 22 genes related to muscle contraction
and sliding. In this sampling point, a strong overall downregulation of genes involved in
muscular machinery was found in the comparisons M-HYP vs. N and M-HYP vs. N-PF,
with no differences in the comparison N-PF vs. N (Figure 6E). Among them, myosin-1, -6
and -7 (myh1, myh6, myh7), myosin light chain kinase (mylk), troponin C (tnnc2), troponin I,
slow and fast skeletal muscle (tnni1, tnni2), troponin T, cardiac and skeletal muscle isoform
(tnnt2, tnnt3), and tropomyosin alpha (tpm3, tpm4) and beta (tpm2) chains were disclosed
under this type of response.
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Figure 6. Protein–protein interaction plots and expression patterns of enriched processes at the end of
the mild-hypoxia conditioning period (t45H) before (A,D) and after exhaustive exercise (B,E), and at
the end of the normoxia recovery period (t+21N) after exhaustion exercise (C,F). Edges between nodes
shows significant relations (FDR < 0.05; STRING confidence score > 0.7). Colours represent genes
related to the following enriched biological processes: small molecule metabolic process (purple),
vesicle-mediated transport (red), muscle contraction (green), generation of precursors of metabolites
and energy (violet), ribosome biogenesis (orange), small protein conjugation or removal (blue), and
positive regulation of locomotion (brown). Numbers above columns indicate the comparison in the
RNA-seq analysis (1: M-HYP vs. N; 2: M-HYP vs. N-PF; 3: N-PF vs. N). Sliced symbols in (D) and (E)
represent the comparison between the gene expression log2FC values in the respective comparison
for each gene. White circles represent the lowest log2FC values, whereas the black circles represent
the highest. Genes in (C), forming a category in the interaction plot, were ordered by their log2FC in
comparison 1, and sliced symbols in (F) were then applied for all the genes at the same time.

Following the normoxia recovery period (t+21N), targeted genes of the enriched BP
were also changing, the number of interactions decreasing to 43 and corresponding to
31 genes (Figure 6C). One major link in this group involved a total of 11 genes related at
the same time with ribonucleoprotein complex biogenesis and response to abiotic stimulus
(Figure 6F). The generalized response of these genes was their upregulation in M-HYP fish
in comparison to N fish. Among others, the activator of basal transcription 1 (abt1), the
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ribosome biogenesis protein BRX1 homolog (brix1), and the ribosomal RNA processing
proteins 1B and 36 (rrp1b, rrp36) were found. A second link grouped 9 genes related
with the protein modification by small protein conjugation or removal. Here, genes
related with deubiquitination processes, as the OTU domain-containing protein 1 (otud1),
the UV excision repair protein RAD23 homolog A (rad23a), the ubiquitin-like modifier-
activating enzyme 5 (uba5), and the ubiquitin carboxyl-terminal hydrolase 14 (usp14), were
upregulated in M-HYP fish. Otherwise, genes involved in the proteasome degradation
such as the proteasome subunit alpha type-6 (psma6), the 26S proteasome non-ATPase
regulatory subunit 11 (psmd11), and the 26S proteasome non-ATPase regulatory subunit 12
(psmd12) were downregulated in M-HYP fish. A third important link was found between 5
genes related to the regulation of locomotion and the response to abiotic stimulus with the
upregulation of calreticulin (calr), C-C motif chemokine 19 (ccl19), and heat shock 70kDa
Protein 5 (hspa5/grp78), and the downregulation of serine/threonine-protein kinase mTOR
(mtor) and C-X-C chemokine receptor type 4 (cxcr4) in M-HYP fish.

4. Discussion

Episodes of high temperature and hypoxia are increasing in extent and severity in
coastal marine ecosystems, and these stressors have the capacity to reinforce each other
because increasing temperature decreases O2 solubility [47]. Hypoxia is, thereby, a major
aquaculture stressor around the world [48]. The first sign of O2 scarcity is the reduction
of appetite, and subsequent growth impairments reflect the different temperature and O2
tolerance ranges of living organisms [18,49–51], as well as their plasticity for prioritizing
feed efficiency at the expenses of maximum growth “oxystatic theory” [52,53]. Thus, both in
this and a previous study [20], we found that mild-hypoxia acclimation in summer (40–60%
saturation) deaccelerated growth of fast-growing juveniles of gilthead sea bream, whereas
FCR was not impaired or even improved during mild-hypoxia and normoxia recovery
periods, respectively. This is because the best feed conversion and hormonal signatures for
fast and efficient growth generally occur before the achievement of maximum growth at
the greater ration size [54,55]. This also applies at the cellular level, where the maximum
ATP yield per molecule of O2 (P/O ratio) is increased during food shortage [56,57] or
hypometabolic hypoxia [33]. Such adaptive feature was supported herein by lowered
plasma levels of lactate, which would reflect a reduced basal metabolism rather than a
switch of aerobic to anaerobic metabolism during mild-hypoxia exposure. This was also
previously stated [20], but herein the pair-fed experimental design allowed us to disclose
that low plasma lactate levels arise from a reduced feed intake that becomes slightly
although non-significantly lowered by limited O2 availability. Conversely, circulating levels
of haemoglobin and FFAs evolved differentially when fish faced changes in feed intake
and O2 availability, resulting in reduced erythropoiesis and enhanced lipid mobilization,
which can be interpreted as a discriminant feature of hypo-metabolic states triggered by
feed restriction during normoxia. Otherwise, circulating levels of cortisol and growth-
promoting factors did not differ significantly among groups, though the highest Gh/Igf-1
ratio of M-HYP fish during hypoxia exposure underlines a limited growth potentiality
under reduced O2 and metabolic fuels availability [58].

The changing metabolic phenotype is also indicative of a number of whole-organism
traits of ecological and economic importance, such as dominance, aggression, and swim-
ming performance [59]. A high percentage of this genetic variance is expected to be
unexplained [60], but recent research in gilthead sea bream associated reduced locomotor
activity with more continuous growth [61], less size heterogeneity [34,61], and enhanced
phenotypic plasticity of gut microbiota [62]. Likewise, large domesticated strains of At-
lantic salmon and rainbow trout (Oncorhynchus mykiss) become athletically less robust that
wild fish [63–66]. However, the opposite is also true and different exercise protocols are
able to increase the growth performance of a wide range of farmed fish, including gilthead
sea bream [67–69]. Moreover, critical swimming is a highly predictive marker of fillet yield
in both gilthead sea bream and Atlantic salmon [70]. The mechanisms by which hypoxia



Biology 2021, 10, 416 15 of 23

acclimation or hypoxia priming during early life affect fillet yield remain elusive, though
the present study highlighted that M-HYP fish showed a higher Ucrit than the two other
experimental groups. This observation underscored the improved availability of this group
of fish to resist fatigue during training endurance, as it has been reported for hypoxia
acclimation in athletes and different animal models [29,30]. Interestingly, exercised M-HYP
fish would benefit of this metabolic advantage through all the normoxia recovery period
(21 days), though the time course of changes in blood landmarks evidenced a dynamic
metabolic trade-off with an increased availability of aerobic metabolic fuels (increase of
circulating levels of FFA for aerobic ATP production) after hypoxia conditioning, which
shifted towards a higher anaerobic fitness (increased lactate production from glucose) at
the end of the normoxia recovery period.

