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Abstract
In this work we present an efficient implementation of Eulerian TVD methods. We apply parallelization strategies based
entirely on GPU for the solution of the 2D transport equation in heterogeneous porous media. Additionally, a parallel
strategy is proposed for the generation of exponentially correlated lognormally distributed permeability fields in GPU. The
programs are developed using C++/CUDA. The implemented methods are used to solve advective dominant problems,
in a context of Monte Carlo type simulations to numerically determine the longitudinal and transversal macrodispersion
coefficients averaging over 100 simulations for permeability fields for a large range of variances. The following types of
transport are considered for testing: pure advection, advection-diffusion and advection-dispersion. The performance in terms
of the computation time of explicit and implicit methods are compared. We show that the implemented algorithms allow to
efficiently solve problems in computational domains of up to 134.5 million cells in a single GPU.
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1 Introduction

Flow and transport in natural and engineeporous media
are complex due to multi-scale spatial heterogeneity in the
hydraulic medium properties. Thus, accurate and efficient
numerical methods are pivotal to reproduce, understand and
predict these processes in a broad array of applications
ranging from the assessment of groundwater contamination,
soil remediation [16], the design and safety assessment
of underground storage of radioactive waste [38], as well
as geothermal energy production and geological carbon-
dioxide storage [36].

In this paper, we focus on the development of a
GPU-based simulation tool for single phase flow and
conservative transport in continuum scale heterogeneous
porous media. The flow is described by the divergence-free
Darcy equation [4]

u = −K∇H, ∇ · u = 0, (1a)

where u is the Darcy velocity, K the hydraulic conductivity
tensor, and H is hydraulic head. The singular complexity
of flow and transport in porous media resides in the fact
that hydraulic conductivity may vary over 12 orders of
magnitude in different porous material ranging from granite
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to gravel [4]. Advective-dispersive transport of a passive
scalar C is described by the partial differential equation [4]

∂C

∂t
+ ∇ · (uC − D∇C) = 0, (1b)

where C(x, t) is the concentration of the solute [kg/m3],
u(x) = (ux, uy) is the velocity field [m/s] and D is the
hydrodynamic dispersion tensor [m2/s] . There are different
numerical methods for the simulation of flow and non-
reactive transport in groundwater. The optimal strategy for
numerically solving the system of Eq. 1a are in general
problem-dependent. For advection-dominated problems,
Lagrangian methods [37] have advantages over Eulerian
methods because they are in general free of numerical
diffusion, and non-physical oscillations [51]. Lagrangian
methods are ideal for purely advective problems. However,
in the presence of diffusion the use of a great number
of particles might be necessary in order to accurately
reproduce the concentration field, which can lead to a
high computational load. This represents a challenge for
the simulation of non-linear reactive transport problems
using Lagrangian methods, which require the simultaneous
representation of the concentration fields of multiple
chemical species. There are a series of approaches that
address these issues, including streamline based methods
of characteristics [13, 21], which combine particle tracking
and finite differences, the implementation of efficient
kernel-density estimators [19] and the development of
efficient numerical particle tracking implementations [41].

We center on purely numerical methods to solve the
system of Eq. 1a. Combined with a suitable scheme for the
reduction of numerical diffusion, Eulerian methods are well
suited for the solution of coupled and non-linear flow and
transport problems in heterogeneous media. In particular,
they allow for the straightforward implementation of
algorithms to solve problems that involve the interaction
between mobile and immobile phases, and the coupling
between flow and transport (variable density, variable
viscosity, variations in porosity, etc.). Eulerian methods can
solve transport in the same mesh as flow, and they do not
require the transformation of particles mass or numbers to
concentrations.

To deal with numerical diffusion in advection-dominated
problems, high-resolution (HR) schemes have emerged
in a total variation diminishing (TVD) context [25, 26].
These conservative schemes allow simulating the transport
of pulses and/or injection lines, reducing significantly
the numerical diffusion as well as spurious oscillations
due to numerical diffusion errors. These techniques are
computationally more expensive than standard Eulerian
methods and, like those, require the use of very fine grids
to obtain a good representation in the simulation of this

type of problems [8]. The relatively recent development
of the general purpose graphics processing units (GPUs),
and the computational power they offer, have made these
methods an attractive alternative for solving advection
dominated transport problems in heterogeneous media. The
use of GPUs for scientific computation has emerged as
a viable option for high-performance computing since it
allows simulating, with good resolution and in relatively
short times, problems involving millions of cells. In order
to obtain an efficient GPU code, algorithms must be
designed according to the specific characteristics of the
hardware [10, 53, 56]. The execution model adopted by the
GPU for parallel computation is that of Single Instruction
Multiple Threads (SIMT) [33]. This involves dividing the
processing of a mesh into different functions (CUDA
kernels), which group together a set of instructions that are
passed to the GPU so that each processor thread executes
the same instruction but on a large data set [50]. Regarding
temporal discretization, in general implicit methods are
preferred due to their greater stability throughout the
evolution of the problem because they are able to use
much longer time steps than explicit schemes. However, the
characteristics of the SIMT model in GPUs makes using
explicit methods computationally attractive, event though it
requires considering a much smaller time step [34].

In this paper, we develop and implement an efficient
GPU based solver for flow and transport in heterogeneous
porous media. We apply this solver for the systematic
study of macrodispersion in heterogeneous media using a
stochastic modeling approach. This requires the numeri-
cal solution of a suite of flow and transport simulations
for different scenarios. Most works in the literature have
studied macrodispersion using Lagrangian methods [5–7,
12, 14, 15, 17, 18, 22, 24, 27, 30, 31, 44–46]. Some
authors have used hybrid methods such as Trefry et al.
[52], who use the Eulerian-Lagrangian method presented
in [43]. Ramasomanana et al. [39] use the hybrid ELLAM
- Eulerian-Lagrangian localized adjoint method [57]. To
the best of our knowledge, there is no record in the lit-
erature of macrodispersion studies carried out considering
purely Eulerian methods. This may be due to the fact that
these methods can be computationally demanding, since
they require a large number of cells to decrease numeri-
cal diffusion and high resolution schemes for the advec-
tion term. In this work, we show that macrodispersion
in highly heterogeneous media can be efficiently quanti-
fied on modern GPU processors using Eulerian methods.
We compare the efficiency, in terms of the calculation
time required for the simulation, of an explicit algorithm
and an implicit algorithm, since the latter have disadvan-
tages over the former given the GPU SIMT execution
model.
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The work is organized as follows. In Section 2 the
governing equations and numerical methods are reviewed.
In Section 3 the details of the implementation of the
algorithms in GPU are given. In Section 4 we apply the
solvers for the study of macrodispersion in heterogeneous
porous media. Finally, in Section 5 we present the main
conclusions and contributions of this work.