At the transcriptional level, up to 222 genes have a discriminant role for classification
of all individuals in their respective group (N, N-PF, or M-HYP) at the end of the hypoxia
conditioning period. During hypoxia exposure, the number of discriminant genes was
also increased up to 421 by exhaustive exercise, which is in line with previous studies
in rainbow trout where sustained swimming increased the transcriptional activity of
skeletal muscle [71]. Certainly, in our experimental model, the number of interactions and
interacting genes in the protein interaction plots increased largely in exercised fish. In any
case, cluster analysis grouped together N-PF and M-HYP fish before and after exhaustive
exercise, which indicates that most hypoxia-mediated changes in mRNA transcripts were
mediated, at least in part, by a reduced feed intake. This assumption was supported by
a high representation of discriminant genes (68–70%) that were up- or downregulated in
parallel in both N-PF and M-HYP fish (Supplemental Table S3).

At a closer look, the protein interaction plots disclose lipid metabolism (small molecule
metabolic process) as a main differentially regulated process in our hypoxia model
(Figure 6A,D). This is not surprising given that many aspects of carbohydrates, but also
of lipid metabolism, are modified in humans and transgenic animals by HIF (hypoxia
inducible factor) during physiological or pathological hypoxia, contributing significantly
to the pathogenesis and/or progression of cancer and metabolic disorders [72]. The ul-
timate mechanisms remain controversial, though experimental evidence supports that
TAG synthesis and the extracellular uptake of FAs are promoted under hypoxia by the
transcription factor PPARγ in a HIF-dependent manner [73,74]. Lipid accumulation under
hypoxia is further supported by the HIF inhibition of FA oxidation via the downregulation
of the transcriptional coactivator PGC-1α (proliferator-activated receptor-γ coactivator-
1α) [75,76]. Thus, a number of studies have shown that obesity is increased by inhibition of
HIF and decreased by HIF activation [77], but other authors claimed that HIF activation
induces obesity [78,79]. Indeed, the activation of both lipid catabolism and anabolism was
co-occurring in the present study, the hypoxic induction of pparg being associated with
the upregulation of acaa1 (peroxisomal β-oxidation enzyme) and acsl1, which catalyses the
conversion of long-chain fatty acids to their active form acyl-CoAs for both oxidation and
biosynthesis processes. This hypoxic activation of lipid anabolism was also supported by
the upregulation of key-rate limiting enzymes of FA synthesis (me1) and esterification into
diacylglycerols (mogat2) and TAG (dgat2). A similar enhancement of lipid metabolism at
brain, liver and muscle has been recently reported in Ya fish Schizothorax prenanti as an
adaptation to acute hypoxia stress, together with an upregulation of antioxidant genes [80].
This overall activation of lipid metabolism reflects an adaptive trade-off that might serve
to facilitate the aerobic energy metabolism during prolonged reduced O2 availability, lim-
iting at the same time the risk of lipotoxicity (excess of intracellular FAs) through the
induction of TAG accumulation [81,82]. Thus, the muscle expression of pparg and other
lipogenic/anabolic enzymes (me1, mogat2, dgat2) was repressed in N-PF, whereas the trend
for catabolic enzymes of peroxisomal (acsl1) and mitochondrial (cpt2) β-oxidation was
the upregulation in N-PF fish and to a lower extent in M-HYP fish. In other words, the
activation of lipid cell storage would be primarily mediated by O2 availability, whereas the
overall stimulation of lipid catabolic enzymes would be triggered by a deficit in metabolic
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fuels. In this line, hypoxia induced a pronounced mobilization of stored TAGs in the
euryoxic goby Gillichthys mirabilis [83]. Otherwise, the activation of the transcription factor
SREPB (sterol regulatory element binding protein) signalling pathway was required in
the poor survival glioblastoma multiforme to preserve lipid biosynthesis and cell viability
under lipid- and O2-deprived conditions [84], which was herein in agreement with the
upregulated expression of fdps and mvd in both N-PF and M-HYP fish.

The hypoxic induction of pparg persisted after exhaustive exercise in M-HYP fish at the
t45H sampling point. However, protein interaction plots rendered the over-representation
of the two other main processes (muscle contraction and generation of metabolites and
energy), with an overall downregulation in comparison to normoxic control fish that was
extensive to a lower extent in N-PF fish (Figure 6B,E). This metabolic feature highlighted
the more efficient energy metabolism of M-HYP fish, probably with a higher contribution
of aerobic metabolism to whole energy supply, as part of the mechanisms of a wide range
of animal taxa to cope with high-altitude hypoxia [85–91]. The precise mechanisms remain
unsolved in our experimental model, though the downregulated expression of muscle
lactate dehydrogenase should contribute to regulate muscle contractions. Indeed, several
studies stated that lactate decreases the blood flow to the working muscle, in a process
that induces fatigue [92,93]. Marathoners deal with this fatigue with a higher proportion of
oxidative fibres, which contract slowly and use aerobic respiration to produce ATP [94,95].
This type of adaptive response might also contribute to drive the muscle transcriptome
of M-HYP fish, resulting in a persistent increase in critical swimming speed, due to their
improved endurance training during the hypoxia conditioning period. Reinforcing this
assumption, mRNA transcripts of myosin, troponin, and tropomyosin were strongly
downregulated in M-HYP fish, but remained unaltered in N-PF fish, which suggests that
this feature is a good example of a muscle transcriptional response mediated by changes in
O2 availability rather than feed intake.

From our results, it was also conclusive that normoxic M-HYP fish (t+21N) shared a
catch-up growth response, in concurrence with a persistent improvement in the swimming
performance and changing muscle transcriptome after exercise exhaustion. These hypoxia-
driven effects included a clear exercise activation of the anaerobic glycolysis pathway in
M-HYP fish in comparison to normoxic control fish (Supplemental Table S3). Certainly, the
regulation of glycolysis has been largely studied in fish [96–98], and wide-transcriptomic
studies highlighted a fast transition from aerobic oxidation to anaerobic glycolysis when
individuals faced restrictive O2 concentrations [99]. However, anaerobic metabolism is less
efficient than aerobic ATP production, and the enhanced exercise activation of glycolysis
by hypoxia conditioning was apparently delayed over the course of the normoxia recovery
period. Intriguingly, this glycolysis activation was supported by increased levels of blood
lactate (Figure 3B) and the upregulated expression of muscle lactate dehydrogenase. How-
ever, the protein interaction plot showed the main enrichment of ribosome biogenesis and
protein conjugation GO terms with the upregulation of markers of protein synthesis (abt1,
brix1, rrp1b, rrp36) and deubiquitination (otud1, rad23a, usp14) pathways, in combination
with the strong downregulation of several proteasome subunits (psma6, psmd11, psmd12)
(Figure 6C,F). This finding highlighted a reduced muscle protein turnover after exhaustive
exercise in normoxic M-HYP, which would also contribute to support the catch-up growth
of N-PF and M-HYP fish during the normoxia recovery period. Indeed, a large body of
evidence has revealed that faster growing and/or more efficient fish have lower rates of
protein turnover (equivalent to protein breakdown in growing individuals) [100,101]. Oth-
erwise, a number of overlapping genes for positive regulation of locomotion and response
to stimulus were also induced or repressed by exhaustive exercise in M-HYP fish. Among
them, noteworthy is the upregulated expression of hspa5/grp78 and calr, highly conserved
chaperone proteins of endoplasmic reticulum (ER) that reduce ER stress and apoptosis
through the enhancement of the cellular folding capacity [102,103]. Certainly, micro-RNAs
(miRs) have emerged as key gene regulators in many diseases, as reduced miR30a in-
creased the HSPA5 level and attenuated ischemic brain infarction in focal ischemia stroked
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mice [104]. Likewise, both hspa5 and calr belong to the antioxidant defence system of
the epithelial layers [105,106], and their upregulated expression in M-HYP fish would
contribute to prevent the disruption of the intracellular redox state and the cellular folding
capacity of skeletal muscle under metabolic states, resulting in high O2 consumption rates
and enhanced ROS production.