2Governing equation andnumericalmethod

In this section we present the governing equations for flow,
its characterization and the non-reactive solute transport in
porous media.

2.1 Flow equation

The steady state equation for incompressible fluids mass
conservation has the following expression: ∇·u(x) = 0.
The flow equation in a porous medium is obtained by
combining the Darcy law and divergence-free condition of
Eq. 1a

∇· [K(x)∇H(x)] = 0 (2)

The most used methods to transform (2) into a system
of algebraic equations are Finite Elements (FEM), Finite
Differences (FD), and Finite Volumes (FVM). In this work,
the equation is solved for two-dimensional domains using
cell-centered FVM, considering uniform Cartesian grids
(which is equivalent to FDM). Without loss of generality,
a rectangular domain Ω and a regular mesh discretization
(Δx = Δy = h) are considered. In the following, the cell
center and the respective neighboring cells are designated
by subscript C and E, W, N, S respectively. The lowercase
subscripts indicate cell faces centers (see Fig. 1). Thus the
sum over f ∼ nb(C) indicates that expression is evaluated
in centers of face f on all the faces that belong to cell C, that
is, faces neighboring the center C. Similarly F ∼ NB(C)

indicates that the expression is evaluated at all the centers of
cell F neighboring cell C.

If we integrate member to member (2) in cell C, and we
apply the divergence and mean value theorems, we obtain:

∫

VC

∇· [K(x)∇H(x)] dV =
∫

∂VC

K(x)∇H(x)·dS =
∑

f ∼nb(C)

(K(x)∇H(x))f ·Sf = 0

(3)

where Sf is the normal vector outgoing to the face f . Since
hydraulic conductivity is variable in the domain, a proper
way to evaluate K(x)∇H(x) in the center of a face is using

Fig. 1 Computational molecule

the harmonic average between the values of the cells that
share the face (C and F ):

Kf =
⎛
⎝ 1

1
2

(
1

KC
+ 1

KF

)
⎞
⎠ =

(
2KCKF

KC + KF

)
(4)

finally, using a centered spatial scheme to approximate the
gradient, (3) can be rewritten discretely for cell C as:

∑
F∼NB(C)

(
2KCKF

KC + KF

)(
HF − HC

h

)
h = 0 (5)

By considering all the cells of the domain, a linear system
of algebraic equations is obtained. In this case the matrix of
the resulting system is symmetrical and positively defined,
therefore a suitable method to solve it is the Conjugate
Gradients (CG) method. Since the system matrix is very
ill conditioned, the use of preconditioners is required to
achieve convergence at acceptable computation times. In
this work we implement the Preconditioned Conjugated
Gradients (PCG) solver in GPU using two types of suitable
preconditioners to parallelize: diagonal scaling (Jacobi’s
preconditioner) and a Truncated Neumann Series based
preconditioner [23]. Designated respectively as D and T N ,
in each case the preconditioning matrix looks like:

MD = D, MT N1 =
(
I + LD−1

)
D

(
I + (LD−1)T

)
(6)

where I is the identity matrix, D is the diagonal part and
L the strict lower triangular part of the system matrix A.
Since A is symmetric, both preconditioners are symmetric.
The inversion of the system in the first case is trivial, while
for the second preconditioner, the truncated approximation
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of the Neumann series is applied. In effect, the factor(
I + LD−1

)−1
can be defined with the series:

I − LD−1 +
(
LD−1

)2 −
(
LD−1

)3 + . . .

now we choose the truncated series of first order as the
inverse of the preconditioner:

M−1
T N1 =

(
I − D−1LT

)
D−1

(
I − LD−1

)
(7)

Defining E = I − LD−1, one can write M−1
T N1 =

ET D−1E. Then for the implementation, the matrix D is
explicitly stored and then the inversion of the system Mz =
r (i.e. z = M−1r) is carried out in two operations: first the
product ztmp = D−1Er and then the product z = ET ztmp.
By using MT N1 the computing time are reduced by a factor
of 0.6 with respect to the use of Jacobi’s preconditioner for
the cases studied in this work.

2.2 Transport equation

Transport is modeled using the conservation law Eq. 1b. The
dispersion tensor is defined by [4]

D = 1√
u2

x + u2
y

[
αLu2

x + αT u2
y (αL − αT ) uxuy

(αL − αT ) uxuy αLu2
y + αT u2

x

]

+
[

Dm 0
0 Dm

] (8)

where αL and αT are the longitudinal and transverse
dispersivities respectively in [m] ; and Dm is the molecular
diffusion coefficient in [m2/s].

As before, by integrating and using the divergence and
mean value theorems, (1b) can be rewritten as:
(

∂C

∂t

)
C

VC =
∑

f ∼nb(C)

(
Df ∇Cf ·Sf − ṁf Cf

)
(9)

where VC = h2 is the volume of the cell for the two-
dimensional case and ṁf = uf ·Sf is the mass flow that
crosses the face of the cell. Spatial discretization arises by
approximating the gradient operator and the values of the
unknown in faces Cf . For the first, it is enough to use the
centered differences scheme (∇C)f = (CF −CC)/h, while
for the second term a better estimate is necessary to obtain
numerical stability and precision in the results, especially
in dominant advective problems. A first option could be to
use the upwind scheme, which in the case of a non-uniform
velocity field is expressed as:

ṁf Cf = ||ṁf , 0||CC − || − ṁf , 0||CF (10)

where ||a, b|| is used to indicate max(a, b). This scheme
considers a linear combination of the values in cell centers
according to the flow direction, and is stable in dominant
adevective problems. However, this is a first-order approx-
imation and it smoothes out the solution excessively by
generating a numerical diffusion equal to |uf |h/2. On the
other hand, the well-know Godunov’s theorem states that:
Linear numerical schemes for solving partial differen-
tial equations, having the property of not generating new
extreme (monotone scheme), can be at most first-order
accurate. That is, if a second order o greater scheme is
needed, for it to preserve monotony if must be non-linear.
Therefore the solution at Cf depends on the value at CC

and its neighbors CF (with F ∼ NB(C)) non-linearly as
we will show later. In the next subsection we briefly review
high resolution (HR) schemas to approximate the advective
term in Eq. 9.

2.2.1 Total Variation Diminishing (TVD) framework

High-order upwind biased interpolations fill the gaps in
precision of the upwind schema. But such approaches,
according to the Godunov [20] theorem, provide generally
unbounded solutions, which can be particularly problematic
in non-uniform velocity fields or highly heterogeneous
flows. A bounded high-order scheme known as a High
Resolution (HR) scheme, is obtained by imposing the TVD
condition that we explain below.