5. Conclusions

Mild-hypoxia acclimation acts as a driving force with effects on growth and swim-
ming performance through changes in metabolic and muscle transcriptomic landmarks.
The first consequence of mild-hypoxia exposure was to prioritize feed efficiency at the
expenses of maximum growth. Such adaptive feature would take advantage of the bene-
fits of a reduced feed intake and hypometabolic state, resulting in a higher contribution
of aerobic metabolism to whole energy supply that shifted towards a higher anaerobic
fitness following normoxia restoration. Despite the changes in substrate preference for
metabolic fuels, mild-hypoxia acclimation led to higher Ucrit at exhaustive exercise before
and after normoxia restoration, which would reflect the metabolic imprint of a lower O2
availability rather than a reduced feed intake in our hypoxia pair-fed model, at least in the
short/medium-term (21 days post-recovery). At the transcriptomic level, our results de-
picted the overall activation of lipid metabolism to facilitate the aerobic energy metabolism
during prolonged reduced O2 availability, with the limitation at the same time of the risk of
lipotoxicity through the enhanced TAG accumulation of the excess of intracellular FAs. The
machinery of muscle contraction and protein synthesis and breakdown was also largely
altered by mild-hypoxia conditioning, and the achieved responses contributed to mitigate
fatigue response under exhaustive exercise, and to preserve a catch-up growth during the
normoxia recovery period. Altogether, these results reinforce the high phenotypic plasticity
of gilthead sea bream, which is supported at the genomic level by a high rate of recent
local gene duplications [40] that might favour the acquisition of novel gene functions, and
a rapid and efficient adaption of individuals to a changing and challenging environment.
In a practical sense, as summarized in Figure 7, mild-hypoxia pre-programming emerges
as a promising prophylactic measure to depress metabolic rates and so prepare individ-
uals to respond to predictable stressful events, preserving and even improving FCR and
swimming performance.



Biology 2021, 10, 416 18 of 23

Biology 2021, 10, x  19 of 24 
 

ming emerges as a promising prophylactic measure to depress metabolic rates and so pre-

pare individuals to respond to predictable stressful events, preserving and even improv-

ing FCR and swimming performance. 

 

Figure 7. Schematic representation of the proposed model for integrative responses of gilthead sea 

bream exposed to mild-hypoxia stress conditioning. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: 

Closed-system scheme for the experimental set-up. Figure S2: Graphical representation of the good-

ness-of-fit and scores of the PLS-DA model in each sampling time along the experiment. (A), (C) 

and (E) Graphical representation of the goodness-of-fit of the PLS-DA model of t45H, t45H after exer-

cise and t+21N after exercise, respectively. (B), (D), (F) Two-dimensional PLS-DA score plot represent-

ing the distribution of the samples between the first two components in the model of t45H, t45H after 

exercise and t+21N after exercise, respectively. Figure S3: Validation plots of the PLS-DA models con-

sisting in 500 random permutations. (A), (B), (C) Validation plots of the PLS-DA models of t45H, t45H 

after exercise and t+21N after exercise, respectively. Table S1: Effects of mild-hypoxia conditioning 

and the subsequent normoxia recovery (1 or 3 weeks thereafter) on plasma and muscle tissue levels 

of metabolites and hormones after exercise exhaustion of gilthead sea bream juveniles. Values are 

the mean ± SEM of 6-7 fish (2-3 fish per replicate tank). P-values are the result of one-way ANOVA 

or t-test analysis where appropriate. Different superscript letters or asterisks (*) indicate significant 

differences between experimental groups (P < 0.05). Table S2: Statistics of the preprocessing and 

mapping of RNA-seq libraries. t45H, t45H-Ex and t+21N correspond to experimental groups condition-

ing, Exercise in t45H and Exercise in t+21N, respectively. N, N-PF and M-HYP correspond to the differ-

ent fish conditions: Normoxia, normoxia pair-fed and mild-hypoxia, respectively. Table S3: Differ-

entially expressed genes and associated enriched pathways. 

Author Contributions: J.P-S. conceived and designed the study; J.A.M.-S. performed blood and 

swim tests; F.N-C. and J.À.C-G performed transcriptional and bioinformatics analyses; all authors 

analysed and interpreted the data; F.N-C., J.À.M-S. and J.P-S. drafted the original manuscript. All 

authors have read and agreed to the published version of the manuscript. 

Figure 7. Schematic representation of the proposed model for integrative responses of gilthead sea
bream exposed to mild-hypoxia stress conditioning.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10050416/s1. Figure S1: Closed-system scheme for the experimental set-up. Figure S2:
Graphical representation of the goodness-of-fit and scores of the PLS-DA model in each sampling time
along the experiment. (A), (C) and (E) Graphical representation of the goodness-of-fit of the PLS-DA
model of t45H, t45H after exercise and t+21N after exercise, respectively. (B), (D), (F) Two-dimensional
PLS-DA score plot representing the distribution of the samples between the first two components
in the model of t45H, t45H after exercise and t+21N after exercise, respectively. Figure S3: Validation
plots of the PLS-DA models consisting in 500 random permutations. (A), (B), (C) Validation plots of
the PLS-DA models of t45H, t45H after exercise and t+21N after exercise, respectively. Table S1: Effects
of mild-hypoxia conditioning and the subsequent normoxia recovery (1 or 3 weeks thereafter) on
plasma and muscle tissue levels of metabolites and hormones after exercise exhaustion of gilthead
sea bream juveniles. Values are the mean ± SEM of 6–7 fish (2–3 fish per replicate tank). p-values
are the result of one-way ANOVA or t-test analysis where appropriate. Different superscript letters
or asterisks (*) indicate significant differences between experimental groups (p < 0.05). Table S2:
Statistics of the preprocessing and mapping of RNA-seq libraries. t45H, t45H-Ex and t+21N correspond
to experimental groups conditioning, Exercise in t45H and Exercise in t+21N, respectively. N, N-PF and
M-HYP correspond to the different fish conditions: Normoxia, normoxia pair-fed and mild-hypoxia,
respectively. Table S3: Differentially expressed genes and associated enriched pathways.

Author Contributions: J.P.-S. conceived and designed the study; V.d.l.H. and P.S.-M. conducted
fish rearing; J.A.M-S. performed blood and swim tests; F.N.-C. and J.À.C.-G. performed transcrip-
tional and bioinformatics analyses; All authors analyzed and interpreted the data; F.N.-C., J.A.M.-S.
and J.P.-S. drafted the original manuscript. All authors reviewed, edited and approved the fi-
nal manuscript.

Funding: This work was financially supported by a grant from the European Commission of the
European Union under the Horizon 2020 research infrastructure project AQUAEXCEL2020 (652831)
to J.P-S. Additional funding was obtained by a Spanish MICINN project (Bream-AquaINTECH,

https://www.mdpi.com/article/10.3390/biology10050416/s1
https://www.mdpi.com/article/10.3390/biology10050416/s1


Biology 2021, 10, 416 19 of 23

RTI2018–094128-B-I00). J.A.M.-S. received a Postdoctoral Research Fellowship (Juan de la Cierva-
Formación, Reference FJCI-2014-20,161).