Considering for simplicity a one-dimensional mesh, the
Total Variation (T V ) is defined as T V (C) = ∑

i |Ci+1−Ci |
where i is the index of a node of mesh. A scheme is then
said to be TVD if T V does not grow over time:

T V (Ct+Δt ) ≤ T V (Ct ) (11)

A monotonous high-order scheme is TVD and a
TVD scheme in turn preserves monoticity [25]. Limiting
functions (limiter or flux limiter) can be used to build a
TVD scheme. Such limiters prevent the occurrence of non-
physical oscillations. Using the approach of Sweby [49],
calling the limiter ψ(r) where r indicates the ratio between
two consecutive gradients, the value in the center of a face
can be obtained in a simple way:

Cf = CC + 1

2
ψ(rf ) (CD − CC) ; with rf = CC − CU

CD − CC

(12)

where the subscripts D and U indicate the upwind and
downwind nodes, and therefore must be chosen according
to the direction that the velocity uf has in the center of the
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face. For example, the advective flow corresponding to the
face east results in:

ṁeCe =
[
CC + 1

2
ψ(r+

e ) (CE − CC)

]
||ṁe, 0||

−
[
CE + 1

2
ψ(r−

e ) (CC − CE)

]
|| − ṁe, 0||;

with r+
e = CC − CW

CE − CC

, r−
e = CE − CEE

CC − CE

(13)

Many TVD schemes have been developed in this way,
by appropriately choosing the limiter ψ(rf ) (OSHER [9],
MUSCL [54], SUPERBEE and MINMOD [42] among
others). Note that whenever ψ(r) allows a TVD schema
to be generated, Cf will be a non-linear combination of
the values in cell centers, since rf is a function of CC and
neighbors CF . In other cases the scheme will be linear, but
not TVD, as is the case with HO schemes, for example:
central scheme (ψ(r) = 1), second order upwind scheme
(ψ(r) = rf ) or even QUICK [32] scheme (ψ(r) = (rf +
3)/4). This creates a complication for implicit methods
since it would require an iterative strategy to solve the
nonlinear system that is generated.

2.2.2 Deferred Correction (DC) approach

In this work, two time schemes are considered, one explicit
and the other implicit. For the explicit method the limiting
function for the linearization of the advective scheme ψ(rf )

can be calculated using the values of the previous temporary
solution Ct . For the implicit algorithm, this implies the
off-diagonal coefficients in the system to have opposite
signs, thus violating a basic rule for the stability of iterative
algorithms [35]. Although the above can be circumvented if
a direct method is used, such a situation is not at all practical
in discretizations with millions of cells.

To deal with the aforementioned problem, in the implicit
algorithm we use the deferred correction technique [29].
The strategy is to treat the advective term as follows:

ṁf CHR
f = ṁf CU

f︸ ︷︷ ︸
implicit

+ ṁf

(
CHR

f − CU
f

)
︸ ︷︷ ︸

explicit

(14)

where the superscripts U and HR indicate the use of the
upwind and TVD schemas respectively (ie, use Eq. 10 for
U and Eq. 13 for HR). The idea then is that the value in
the center of the face is treated implicitly considering the
first order scheme. The difference between the upwind and
TVD schemes are treated explicitly, calculating them based
on the last available solution, that is, the one obtained on the
previous iteration within an iterative process. The advantage
of this approach is that a matrix with diagonal dominance

is obtained in the implicit temporal schema (desirable in
iterative solvers, such as Krylov’s methods), while the
non-linearity of the TVD schema is dealt explicitly.

2.2.3 Spatial and temporal discretization

The spatial discretization of Eq. 9 consists of using
the DC and HR schemas for the first and second
terms, respectively. The implementation was based on the
MINMOD [42] schema. For the temporal discretization the
theta (θ ) method was applied, which gives rise to:

(
Ct+Δt − Ct

Δt

)
C

h2 =

(1 − θ)

⎡
⎣h

∑
F∼NB(C)

Df

(
CF − CC

h

)
−

∑
f ∼nb(C)

ṁf CHR
f

⎤
⎦

t

+θ

⎡
⎣h

∑
F∼NB(C)

Df

(
CF − CC

h

)
−

∑
f ∼nb(C)

ṁf CHR
f

⎤
⎦

t+Δt

(15)

where θ ∈ [0, 1], so that for θ = 0 we obtain the explicit
scheme of order O(Δt), known as forward differences or
Forward Euler (FE). For θ = 1/2 we obtain the implicit
scheme known as centered differences or Crank Nicolson
(CN) with precision of O(Δt2). To simplify the notation,
superscripts will be used so that Cn

C corresponds to the
variable evaluated in the center of the cell C in current time
t = nΔt .

2.2.4 Explicit scheme

Replacing θ = 0 in Eq. 15, and grouping the terms we
obtain the explicit method or FE:

Cn+1
C = Cn

C

+Δt

h2

⎡
⎣ ∑

F∼NB(C)

Df (Cn
F − Cn

C) −
∑

f ∼nb(C)

ṁf C
n,HR
f

⎤
⎦ ;

with ṁf C
n,HR
f =

[
Cn

C + 1

2
ψ(r

n,+
f )

(
Cn

F − Cn
C

)] ||ṁf , 0||

−
[
Cn

F + 1

2
ψ(r

n,−
f )

(
Cn

C − Cn
F

)] || − ṁf , 0||
(16)

where ψ(r
n,+
f ) y ψ(r

n,−
f ) are the limiting function

evaluated by the ratios as in Eq. 13, according to the
direction of the velocity and using the values of the previous
time t = nΔt . Note that the resulting expression is
nonlinear in the values of C but can be solved completely
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explicitly. The analytical CFL stability constraint for this
algorithm, for the case of isotropic dispersion (diagonal D),
is:

ΔtT V D
max ≤
h2

∑
f ∼nb(C)

[
Df + ||ṁf , 0||(1 − ψ(r+

f )/2) − || − ṁf , 0||ψ(r−
f )/2

]

(17)
where Df is the corresponding component of the diagonal
of the dispersion tensor evaluated in center of face. As can
be seen, the time step is a function of (∇C)f when the TVD
scheme is considered. On the other hand, since the velocity
field in space is not uniform, the following restriction must
be considered:

Δt ≤ min
i,j

{
Δt

(i,j)
max

}
, 0 ≤ i ≤ NX, 0 ≤ j ≤ NY (18)