Institutional Review Board Statement: All procedures were approved by the Ethics and Animal
Welfare Committees of Institute of Aquaculture Torre de la Sal (IATS) and CSIC. The study was con-
ducted in the IATS registered aquaculture infrastructure facility (code ES120330001055) in accordance
with the principles published in the European Animal Directive (2010/63/EU) and Spanish laws
(Royal Decree RD53/2013) for the protection of animals used in scientific experiments.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this study can be found in online repositories.
The names of the repository/repositories and accession number(s) can be found below: NCBI
(accession: SAMN16834555-597, PRJNA679473).

Acknowledgments: The authors are grateful to Biotechvana S.L. for the allowance to use its compu-
tational cluster servers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hoppeler, H.; Vogt, M. Muscle tissue adaptations to hypoxia. J. Exp. Biol. 2001, 204, 3133–3139. [CrossRef]
2. Murray, A.J. Metabolic adaptation of skeletal muscle to high altitude hypoxia: How new technologies could resolve the

controversies. Genome Med. 2009, 1, 117. [CrossRef] [PubMed]
3. Gamboa, J.L.; Andrade, F.H. Muscle endurance and mitochondrial function after chronic normobaric hypoxia: Contrast of

respiratory and limb muscles. Eur. J. Physiol. 2012, 463, 327–338. [CrossRef]
4. Larson, J.; Drew, K.L.; Folkow, L.P.; Milton, S.L.; Park, T.J. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in

vertebrates. J. Exp. Biol. 2014, 217, 1024–1039. [CrossRef] [PubMed]
5. Storey, K.B. Regulation of hypometabolism: Insights into epigenetic controls. J. Exp. Biol. 2015, 218, 150–159. [CrossRef]
6. Wu, H.; Chen, W.; Zhao, F.; Zhou, Q.; Reinach, P.S.; Deng, L.; Ma, L.; Luo, S.; Srinivasalu, N.; Pan, M.; et al. Scleral hypoxia is a

target for myopia control. Proc. Natl. Acad. Sci. USA 2018, 115, E7091–E7100. [CrossRef] [PubMed]
7. Brown, C.J.; Rupert, J.L. Hypoxia and environmental epigenetics. High Alt. Med. Biol. 2014, 15, 323–330. [CrossRef]
8. Julian, C.G. Epigenomis and human adaptation to high altitude. J. Appl. Physiol. 2017, 123, 1362–1370. [CrossRef] [PubMed]
9. Richards, J.G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol. 2011, 214, 191–199.

[CrossRef] [PubMed]
10. Zhu, C.D.; Wang, Z.H.; Yan, B. Strategies for hypoxia adaptation in fish species: A review. J. Comp. Physiol. B Biochem. Syst.

Environ. Physiol. 2013, 183, 1005–1013. [CrossRef]
11. Deutsch, C.; Ferrel, A.; Seibel, B.; Pörtner, H.O.; Huey, R.B. Ecophysiology. Climate change tightens a metabolic constraint on

marine habitats. Science 2015, 348, 1132–1135. [CrossRef]
12. Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542,

335–339. [CrossRef] [PubMed]
13. Oschlies, A.; Brandt, P.; Stramma, L.; Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 2018, 11,

467–473. [CrossRef]
14. FAO. The State of World Fisheries and Aquaculture 2018. Contributing to Food Security and Nutrition for All; Food and Agriculture

Organization of the United Nations: Rome, Italy, 2018.
15. Sae-Lim, P.; Kause, A.; Mulder, H.A.; Olesen, I. Breeding and genetics symposium: Climate change and selective breeding in

aquaculture. J. Anim. Sci. 2017, 95, 1801–1812. [CrossRef]
16. Abdel-Tawwab, M.; Monier, M.N.; Hoseinifar, S.H.; Faggio, C. Fish response to hypoxia stress: Growth, physiological, and

immunological biomarkers. Fish Physiol. Biochem. 2019, 45, 997–1013. [CrossRef]
17. Remen, M.; Nederlof, M.A.J.; Folkedal, O.; Thorsheim, G.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J.; Oppedal, F.; Olsen, R.E. Effect of

temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata. Aquacult. Environ. Interact. 2015, 7, 115–123.
[CrossRef]

18. Remen, M.; Sievers, M.; Torgersen, T.; Oppedal, F. The oxygen threshold for maximal feed intake of Atlantic salmon post-smolts
is highly temperature-dependent. Aquaculture 2016, 464, 582–592. [CrossRef]

19. Araújo-Luna, R.; Ribeiro, L.; Bergheim, A.; Pousão-Ferreira, P. The impact of different rearing condition on gilthead seabream
welfare: Dissolved oxygen levels and stocking densities. Aquacult. Res. 2018, 49, 3845–3855. [CrossRef]

20. Martos-Sitcha, J.A.; Simó-Mirabet, P.; de Las Heras, V.; Calduch-Giner, J.À.; Pérez-Sánchez, J. Tissue-specific orchestration of
gilthead sea bream resilience to hypoxia and high stocking density. Front. Physiol. 2019, 10, 840. [CrossRef]

21. Parma, L.; Pelusio, N.F.; Gisbert, E.; Esteban, M.A.; D’amico, F.; Soverini, M.; Candela, M.; Dondi, F.; Gatta, P.P.; Bonaldo, A.
Effects of rearing density on growth, digestive conditions, welfare indicators and gut bacterial community of gilthead sea bream
(Sparus aurata, L. 1758) fed different fishmeal and fish oil dietary levels. Aquaculture 2020, 518, 734854. [CrossRef]

http://doi.org/10.1242/jeb.204.18.3133
http://doi.org/10.1186/gm117
http://www.ncbi.nlm.nih.gov/pubmed/20090895
http://doi.org/10.1007/s00424-011-1057-8
http://doi.org/10.1242/jeb.085381
http://www.ncbi.nlm.nih.gov/pubmed/24671961
http://doi.org/10.1242/jeb.106369
http://doi.org/10.1073/pnas.1721443115
http://www.ncbi.nlm.nih.gov/pubmed/29987045
http://doi.org/10.1089/ham.2014.1016
http://doi.org/10.1152/japplphysiol.00351.2017
http://www.ncbi.nlm.nih.gov/pubmed/28819001
http://doi.org/10.1242/jeb.047951
http://www.ncbi.nlm.nih.gov/pubmed/21177940
http://doi.org/10.1007/s00360-013-0762-3
http://doi.org/10.1126/science.aaa1605
http://doi.org/10.1038/nature21399
http://www.ncbi.nlm.nih.gov/pubmed/28202958
http://doi.org/10.1038/s41561-018-0152-2
http://doi.org/10.2527/jas2016.1066
http://doi.org/10.1007/s10695-019-00614-9
http://doi.org/10.3354/aei00141
http://doi.org/10.1016/j.aquaculture.2016.07.037
http://doi.org/10.1111/are.13851
http://doi.org/10.3389/fphys.2019.00840
http://doi.org/10.1016/j.aquaculture.2019.734854


Biology 2021, 10, 416 20 of 23

22. Calduch-Giner, J.À.; Davey, G.; Saera-Vila, A.; Houeix, B.; Talbot, A.; Prunet, P.; Cairns, M.T.; Pérez-Sánchez, J. Use of microarray
technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.).
BMC Genom. 2010, 11, 193. [CrossRef]

23. McBryan, T.L.; Healy, T.M.; Haakons, K.L.; Schulte, P.M. Warm acclimation improves hypoxia tolerance in Fundulus heteroclitus. J.
Exp. Biol. 2016, 219, 474–484. [CrossRef] [PubMed]

24. Healy, T.M.; Chung, D.J.; Crowther, K.G.; Schulte, P.M. Metabolic and regulatory responses involved in cold acclimation in
Atlantic killifish, Fundulus heteroclitus. J. Comp. Physiol. B. 2017, 187, 463–475. [CrossRef]

25. Salin, K.; Auer, S.K.; Villasevil, E.M.; Anderson, G.J.; Cairns, A.G.; Mullen, W.; Hartley, R.C.; Metcalfe, N.B. Using the MitoB
method to assess levels of reactive oxygen species in ecological studies of oxidative stress. Sci. Rep. 2017, 7, 41228. [CrossRef]

26. Vanderplancke, G.; Claireaux, G.; Quazuguel, P.; Huelvan, C.; Corporeau, C.; Mazurais, D.; Zambonino-Infante, J.L. Exposure to
chronic moderate hypoxia impacts physiological and developmental traits of European sea bass (Dicentrarchus labrax) larvae. Fish
Physiol. Biochem. 2015, 41, 233–242. [CrossRef]

27. Wang, S.Y.; Lau, K.; Lai, K.P.; Zhang, J.W.; Tse, A.C.; Li, J.W.; Tong, Y.; Chan, T.F.; Wong, C.K.; Chiu, J.M.; et al. Hypoxia causes
transgenerational impairments in reproduction of fish. Nat. Commun. 2016, 7, 12114. [CrossRef] [PubMed]

28. Manchenkov, T.; Pasillas, M.P.; Haddad, G.G.; Imam, F.B. Novel genes critical for hypoxic preconditioning in zebrafish are
regulators of insulin and glucose metabolism. G3-Genes Genom. Genet. 2015, 5, 1107–1116. [CrossRef] [PubMed]

29. Sinex, J.A.; Chapman, R.F. Hypoxic training methods for improving endurance exercise performance. J. Sport Health Sci. 2015, 4, 4.
[CrossRef]

30. Hawley, J.A.; Lundby, C.; Cotter, J.D.; Burke, L.M. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell
Metab. 2018, 27, 962–976. [CrossRef]

31. Fu, S.-J.; Brauner, C.J.; Cao, Z.-D.; Richards, J.G.; Peng, J.-L.; Dhillon, R.; Wang, Y.-X. The effect of acclimation to hypoxia and
sustained exercise on subsequent hypoxia tolerance and swimming performance in goldfish (Carassius auratus). J. Exp. Biol. 2011,
214, 2080–2088. [CrossRef]

32. Magnoni, L.J.; Martos-Sitcha, J.A.; Queiroz, A.; Calduch-Giner, J.A.; Magalhàes Gonçalves, J.F.; Rocha, C.M.R.; Abreu, H.T.;
Schrama, J.W.; Ozorio, R.O.A.; Pérez-Sánchez, J. Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced
acute hypoxia tolerance in gilthead seabream (Sparus aurata). Biol. Open 2017, 6, 897–908. [CrossRef] [PubMed]

33. Martos-Sitcha, J.A.; Bermejo-Nogales, A.; Calduch-Giner, J.A.; Pérez-Sánchez, J. Gene expression profiling of whole blood cells
supports a more efficient mitochondrial respiration in hypoxia-challenged gilthead sea bream (Sparus aurata). Front. Zool. 2017,
14, 34. [CrossRef] [PubMed]

34. Perera, E.; Rosell-Moll, E.; Naya-Català, F.; Simó-Mirabet, P.; Calduch-Giner, J.; Pérez-Sánchez, J. Effects of genetics and early-life
mild hypoxia on size variation in farmed gilthead sea bream (Sparus aurata). Fish Physiol. Biochem. 2020. [CrossRef] [PubMed]

35. Martos-Sitcha, J.A.; Simó-Mirabet, P.; Piazzon, M.C.; de las Heras, V.; Calduch-Giner, J.A.; Puyalto, M.; Tinsley, J.; Makol, A.;
Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Dietary sodium heptanoate helps to improve feed efficiency, growth hormone status and
swimming performance in gilthead sea bream (Sparus aurata). Aquac. Nutr. 2018, 24, 1638–1651. [CrossRef]

36. Martínez-Barberá, J.P.; Pendón, C.; Martí-Palanca, H.; Calduch-Giner, J.À.; Rodríguez, R.B.; Valdivia, M.M.; Pérez-Sánchez, J.
The use of recombinant gilthead sea bream (Sparus aurata) growth hormone for radioiodination and standard preparation in
radioimmunoassay. Comp. Biochem. Physiol. A Physiol. 1995, 110, 335–340. [CrossRef]

37. Vega-Rubín de Celis, S.; Gómez-Requeni, P.; Pérez-Sánchez, J. Production and characterization of recombinantly derived peptides
and antibodies for accurate determinations of somatolactin, growth hormone and insulin-like growth factor-I in European sea
bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 2004, 139, 266–277. [CrossRef] [PubMed]

38. Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864.
[CrossRef] [PubMed]

39. Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the
presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [CrossRef] [PubMed]

40. Pérez-Sánchez, J.; Naya-Català, F.; Soriano, B.; Piazzon, M.C.; Hafez, A.; Gabaldón, T.; Llorens, C.; Sitjà-Bobadilla, A.; Calduch-
Giner, J.A. Genome sequencing and transcriptome analysis reveal recent species-specific gene duplications in the plastic gilthead
sea bream (Sparus aurata). Front. Mar. Sci. 2019, 6, 760. [CrossRef]

41. Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential
gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2017, 7, 562–578.
[CrossRef]

42. Li, H.; Ma, M.L.; Luo, S.; Zhang, R.M.; Han, P.; Hu, W. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas
chromatography tandem mass spectrometry-based metabolomics approach. Int. J. Biochem. Cell Biol. 2012, 44, 1087–1096.
[CrossRef]

43. Kieffer, D.A.; Piccolo, B.D.; Vaziri, N.D.; Liu, S.; Lau, W.L.; Khazaeli, M.; Nazertehrani, S.; Moore, M.E.; Marco, M.L.; Martin, R.J.;
et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in
rats. Am. J. Physiol. Renal Physiol. 2016, 310, F857–F871. [CrossRef]

44. Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36,
2628–2629. [CrossRef] [PubMed]

http://doi.org/10.1186/1471-2164-11-193
http://doi.org/10.1242/jeb.133413
http://www.ncbi.nlm.nih.gov/pubmed/26888999
http://doi.org/10.1007/s00360-016-1042-9
http://doi.org/10.1038/srep41228
http://doi.org/10.1007/s10695-014-0019-4
http://doi.org/10.1038/ncomms12114
http://www.ncbi.nlm.nih.gov/pubmed/27373813
http://doi.org/10.1534/g3.115.018010
http://www.ncbi.nlm.nih.gov/pubmed/25840431
http://doi.org/10.1016/j.jshs.2015.07.005
http://doi.org/10.1016/j.cmet.2018.04.014
http://doi.org/10.1242/jeb.053132
http://doi.org/10.1242/bio.024299
http://www.ncbi.nlm.nih.gov/pubmed/28495962
http://doi.org/10.1186/s12983-017-0220-2
http://www.ncbi.nlm.nih.gov/pubmed/28694839
http://doi.org/10.1007/s10695-020-00899-1
http://www.ncbi.nlm.nih.gov/pubmed/33188490
http://doi.org/10.1111/anu.12799
http://doi.org/10.1016/0300-9629(94)00178-V
http://doi.org/10.1016/j.ygcen.2004.09.017
http://www.ncbi.nlm.nih.gov/pubmed/15560873
http://doi.org/10.1093/bioinformatics/btr026
http://www.ncbi.nlm.nih.gov/pubmed/21278185
http://doi.org/10.1186/gb-2013-14-4-r36
http://www.ncbi.nlm.nih.gov/pubmed/23618408
http://doi.org/10.3389/fmars.2019.00760
http://doi.org/10.1038/nprot.2012.016
http://doi.org/10.1016/j.biocel.2012.03.017
http://doi.org/10.1152/ajprenal.00513.2015
http://doi.org/10.1093/bioinformatics/btz931
http://www.ncbi.nlm.nih.gov/pubmed/31882993


Biology 2021, 10, 416 21 of 23

45. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;
Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef] [PubMed]

46. Futami, R.; Muñoz-Pomer, A.; Viu, J.M.; Domínguez-Escribà, L.C.L.; Bernet, G.P.; Sempere, J.M.; Moya, A.; Llorens, C. GPRO: The
professional tool for management, functional analysis and annotation of omic sequences and databases. Biotech. Bioinf. 2011, 1,
1–5.