2.2.5 Implicit scheme

For the CN scheme, θ = 1/2 is replaced in Eq. 15, resulting
in a nonlinear equation that is solved iteratively by applying
the deferred correction technique (see Eq. 14). In this way,
at each time step a non-linear system must be solved through
the following iterative scheme:

h2

Δt
C

(k+1)
C − 1

2

∑
F∼NB(C)

Df

(
C

(k+1)
F − C

(k+1)
C

)

+1

2

∑
f ∼nb(C)

ṁf C
(k+1),U
f = −1

2

∑
f ∼nb(C)

ṁf

(
C

(k),HR
f − C

(k),U
f

)

1

2

⎡
⎣ h2

Δt
Cn

C +
∑

F∼NB(C)

Df

(
Cn

F − Cn
C

) −
∑

f ∼nb(C)

ṁf C
n,HR
f

⎤
⎦

(19)

We consider the superscript (k) for the internal iteration
solutions, choosing the seed C(0) = Cn at each time step.
After reaching convergence, we consider Cn+1 = C(k+1).
Note that a linear system of equations must be solved for
each iteration and that the nonlinear component is taken into
account in the last summation on the right side. Regarding
the CFL restriction, in this case it has the expression:

ΔtT V D
max ≤
2h2

∑
f ∼nb(C)

[
Df + ||ṁf , 0||(1 − ψ(r+

f )/2) − || − ṁf , 0||ψ(r−
f )/2

]

(20)

2.3 Random conductivity field generation

The conductivity fields were generated in GPU using the
method proposed by [47, 48]. The method considers that

the random process can be represented as the sum of
series of cosines with a random frequency. The lognormally
distributed conductivity field is determined from: K(x) =
I exp(f (x)) were:

f (x) =
√

2

N
σ 2

ln K

N∑
i=1

cos
(
k
(i)
1 x + k

(i)
2 y + θ(i)

)
(21)

here σ 2
ln K is the variance of ln(K); (x, y) are the

coordinates of a point in the computational domain;
k
(i)
1,2 are sampled according to a joint probability density

function chosen according to the type of correlation
required. θ(i) ∼ U(0, 2π) is sampled using a uniform
distribution. For the exponential correlation case, k

(i)
1,2 must

be sampled according to the two-dimensional Cauchy-
Lorentz distribution:

p(k1, k2) = 1

2π

λ2

[
(k1λ)2 + (k2λ)2 + 1

]3/2
(22)

To get k1 and k2 we look for a cumulative distribution
function (CDF) of Eq. 22 integrating p in R

2. Using the
change of variables k1 = ρ cos φ/λ and k2 = ρ sin φ/λ,
with the following Jacobian for the transformation ρ/λ2,
results in:

∫∫

R2

1

2π

λ2 dxdy[
(k1λ)2 + (k2λ)2 + 1

]3/2
=

lim
R→∞

2π∫

0

R∫

0

1

2π

ρ dφdρ

(ρ2 + 1)3/2
= lim

R→∞

[
1 − 1√

R2 + 1

]
= 1

(23)

then the CDF is Θ(r) = 1 − 1√
r2+1

= u, and its inverse:

r =
[

1 − (1 − u)2

(1 − u)2

]1/2

(24)

By choosing ui ∼ U(0, 1) y φi ∼ U(0, 2π) uniformly
distributed, k(i) are terminated by:

k
(i)
1 = ri cos φi/λ, k

(i)
2 = ri sin φi/λ (25)

The generated fields have the following correlation func-
tion:

Cexp(r) = σ 2
ln K exp

(
−|r|

λ

)
(26)

where |r| is the distance between two points. The degree of
heterogeneity is governed by the statistical properties λ and
σln K .
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3 GPU implementation details

3.1 Hardware

The implemented algorithms were run on two computers,
one with a previous-generation GPU (K40) and the other
with a last-generation GPU (V100).

1. Computer 1: Dell PowerEdge R720 (2013/14): 2 Intel
Xeon (R) CPU E5-2620v2 processors (6 cores each,
2.1GHz), 128GB DDR3 RAM. 2 NVIDIA Tesla K40
GPUs (2880 CUDA cores, running at 745MHz, 12GB
GDDR5 memory), connected via PCI-e bus.

2. Computer 2: Dell PowerEdge R740 (2018/19): 2 Intel
Xeon Gold CPU 6138 processors (20 cores each,
2.0GHz) with 128GB DDR4 RAM. 1 NVIDIA Tesla
V100 GPU (5120 CUDA cores, running at 1230MHz,
32GB HBM2 memory), connected via PCI-e.

3.2 Software

The operating system of both computers is CentOS Linux
v7, the GCC compiler version is 4.8.5. For the CUDA nvcc
compiler, v9.1 was used on computer 1 and v10.1 was
used on computer 2. All implementations were performed
in DP (double precision). For linear algebra operations, the
CUBLAS library [1] was used, and for the conductivity
fields, the engines for the generation of random sequences
of CURAND were used [2].

3.3 Parallelization of explicit method

The implementation of the explicit method was carried out
considering that the data storage and all the calculations
were performed on the GPU. On the other hand, to improve
efficiency, the CUDA SIMT paradigm was considered and
the mesh processing was divided into different CUDA
kernels, that is, there is a kernel for each edge case and one
for the interior cells (see Fig. 2) according to the following
scheme:

– 4 kernels to process each vertex of the domain.
– 4 kernels to process edges.
– 1 kernel to process the interior of the domain.

in this way all these kernels can be executed concurrently
since the results only depend on the data from the previous
time step.

The strategy adopted for the implementation of the
kernels is that each thread (CUDA threads) processes a
point in the plane.Due to the low reuse of data in the
operations involved we omitted the use of shared memory,
and only registers and reads to global memory are used.

Regarding the accesses to the data in global memory of
the device, within the kernel 14 accesses are required for
each cell (5 + 5 corresponding to Cn+1 and Cn, 2 + 2
corresponding to ux and uy) in the case of pure advection
and advection-diffusion. While in the case of advection-
dispersion , 26 accesses are required (5+9 corresponding to
Cn+1 and Cn, 6 + 6 corresponding to ux and uy).The large
number of accesses for the latter case is due to the need to
interpolate the different components of the gradients on the
faces:

(
∂C

∂y

)
e

= 1

2

[
(CNE − CSE)

2h
+ (CN − CS)

2h

]
(27)

It is also necessary to obtain all the components of
the velocity field on the faces. For example, to obtain the
component y of the velocity in east face, the values in faces
n, s of cell C and those of the neighboring cell E, which we
denote with subscripts nE and sE respectively:

(
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)
e

= 1
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+ (
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)
sE

]
(28)

This reduces the performance of the solvers due to the
required global memory accesses and will affect both
algorithms (explicit and implicit) in practically the same
way.

To illustrate the explicit method algorithm, the following
notation will be used: C∗

input, C∗
output, u∗

x and u∗
y indicate

pointers to vectors stored in the GPU’s global memory. The
algorithm 1 describes the explicit method.

Algorithm 1: Explicit algorithm for 2D transport
equation.

initialization: C∗
input ← Cn; C∗

output ← Cn+1;

while t < Tfinal do
t ← t + Δt ;
compute kernel interior<<<grid,
block>>>(C∗

output, C∗
input, u∗

x , u∗
y);

compute kernel edge south<<<gridS , blockS

>>>(C∗
output, C∗

input, u∗
x , u∗

y);
compute kernel vertex SW<<<1,
1>>>(C∗

output, C∗
input, u∗

x , u∗
y);

...
sincronization: cudaDeviceSynchronize();
compute moments for statistics from new
solution: Cn+1;

pointer interchange: C∗
input ←→ C∗

output;

end
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Fig. 2 Strategy for parallel
processing via concurrent
kernels

3.4 Parallelization of implicit method

For the implicit algorithm it is required to solve a linear
system of equations Ax = rhs, and since the matrix is not
symmetric, the BiCGStab [55] method was implemented in
GPU using the matrix free style. In this way, the matrix of
the system Ax required by the solver is not saved, that is, the
operations required to compute the corresponding row of A

are performed with the corresponding values of the vector
x. The parallelization strategy of the linear operator Ax and
the calculation of the right hand side is the same as in the
explicit case, using procedures of the following type:

– kernel linear operator(C(k+1)∗
output , C

(k+1)∗
input , u∗

x, u
∗
y) for

the first,
– kernel compute RHS(rhs∗, Cn∗, C(k)∗, u∗

x, u
∗
y) for the

second.

For the linear operator used in the BiCGStab solver,
14 and 26 accesses are required for each cell, as in the
explicit case kernels depending on whether the dispersion is

modeled or not. In the kernel for the computation of the right
hand side, 19 accesses are required (5+5+5 corresponding
to Cn, C(k) and rhs, 2+2 to read ux and uy) and 31 accesses
(9 + 5 + 5 corresponding to Cn, C(k) and rhs, 6 + 6 to read
ux and uy) according to the transport case to simulate. The
algorithm 2 describes the implementation of the implicit
method.

3.5 Parallelization of random field simulator

For the generation of the conductivity fields, two kernels
were assembled, the first corresponds to the generation
of the 3 vectors: k

(i)
1,2 and θ(i), and the second for the

computation of f (x) = lnK according to (21). The
calculation process is as follows: in the first kernel,
each thread generates 3 random numbers with uniform
distribution using the CURAND library. Then with the
expressions (24) and (25) the 3 values (k1,2, θ ) can be
determined. The number of threads for this kernel is equal
to the N chosen in the equation (21). The strategy for

Table 1 Parameters and types
of cases considered for the
numerical simulations

Parameter/case Values

σ 2
ln K 0.25, 1, 2.25, 4, 6.25

Grid size Δx = Δy = h 5m

Resolution: λ/Δx = λ/Δy 10

Covariance model Isotropic Exponential

Transport type Pure advection Pe = ∞
Advection diffusion Ped = 100

Advection dispersion PeL = PeT = 100

[Lx/λ, Ly/λ] [205,204.8] for σ 2
ln K ∈ {0.25, 1}

[410,410] for σ 2
ln K = 2.25

[820,820] for σ 2
ln K = 4

[1640,820] for σ 2
ln K = 6.25

Inyection window lx × ly = 0.025Ly × 0.60Ly

Numbers of simulations N=100
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Fig. 3 Domain setup and
boundary condition (flow and
transport equation respectively)

Algorithm 2: Implicit algorithm for 2D transport
equation with TVD using DC aproach.

initialization: C∗
input ← Cn;

while t < Tfinal do
t ← t + �t ;
copy solution as seed: cudaMemcpy(C(k)∗,
C∗

input, cudaMemcpyDeviceToDevice);

dif ← 1.0;
iter ← 0;
while ( (dif > 1.0e − 6) and (iter < itermax) )
do

compute RHS: via concurrent kernels;
sincronization: cudaDeviceSynchronize();
call solver: BiCGStab(C(k+1)∗, rhs∗);
dif ← ||C(k+1) − C(k)||L∞ ;
iter ← iter + 1;

end
set new solution: C∗

output ← C(k+1)∗;
compute moments for statistics from new
solution: Cn+1;

pointer interchange: C∗
input ←→ C∗

output;

end

the second kernel is for each thread to read the three
vectors previously generated and to apply the equation (21)
according to the coordinates x and y corresponding to each
node. For this kernel 4N GPU global memory read/write
access are required, 3 for vectors k1,2, θ and 1 writing for
f (x) for each iteration in a sum up to N , in a vector of size
Nx × Ny . Before finishing, the equivalent conductivity is
calculated using the geometric average, for this the scalar
product d = 〈

f (x), ones(Nx×Ny)

〉 = ∑
(f (x)) is calculated

and then Kgeom = exp(d) is evaluated. Finally, the vector

f is copied from GPU to CPU and at the moment of saving
the fields in files, the operation K = exp(f (x)) is carried
out. This methodology is very efficient as well as being easy
to implement. The algorithm 3 reflects the implementation
used.

Algorithm 3: Random field simulator with expo-
nential covariance.

random number gen kernel<<<grid1,
block1>>>(k∗

1 , k∗
2 , θ∗);

compute log conductivity kernel<<<grid,
block>>>(k∗

1 , k∗
2 , θ∗, f ∗);

compute dot prod in GPU:
Kgeom ← exp(〈f ∗, ones〉);

copy f ∗ to CPU from GPU: cudaMemcpy(f ∗
host, f ∗,

cudaMemcpyDeviceToHost);
save in file K ← exp(f ∗);

4 Case study: Evaluation of macro dispersion
of a non reactive solution in highly
heterogeneousmedia (validation and
performance assessment)

In this section, we apply the methods presented above for
the characterization of the macro dispersion in a set of cases
with different degrees of heterogeneity. We validate the
results obtained by the Eulerian-TVD method with results
from literature (based on Lagrangian methods), and we
compare the efficiency of the implicit and explicit schemes
in terms of computation time. The numerical experi-
ment consists of simulations of transport in 2-D domains
for heterogeneous velocity fields calculated from log-
normally distributed random hydraulic conductivity K(x)

fields with exponential covariance. From the simulations,
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Table 2 Generation time for 2D random field on Equipment 2 (Nvidia
Tesla V100 GPU 5120 cuda cores, Xeon Gold 6138 CPU - 40 cores)

Nx Ny N [Mcell] avg. time [s] Total time [min]

2050 2048 4.19 0.431 0.7

4100 4100 16.81 1.615 2.7

8200 8200 67.24 6.083 10.1

16400 8200 134.48 12.51 20.9

The time corresponds to the average for each realization and total time
correspond to the generation of 100 cases

the statistics for the longitudinal and transverse macro
dispersion coefficient were evaluated using the moment
method.