47. Garcia, H.E.; Gordon, L.I. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 1992, 37, 1307–1312. [CrossRef]
48. Intergovernmental Panel on Climate Change. Climate Change 2014-Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral

Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014.
49. Pichavant, K.; Person-Le-Ruyet, J.; Bayon, N.L.; Severe, A.; Roux, A.L.; Boeuf, G. Comparative effects of long-term hypoxia on

growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 2001, 59, 875–883. [CrossRef]
50. Cadiz, L.; Zambonino-Infante, J.L.; Quazuguel, P.; Madec, L.; Le Delliou, H.; Mazurais, D. Metabolic response to hypoxia in

European sea bass (Dicentrarchus labrax) displays developmental plasticity. Comp. Biochem. Physiol. 2018, 215, 1–9. [CrossRef]
51. Vikeså, V.; Nankervis, L.; Hevrøy, E.M. High dietary energy level stimulates growth hormone receptor and feed utilization in

large Atlantic salmon (Salmo salar L.) under hypoxic conditions. Aquac. Nutr. 2017, 23, 1193–1203. [CrossRef]
52. Dam, A.V.; Pauly, D. Simulation of the effects of oxygen on food consumption and growth of Nile tilapia, Oreochromis niloticus

(L.). Aquacult. Res. 1995, 26, 427–440. [CrossRef]
53. Saravanan, S.; Geurden, I.; Figueiredo-Silva, A.C.; Kaushik, S.J.; Haidar, M.N.; Verreth, J.A.; Schrama, J.W. Control of voluntary

feed intake in fish: A role for dietary oxygen demand in Nile tilapia (Oreochromis niloticus) fed diets with different macronutrient
profiles. Br. J. Nutr. 2012, 108, 1519–1529. [CrossRef]

54. Brett, J.R. Environmental factors and growth. In Fish Physiology, 1st ed.; Hoar, W.S., Randall, D.J., Brett, J.R., Eds.; Academic Press:
London, UK, 1977; Volume VIII, pp. 599–675.

55. Pérez-Sánchez, J.; Martí-Palanca, H.; Kaushik, S. Ration size and protein intake affect growth hormone (GH) levels, hepatic
GH-binding and plasma insulin-like growth factor-I immunoreactivity in a marine teleost, gilthead sea bream (Sparus aurata). J.
Nutr. 1995, 125, 546–552. [PubMed]

56. Monternier, P.A.; Marmillot, V.; Rouanet, J.L.; Roussel, D. Mitochondrial phenotypic flexibility enhances energy savings during
winter fast in king penguin chicks. J. Exp. Biol. 2014, 217, 2691–2697. [CrossRef] [PubMed]

57. Salin, K.; Villasevil, E.M.; Auer, S.K.; Anderson, G.J.; Selman, C.; Metcalfe, N.B.; Chinopoulos, C. Simultaneous measurement of
mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Phys. Rep. 2016, 4,
e13007. [CrossRef] [PubMed]

58. Pérez-Sánchez, J.; Simó-Mirabet, P.; Naya-Català, F.; Martos-Sitcha, J.A.; Perera, E.; Bermejo-Nogales, A.; Benedito-Palos, L.;
Calduch-Giner, J.À. Somatotropic axis regulation unravels the differential effect of nutritional and environmental factors in
growth performance of marine farmed fish. Front. Endocrinol. 2018, 9, 687. [CrossRef] [PubMed]

59. Metcalfe, N.B.; Van Leeuwen, T.E.; Killen, S.S. Does individual variation in metabolic phenotype predict fish behavior and
performance? J. Fish Biol. 2016, 88, 298–321. [CrossRef] [PubMed]

60. Knap, P.W.; Kause, A. Phenotyping for genetic improvement of feed efficiency in fish: Lessons from pig breeding. Front. Genet.
2018, 9, 184. [CrossRef] [PubMed]

61. Perera, E.; Simó-Mirabet, P.; Shin, H.S.; Rosell-Moll, E.; Naya-Català, F.; De las Heras, V.; Martos-Sitcha, J.A.; Karalazos, V.;
Armero, E.; Arizcun, M.; et al. Selection for growth is associated in gilthead sea bream (Sparus aurata) with diet flexibility, changes
in growth patterns and higher intestine plasticity. Aquaculture 2019, 507, 349–360. [CrossRef]

62. Piazzon, M.C.; Naya-Català, F.; Perera, E.; Palenzuela, O.; Sitjà-Bobadilla, A.; Pérez-Sànchez, J. Genetic selection for growth drives
differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. Microbiome 2020, 8, 168.
[CrossRef]

63. Anttila, K.; Mänttäri, S. Ultrastructural differences and histochemical characteristics in swimming muscles between wild and
reared Atlantic salmon. Acta Physiol. 2009, 196, 249–257. [CrossRef]

64. Zhang, Y. Estimating Aerobic and Anaerobic Capacities Using the Respiratory Assessment Paradigm: A Validation Using Atlantic Salmon
(Salmo salar) and European Sea Bass (Dicentrarchus labrax); The University of British Columbia: Vancouver, BC, Canada, 2016.

65. Bellringer, K.L.; Thorgaard, G.H.; Carter, P.A. Domestication is associated with reduced burst swimming performance and
increased body size in clonal rainbow trout lines. Aquaculture 2014, 420–421, 154–159. [CrossRef]

66. Claireaux, G.; McKenzie, D.J.; Genge, A.G.; Chatelier, A.; Aubin, J.; Farrell, A.P. Linking swimming performance, cardiac pumping
ability and cardiac anatomy in rainbow trout. J. Exp. Biol. 2005, 208, 1775–1784. [CrossRef]

67. Blasco, J.; Moya, A.; Millán-Cubillo, A.; Vélez, E.J.; Capilla, E.; Pérez-Sánchez, J.; Gutiérrez, J.; Fernández-Borrás, J. Growth-
promoting effects of sustained swimming in fingerlings of gilthead sea bream (Sparus aurata L.). J. Comp. Physiol. B 2015, 185,
859–868. [CrossRef] [PubMed]

68. Vélez, E.J.; Lutfi, E.; Azizi, S.; Perelló, M.; Salmerón, C.; Riera-Codina, M.; Ibarz, A.; Fernández-Borràs, J.; Blasco, J.; Capilla, E.;
et al. Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture 2017, 467, 28–40. [CrossRef]