4.1 Computational domain setup

The same computational grid was used for the generation
of the conductivity field, the calculation of flow and the
simulation of transport. The dimensions of the domain
for each case were defined as a function of σln K ,
considering the appropriate size to correctly obtain the
asymptotic values of the macro-dispersion coefficients [6,
15, 17, 39, 52]. We consider the following cases Lx ×
Ly ∈ {205λ × 204.8λ , 410λ × 410λ, 820λ × 820λ,
820λ × 1640λ} (were λ is the correlation length), resulting
in grids from 4.2 to 134.4 million cells. The statistics were

based on Monte Carlo (MC) type experiments considering
100 random conductivity fields for each case studied. To
avoid border effects, the initial condition for transport is
a high concentration window centered vertically in the
dimensions domain lx × ly ≈ 0.025Ly × 0.6Ly and located
at a distance dx ≈ 0.05Ly from the flow inlet (left edge of
the domain). Table 1 summarizes the parameters used in this
work.

For the flow equation, a Neumann no-flow boundary
condition is considered for the north and south border, and
Dirichlet boundary conditions are set in the east and west
border. For the transport equation, zero flow is considered
at the north and south border, and only advective flow is
considered the east and west border (see Fig. 3).

4.2 Conductivity fields andmesh discretization

In this work the conductivity fields K(x) were generated for
variances σln K ∈ {0.25, 1.00, 2.50, 4.00, 6.25}, considering
a mesh discretization of Δx = Δy = h, where λ = 10h.
For the generation of the fields N = 10000 was considered
in (21). Table 2 shows the generation times for the GPU
conductivity fields for different grid sizes. Reported times
include the following tasks: random field generation and
geometric mean computation (both on GPU), copy GPU to
CPU and save in files for later reading. As can be seen,
the times obtained are comparable in performance, to those
obtained using other methods [40]. Figs. 4, 5 and 6 show

Fig. 4 Logonormal conductivity field with variance σ 2
ln K = 6.25; correlation length λ = 10; exponential covariance; for entire domain and an

inner window of [20x/λ × 20x/λ]
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Fig. 5 Velocity field simulate for lognormal conductivity field with variance σ 2
ln K = 1; correlation length λ = 10; exponential covariance; for

entire domain (left) and an inner window of [30x/λ × 30x/λ] (right)

Fig. 6 Velocity field simulate for lognormal conductivity field with variance σ 2
ln K = 6.25; correlation length λ = 10; exponential covariance; for

entire domain (left) and an inner window of [30x/λ × 30x/λ] (right)
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Fig. 7 Comparison of effective
permeability defined as being
the mean flux (vm) normalized
by the total head gradient versus
geometric mean of conductivity
(Kg) for 100 different samples.
Exponential (top) and gaussian
(bottom) covariance models are
shown. Domain of
[410λ × 410λ], resolution
λ/Δx = λ/Δy = 10

Fig. 8 Comparison of effective
permeability (Keff) defined as
being the mean flux normalized
by the total head gradient versus
geometric mean of conductivity
(Kg) for 100 different samples
and three different resolutions.
Domain of [410λ × 204λ],
exponential covariance, variance
σ 2

ln K = 6.25, resolutions of
λ/h =10, 20 and 40
(h = Δx = Δy), for clarity a
[2.5λ × 2.5λ] inner window of
one sample is displayed for each
resolution
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Fig. 9 Comparison for different types of transport σ 2
ln K = 2.25 at final of simulation, from left to right: Aα, AD and PA

the conductivity field generated for variance σ 2
ln K = 6.25

and the velocity fields calculated for different variances
(σ 2

ln K = 1.00 y σ 2
ln K = 6.25).

Regarding the quality of the solution for the flow, Fig. 7
shows the comparison of the effective conductivity (Keff)
defined as the mean flow normalized by the head difference
versus the geometric mean of the conductivity (Kg) [11].
Exponential and gaussian covariance models are compared
for a variance of σ 2

ln K = 6.25. A slight difference between
Keff and Kg can be seen for the exponential covariance
model. This is due to the non-differentiability at 0 presented
by the exponential covariance model [28].

Figure 8 compares the effective conductivity with the
geometric mean for the exponential covariance model, for
three different model resolutions. It can be noted that the
difference between Keff and Kg is reduced when solving for
higher resolution because fluctuations are better captured.
We highlight that the observed differences are due to an
intrinsic problem of the exponential covariance model, as
confirmed by Figs. 7 and 8.

4.3 Transport simulation

The following transport cases were considered in this work:
pure advection (PA), advection-diffusion (AD) and isotropic
advection-dispersion (Aα) with αL = αT , for the last two
cases the Péclet numbers Ped = λu/Dm y PeL = λ/αL are
defined respectively. For the MC simulations a single value
given by Ped = PeL = PeT = 100 is considered.

4.3.1 Dispersion computation

For the evaluation of the macrodispersion coefficient,
the moments were calculated according to the following
expression:

Mnm(t) =
∫∫

Ω

xnymC(x, t)dxdy (29)

where m + n is the moment order (con m, n ∈ {0; 1; 2})
and Ω the simulation domain. With this expression, the
longitudinal and transversal macrodispersion coefficients
are given by:

DL(t) = 1

2λuN

N∑
i=1

d

dt

[
M20(t)

M00(t)
−

(
M10(t)

M00(t)

)2
]

(30)

DT (t) = 1

2λuN

N∑
i=1

d

dt

[
M02(t)

M00(t)
−

(
M01(t)

M00(t)

)2
]

(31)

here u indicates the average velocity in the x direction of
plume and N = 100 is the number of simulations for each
parameter set.

4.3.2 Validation

As validation of the implemented Eulerian algorithms,
results reported in the bibliography obtained by Lagrangian
methods were reproduced. Figures 9 and 10 shows
qualitatively the results for the same conductivity field for
all the 3 transport cases (PA, AD and Aα).

Figure 11 compares the mean average longitudinal
macrodispersion coefficients (over 100 realizations) for
the AD and Aα cases for different σ 2

ln K with the results
obtained by [6, 17].