69. Palstra, A.P.; Kals, J.; Böhm, T.; Bastiaansen, J.; Komen, H. Swimming performance and oxygen consumption as non-lethal
indicators of production traits in atlantic salmon and gilthead seabream. Front. Physiol. 2020, 11, 759. [CrossRef]

http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.4319/lo.1992.37.6.1307
http://doi.org/10.1111/j.1095-8649.2001.tb00158.x
http://doi.org/10.1016/j.cbpb.2017.09.005
http://doi.org/10.1111/anu.12488
http://doi.org/10.1111/j.1365-2109.1995.tb00932.x
http://doi.org/10.1017/S0007114511006842
http://www.ncbi.nlm.nih.gov/pubmed/7876930
http://doi.org/10.1242/jeb.104505
http://www.ncbi.nlm.nih.gov/pubmed/24803465
http://doi.org/10.14814/phy2.13007
http://www.ncbi.nlm.nih.gov/pubmed/27798358
http://doi.org/10.3389/fendo.2018.00687
http://www.ncbi.nlm.nih.gov/pubmed/30538673
http://doi.org/10.1111/jfb.12699
http://www.ncbi.nlm.nih.gov/pubmed/26577442
http://doi.org/10.3389/fgene.2018.00184
http://www.ncbi.nlm.nih.gov/pubmed/29881397
http://doi.org/10.1016/j.aquaculture.2019.04.052
http://doi.org/10.1186/s40168-020-00922-w
http://doi.org/10.1111/j.1748-1716.2008.01911.x
http://doi.org/10.1016/j.aquaculture.2013.10.028
http://doi.org/10.1242/jeb.01587
http://doi.org/10.1007/s00360-015-0933-5
http://www.ncbi.nlm.nih.gov/pubmed/26391594
http://doi.org/10.1016/j.aquaculture.2016.07.004
http://doi.org/10.3389/fphys.2020.00759


Biology 2021, 10, 416 22 of 23

70. Palstra, A.P.; Planas, J.V. Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture, 1st ed.;
Springer: Berlin, Germany, 2013; pp. 1–429.

71. Palstra, A.P.; Beltran, S.; Burgerhout, E.; Brittijn, S.A.; Magnoni, L.J.; Henkel, C.V.; Jansen, H.J.; van den Thillart, G.E.; Spaink, H.P.;
Planas, J.V. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PLoS ONE 2013, 8, e53171. [CrossRef]
[PubMed]

72. Mylonis, I.; Simos, G.; Paraskeva, E. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells 2019, 8, 214.
[CrossRef]

73. Krishnan, J.; Suter, M.; Windak, R.; Krebs, T.; Felley, A.; Montessuit, C.; Tokarska-Schlattner, M.; Aasum, E.; Bogdanova, A.;
Perriard, E.; et al. Activation of a HIF1α -PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in
pathologic cardiac hypertrophy. Cell Metab. 2009, 9, 512–524. [CrossRef]

74. Shi, H.; Zhao, W.; Zhang, C.; Shahzad, K.; Luo, J.; Loor, J.J. Transcriptome-wide analysis reveals the role of PPARγ controlling the
lipid metabolism in goat mammary epithelial cells. PPAR Res. 2016, 2016, 9195680. [CrossRef]

75. Liu, Y.; Ma, Z.; Zhao, C.; Wang, Y.; Wu, G.; Xiao, J.; McClain, C.J.; Li, X.; Feng, W. HIF-1α and HIF-2α are critically involved in
hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1α-mediated fatty acid β-oxidation. Toxicol. Lett.
2014, 226, 117–123. [CrossRef] [PubMed]

76. Ban, J.J.; Ruthenborg, R.J.; Cho, K.W.; Kim, J.W. Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia
(Auckl) 2014, 2, 171–183.

77. Gaspar, J.M.; Mendes, N.F.; Corrêa-da-Silva, F.; Lima-Junior, J.C.; Gaspar, R.C.; Ropelle, E.R.; Araujo, E.P.; Carvalho, H.M.; Velloso,
L.A. Downregulation of HIF complex in the hypothalamus exacerbates diet-induced obesity. Brain. Behav. Immun. 2018, 73,
550–561. [CrossRef] [PubMed]

78. Virtue, S.; Vidal-Puig, A. Nothing iffy about HIF in the hypothalamus. PLoS Biol. 2011, 9, e1001116. [CrossRef]
79. Gaspar, J.M.; Velloso, L.A. Hypoxia inducible factor as a central regulator of metabolism—Implications for the development of

obesity. Front. Neurosci. 2018, 12, 813. [CrossRef] [PubMed]
80. Zhao, L.L.; Sun, J.L.; Liang, J.; Liu, Q.; Luo, J.; Li, Z.Q.; Yan, T.M.; Zhou, J.; Yang, S. Enhancing lipid metabolism and inducing

antioxidant and immune responses to adapt to acute hypoxic stress in Schizothorax prenanti. Aquaculture 2020, 519, 734933.
[CrossRef]

81. Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects
against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [CrossRef] [PubMed]

82. Mylonis, I.; Sembongi, H.; Befani, C.; Liakos, P.; Siniossoglou, S.; Simos, G. Hypoxia causes triglyceride accumulation by
HIF-1-mediated stimulation of lipin 1 expression. J. Cell Sci. 2012, 125, 3485–3493. [CrossRef] [PubMed]

83. Gracey, A.Y.; Troll, J.V.; Somero, G.N. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc.
Natl. Acad. Sci. USA 2001, 98, 1993–1998. [CrossRef] [PubMed]

84. Lewis, C.A.; Brault, C.; Peck, B.; Bensaad, K.; Griffiths, B.; Mitter, R.; Chakravarty, P.; East, P.; Dankworth, B.; Alibhai, D.; et al.
SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene
signature associated with poor survival in glioblastoma multiforme. Oncogene 2015, 34, 5128–5140. [CrossRef]

85. Wang, M.S.; Li, Y.; Peng, M.S.; Zhong, L.; Wang, Z.J.; Li, Q.Y.; Tu, X.L.; Dong, Y.; Zhu, C.L.; Wang, L. Genomic analyses reveal
potential independent adaptation to high altitude in Tibetan chickens. Mol. Biol. Evol. 2015, 32, 1880–1889. [CrossRef] [PubMed]

86. Ge, R.L.; Simonson, T.S.; Gordeuk, V.; Prchal, J.T.; McClain, D.A. Metabolic aspects of high-altitude adaptation in Tibetans. Exp.
Biol. 2015, 100, 1247–1255. [CrossRef]

87. Horscroft, J.A.; Kotwica, A.O.; Laner, V.; West, J.A.; Hennis, P.J.; Levett, D.; Howard, D.J.; Fernandez, B.O.; Burgess, S.L.; Ament,
Z.; et al. Metabolic basis to Sherpa altitude adaptation. Proc. Natl. Acad. Sci. USA 2017, 114, 6382–6387. [CrossRef]

88. Ge, R.L.; Cai, Q.; Shen, Y.Y.; San, A.; Ma, L.; Zhang, Y.; Yi, X.; Chen, Y.; Yang, L.; Huang, Y. Draft genome sequence of the Tibetan
antelope. Nat. Commun. 2013, 1858, 4. [CrossRef]

89. Qiu, Q.; Zhang, G.J.; Ma, T.; Qian, W.B.; Wang, J.Y.; Ye, Z.Q.; Cao, C.C.; Hu, Q.J.; Kim, J.; Larkin, D.M.; et al. The yak genome and
adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [CrossRef] [PubMed]

90. Zhao, D.; Zhang, Z.; Cease, A.; Harrison, J.; Kang, L. Efficient utilization of aerobic metabolism helps Tibetan locusts conquer
hypoxia. BMC Genom. 2013, 14, 631. [CrossRef] [PubMed]

91. Kang, J.; Ma, X.; He, S. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the
Nujiang River obtained through transcriptome analysis. BMC Evol. Biol. 2017, 17, 229. [CrossRef]