4.3.3 Influence of variance onmacrodispersion

Figures 12, 13 and 14 show results for the PA, AD, and Aα

transport cases for different variance values. The asymptotic
macrodispersion coefficients for each transport case are
determined by averaging the coefficients of each of the 100
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Fig. 10 Comparison for different types of transport σ 2
ln K = 2.25 in a inner window of [60x/λ × 21x/λ], from top to bottom: Aα, AD and PA

simulations. For each simulation, the asymptotic value is
calculated between the times [t0, t1], where t0 is the time
in which there are no appreciable variations in the macro
dispersion value, and t1 the time before it begins to decay
the solute mass in the domain.

In these figures it can be seen that for the different
transport cases, the greater the variance, the greater the time
in which the asymptotic value of the longitudinal macro
dispersion is reached.

Figure 15 shows the times in which 95% of DLA is
reached for different variance values. It can be seen that

the difference in the time in which the asymptotic value
is reached, for the different transport cases (PA, AD and
Aα), is not significant for variance values less than 2.5.
However, for higher values, the difference in the time
begins to be significant. This difference may be due to
the fact that diffusion, and to a lesser extent dispersion,
act as accelerators of the process of characterization of the
medium. These processes make the solute to have a shorter
residence time in areas with low conductivity, allowing the
characterization of the macro dispersion to be carried out in
a shorter time.
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Fig. 11 Comparison for
different types of transport, AD
(top) and Aα (bottom), and
variances σ 2

ln K with [6, 17]

4.3.4 Effects of diffusion and dispersion onmacrodispersion

Figure 16 shows the asymptotic values for the PA case. It
can be seen that the results are similar to those obtained in
[17].

Figure 17 shows the asymptotic values of the longitudinal
and transverse macrodispersion coefficients for the 3
transport cases (PA, AD and Aα) for different variance
values. It can be seen that the difference in the asymptotic
longitudinal macrodispersivity value, for the different



Computational Geosciences

Fig. 12 Longitudinal and
transverse macrodispersion for
Pure Advection (PA) case

transport cases, is not significant for variance values
less than 2.5. However, for higher values, the difference
increases, which has been reported by several authors
in the literature [6, 17, 39]. As these authors mention,
diffusion and, to a lesser extent, dispersion, reduce the
value of the macrodispersivity by reducing the residence

time of the solute in areas of low conductivity. Note that
the mechanisms that produce this effect are the same as
those that affect the time for which the asymptotic value
of longitudinal macrodispersivity is reached (shown on
Fig. 15). Transverse dispersion on the other hand, is only
weakly affected by the spatial heterogeneity and thus by
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Fig. 13 Longitudinal and
transverse macrodispersion for
Advection-Diffusion (AD) case

the value of the variance of the log-conductivity. The fact
that the velocity field is divergence-free impedes large
transverse excursions of the streamlines and leads to a
pure meandering. In fact, for the case of purely advective
transport, transverse dispersion has been shown to be
asymptotically zero, which is confirmed by the numerical

simulations. For finite Péclet number, the transverse
dispersion coefficients asymptote to a finite value, which
however, tends to zero with increasing Péclet number [3].
The non-monotonic behavior for the transverse dispersion
coefficients in Fig. 17 is rather a fluctuation than a
systematic pattern, see also Fig. 16.
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Fig. 14 Longitudinal and
transverse macrodispersion for
Advection-Dispersion (Aα) case

Table 3 compares the asymptotic macrodispersion values
with respect to the case of pure advection, (DAD

LA /DPA
LA y

DAα
LA/DPA

LA ) and it can be seen that the difference increases
as σ 2

ln K grows and is negligible when σ 2
ln K < 1.

The Fig. 18 shows for a case of σ 2
ln K = 4 the

coefficients DL and DT . In this case, the differences
between the 3 transport cases on the asymptotic value of

macrodispersivity and the time in which it is reached can be
seen.

4.3.5 Performance of the implicit and explicit algorithms

The accuracy of the explicit and implicit methods using
a TVD scheme was evaluated based on an error analysis
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Fig. 15 Time scale to reach the
asymptotic value for
longitudinal dispersion as
function of the variance of log
conductivity

using a reference solution obtained by the implicit algorithm
(O(Δt2)) considering a very small time step. To make a fair
comparison, a relationship between the time steps of each
method was experimentally determined in order to obtain
an error of the same order. Specifically, for the explicit
method, the largest time step is used so that the solution
remains stable throughout the simulation (maximum time
from equation (17) times 1.5). For the implicit case, the time
steps were chosen so that the error is of the same order as in
the explicit case. The time steps used for the implicit method
are between 8 and 34 times greater than those considered
for the explicit method.

Figure 19 shows the evolution of the longitudinal and
transverse macrodispersivities obtained with both methods
for a particular case. As can be seen, both results are of the
same order.

Table 4 shows the performance in terms of the
computation time required for each transport case (average
of 100 realizations) according to the type of simulated
transport, the method used and the hardware where the
simulation was run. It should be mentioned that for the
explicit algorithm, the computation times for the PA and
AD transport cases are numerically indistinguishable. This
is due to the fact that the operations that are added in the
AD case correspond to a multiplication using a fixed value
(Dm) which does not imply global memory readings. For the
Aα case more operations and global memory readings are

added, in order to interpolate the dispersivity tensor at face
centers, which significantly affects performance. The times
reported in Table 5 shows that the explicit algorithm is much
more efficient than the implicit algorithm in most cases, by
a factor of up to 12. On the other hand, since in the implicit
method a non-linear equation system must be solved for
each time step, the total computation time is sensitive to the
parameters set in the BiCGStab solver and the tolerance of
the external loop for the deferred correction (DC). The type
of transport that is simulated also affects performance, since
the smoother the solutions (in the cases AD and Aα) the
faster the convergence.