92. Wright, J.R.; McCloskey, D.I.; Fitzpatrick, R.C. Effects of muscle perfusion pressure on fatigue and systemic arterial pressure in
human subjects. J. Appl. Physiol. 1999, 86, 845–851. [CrossRef]

93. Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384.
[CrossRef]

94. Zierath, J.R.; Hawley, J.A. Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biol. 2004, 2, e348.
[CrossRef] [PubMed]

95. Trappe, S.; Harber, M.; Creer, A.; Gallagher, P.; Slivka, D.; Minchev, K.; Whitsett, D. Single muscle fiber adaptations with marathon
training. J. Appl. Phisiol. 2006, 101, 721–727. [CrossRef] [PubMed]

96. Nikinmaa, M. Oxygen-dependent cellular functions—Why fishes and their aquatic environment are a prime choice of study.
Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 1–16. [CrossRef]

http://doi.org/10.1371/journal.pone.0053171
http://www.ncbi.nlm.nih.gov/pubmed/23308156
http://doi.org/10.3390/cells8030214
http://doi.org/10.1016/j.cmet.2009.05.005
http://doi.org/10.1155/2016/9195680
http://doi.org/10.1016/j.toxlet.2014.01.033
http://www.ncbi.nlm.nih.gov/pubmed/24503013
http://doi.org/10.1016/j.bbi.2018.06.020
http://www.ncbi.nlm.nih.gov/pubmed/29935943
http://doi.org/10.1371/journal.pbio.1001116
http://doi.org/10.3389/fnins.2018.00813
http://www.ncbi.nlm.nih.gov/pubmed/30443205
http://doi.org/10.1016/j.aquaculture.2020.734933
http://doi.org/10.1073/pnas.0630588100
http://www.ncbi.nlm.nih.gov/pubmed/12629214
http://doi.org/10.1242/jcs.106682
http://www.ncbi.nlm.nih.gov/pubmed/22467849
http://doi.org/10.1073/pnas.98.4.1993
http://www.ncbi.nlm.nih.gov/pubmed/11172064
http://doi.org/10.1038/onc.2014.439
http://doi.org/10.1093/molbev/msv071
http://www.ncbi.nlm.nih.gov/pubmed/25788450
http://doi.org/10.1113/EP085292
http://doi.org/10.1073/pnas.1700527114
http://doi.org/10.1038/ncomms2860
http://doi.org/10.1038/ng.2343
http://www.ncbi.nlm.nih.gov/pubmed/22751099
http://doi.org/10.1186/1471-2164-14-631
http://www.ncbi.nlm.nih.gov/pubmed/24047108
http://doi.org/10.1186/s12862-017-1074-0
http://doi.org/10.1152/jappl.1999.86.3.845
http://doi.org/10.1038/emm.2017.194
http://doi.org/10.1371/journal.pbio.0020348
http://www.ncbi.nlm.nih.gov/pubmed/15486583
http://doi.org/10.1152/japplphysiol.01595.2005
http://www.ncbi.nlm.nih.gov/pubmed/16614353
http://doi.org/10.1016/S1095-6433(02)00132-0


Biology 2021, 10, 416 23 of 23

97. Ton, C.; Stamatiou, D.; Liew, C.C. Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genom.
2003, 13, 97–106. [CrossRef]

98. Zhong, X.P.; Wang, D.; Zhang, Y.B.; Gui, J.F. Identification and characterization of hypoxia-induced genes in Carassius auratus
blastulae embryonic cells using suppression subtractive hybridization. Comp. Biochem. Phys. B 2009, 152, 161–170. [CrossRef]

99. Qi, D.; Chao, Y.; Wu, R.; Xia, M.; Chen, Q.; Zheng, Z. Transcriptome analysis provides insights into the adaptive responses to
hypoxia of a Schizothoracine Fish (Gymnocypris eckloni). Front. Physiol. 2018, 9, 1326. [CrossRef] [PubMed]

100. Houlihan, D.F.; Carter, C.G.; McCarthy, I.D. Protein synthesis in animals. In Nitrogen Metabolism and Excretion, 1st ed.; Wright, P.J.,
Walsh, P.A., Eds.; CRC Press: Boca Ratón, FL, USA, 1995; pp. 1–29.

101. McCarthy, I.D.; Owen, S.F.; Watt, P.W.; Houlihan, D.F. Individuals maintain similar rates of protein synthesis over time on the
same plane of nutrition under controlled environmental conditions. PLoS ONE 2016, 11, e0152239. [CrossRef]

102. Dauer, P.; Sharma, N.S.; Gupta, V.K.; Durden, B.; Hadad, R.; Banerjee, S.; Dudeja, V.; Saluja, A.; Banerjee, S. ER stress sensor,
glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis.
2019, 10, 132. [CrossRef] [PubMed]

103. Park, K.W.; Eun Kim, G.; Morales, R.; Moda, F.; Moreno-Gonzalez, I.; Concha-Marambio, L.; Lee, A.S.; Hetz, C.; Soto, C.
The endoplasmic reticulum chaperone grp78/bip modulates prion propagation in vitro and in vivo. Sci. Rep. 2017, 7, 44723.
[CrossRef] [PubMed]

104. Wang, P.; Zhang, N.; Liang, J.; Li, J.; Han, S.; Li, J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock
protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J. Neurosci. Res. 2015, 93, 1756–1768. [CrossRef]
[PubMed]

105. Pérez-Sánchez, J.; Terova, G.; Simó-Mirabet, P.; Rimoldi, S.; Folkedal, O.; Calduch-Giner, J.A.; Olsen, R.E.; Sitjà-Bobadilla, A. Skin
mucus of gilthead sea bream (Sparus aurata L.). Protein mapping and regulation in chronically stressed fish. Front. Phisiol. 2017, 8,
34. [CrossRef] [PubMed]

106. Gisbert, E.; Andree, K.B.; Quintela, J.C.; Calduch-Giner, J.A.; Ipharraguerre, I.R.; Pérez-Sánchez, J. Olive oil bioactive compounds
increase body weight, and improve gut health and integrity in gilthead sea bream (Sparus aurata). Br. J. Nutr. 2017, 117, 351–363.
[CrossRef]

http://doi.org/10.1152/physiolgenomics.00128.2002
http://doi.org/10.1016/j.cbpb.2008.10.013
http://doi.org/10.3389/fphys.2018.01326
http://www.ncbi.nlm.nih.gov/pubmed/30298021
http://doi.org/10.1371/journal.pone.0152239
http://doi.org/10.1038/s41419-019-1408-5
http://www.ncbi.nlm.nih.gov/pubmed/30755605
http://doi.org/10.1038/srep44723
http://www.ncbi.nlm.nih.gov/pubmed/28333162
http://doi.org/10.1002/jnr.23637
http://www.ncbi.nlm.nih.gov/pubmed/26301516
http://doi.org/10.3389/fphys.2017.00034
http://www.ncbi.nlm.nih.gov/pubmed/28210224
http://doi.org/10.1017/S0007114517000228

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Experimental Setup of Hypoxia Conditioning 
	Swim Tunnel Respirometer 
	Blood Biochemistry 
	Illumina Sequencing and Sample Quality Assessment 
	Statistics 

	Results 
	Growth Performance during Mild-Hypoxia and Normoxia Restoration 
	Blood Patterns at the End of the Mild-Hypoxia Conditioning Period 
	Swim Tests: Critical Swimming and Blood Patterns after Exhaustive Exercise 
	Analysis of RNA-seq Libraries and DE Genes by Stringent FDR 
	Discriminant Classifiers and Enriched GO Terms 
	Linking Enriched Processes with Gene Expression Patterns 

	Discussion 
	Conclusions 
	References