In Table 5 the ratios between implicit and explicit
computing time for the different transport cases are
compared. This table shows the effect that the size of the
problem has on the methods performance for the three types
of transport: the ratio shrinks as the problem grows. This is
mainly because as the system grows, the numerical scheme
considered for the implicit case becomes more efficient,
due to the strategy used that links the BiCGStab solver
and the deferred Correction approach. Since the result of
the BiCGStab solver is used within an iterative loop, a
maximum number of iterations was set instead of forcing
the solver to reach a certain precision. This strategy can
be dynamically adapted by monitoring the residue and
increasing or decreasing the number of maximum iterations
of the linear solver in each DC iteration.
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Fig. 16 Longitudinal and
transverse asymptotic dispersion
coefficients as function of log
conductivity for pure advection.
Vertical bars indicate standard
deviation
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Fig. 17 Longitudinal and
transverse asymptotic dispersion
coefficients as function of log
conductivity for PA, AD and Aα

transport mechanism
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Table 3 Comparison asymptotic longitudinal macrodispersion for AD
and Aα with PA case

Advection-Difusion Advection-Dispersion

Variance D
Ped=100
LA /DPA

LA D
PeL=PeT =100
LA /DPA

LA

0.25 1.030 1.020

1.00 0.997 0.996

2.25 0.948 0.915

4.00 0.879 0.936

6.25 0.767 0.925

It can also be observed that if the solution is smoother,
as in the case of Aα, for the larger domain size the implicit
method can be up to 2 times faster than the explicit one.
On the other hand, the explicit method, despite of being
slower than the implicit, has less memory requirement,
which allows solving bigger problems. This is a particularly
important aspect since the memory of GPUs is limited. As
can be seen from Tables 4 and 5, the case of 134.48 million
cells cannot be solved on the K40 GPU (the maximum
size for implicit method is 107.08 million cells and 299.63
millions cells for explicit). For the V100 GPU the maximum
size that can be solved is the one with 302.76 million cells
for the implicit method and with 841 million cells for the
explicit.

5 Conclusions

This work presents the implementation of two Eulerian
methods in GPU to solve transport in dominant advec-
tive problems. For this, high resolution TVD schemes were
implemented, resulting in algorithms with a spatial pre-
cision of O(Δx2). For the implicit algorithm, the TVD
schemes were implemented using an iterative deferred cor-
rection approach. To the authors’ knowledge, this is the first
time that a fully Eulerian approach has been used to deter-
mine the macro dispersivity of highly heterogeneous media
in a MC study context.

The algorithms were shown to correctly solve problems
with sharp gradients for pure advection (PA), advection-
diffusion (AD), and advection-dispersion (Aα), at values of
Pe = 100 considering domains of up to 134.48 million
cells. We considered the challenging problem of longitu-
dinal and transverse macrodispersion for log-conductivity
variances up to 6.25. Comparison with published numerical
data obtained from high performance random walk parti-
cle tracking simulations validate the proposed numerical

schemes. Furthermore, the numerical results shed some new
light on the heterogeneity dependence of macrodispersion,
and the time scales to reach the asymptotic behavior at finite
Péclet numbers under local scale diffusion and dispersion.

The computation times show that the explicit method,
despite being a O(Δt) method and therefore requiring a
shorter time step, has a better performance in GPU in
most cases. This method, in addition to having a relatively
simple algorithm to implement, requires less memory than
the implicit one. The implicit method presented better
performance for large problems. This behavior is due to
the nonlinearity of the advective scheme used. This is
mainly because as the system grows, the numerical scheme
considered for the implicit case becomes more efficient,
due to the strategy used that links the BiCGStab solver and
the deferred Correction approach. The disadvantage of this
method is that it requires more GPU memory, which on
occasions can be a major limitation.

The computations times reported in this work show that
it is feasible to carry out macrodispersion studies for highly
heterogeneous media using fully Eulerian methods on GPU.
This represents an attractive potential alternative for solving
problems involving the interaction between the mobile
and stationary phases, or the coupling between flow and
transport, since the flow and transport calculations could be
carried out on the same mesh.

Finally, we highlight that the implemented algorithms
can be directly extended to solve 3D problems, using the
parallel processing strategy via concurrent kernels. This can
be done by using a similar kernel to process xy planes
of the interior of the domain. This seeks to obtain a good
balance between computations and the overhead introduced
by the division and synchronization of the data, in addition
to facilitating the implementation. In addition, the use of
three-dimensional blocks is not recommended due to GPU
block index limitations. Regarding the size of the domain
for 3D, using the explicit algorithm in equipment 1, it is
possible to solve domains of extensions up to 1280λ in
streamwise direction and 25λ in the transverse directions
with a resolution of h = λ/10. According to [5], with this
dimensionalization, it is possible to simulate initial ergodic
conditions and provide a correct sampling of the velocity
field.

In conclusion, the presented fully Eulerian simulation
methods provide an efficient alternative to particle-based
simulators for transport in heterogeneous porous media.
The Eulerian framework is more flexible for problems
with complex boundary conditions, and problems with non-
linear feedback between flow and transport, such as in
variable density or variable viscosity flow and transport
problems.
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Fig. 18 Comparison of
normalized longitudinal and
transverse dispersion
coefficients as function of
dimensionless time for all
transport cases considering
σ 2

ln K = 4
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Fig. 19 Normalized
longitudinal and transverse
dispersion coefficient for single
realization with σ 2

ln K = 4,
obtained using the explicit and
implicit algorithm respectively
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Table 4 Comparison of computing time for explicit and implicit methods for transport cases: Pure advection (PA), Advection-Diffusion (AD),
Advection-Dispersion (Aα) running on different hardware

σ 2
ln K 0.25 1 2.25 4 6.25

NX × NY [Mcell] 4.198 4.198 16.81 67.24 134.48

tfinalu/λ 190 190 350 600 1000

Equipment - GPU Method Transport case Average computing time [min]

Explicit PA / AD 0.68 1.52 18.5 368 2333

Explicit Aα 1.23 3.88 60,1 1046 6331

Eq. 1 - Tesla K40 Implicit PA 5.98 7.68 66,6 571 *

Implicit AD 3.88 5.92 55,3 525 *

Implicit Aα 6.35 9.05 76,3 697 *

Explicit PA / AD 0.10 0.22 3,69 46,6 311

Explicit Aα 0.17 0.52 8,16 122 833

Eq. 2 - Tesla V100 Implicit PA 1.22 1.57 12,3 101 409

Implicit AD 0.78 1.22 10,2 92,6 391

Implicit Aα 1.15 1.65 12,9 115 443

*Exceeds GPU memory of equipment 1

Table 5 Comparison of computing time for explicit and implicit methods for transport cases: Pure advection (PA), Advection-Diffusion (AD),
Advection-Dispersion (Aα) running on different hardware

σ 2
ln K 0.25 1 2.25 4 6.25

NX × NY [Mcell] 4.198 4.198 16.81 67.24 134.48

tfinalu/λ 190 190 350 600 1000

Equipment - GPU Transport case Ratio: timplicit/texplicit

PA 8.8 5.1 3.6 1.6 *

Eq. 1 - Tesla K40 AD 5.7 3.9 3.0 1.4 *

Aα 5.1 2.3 1.3 0.7 *

PA 11.8 7.0 3.3 2.2 1.3

Eq. 2 - Tesla V100 AD 7.6 5.4 2.8 2.0 1.3

Aα 6.8 3.2 1.6 0.9 0.5

*Implicit method exceeds GPU memory of equipment 1
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