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ABSTRACT

Reservoir computers are powerful tools for chaotic time series prediction. They can be trained to approximate phase space flows and can thus
both predict future values to a high accuracy and reconstruct the general properties of a chaotic attractor without requiring a model. In this
work, we show that the ability to learn the dynamics of a complex system can be extended to systems with multiple co-existing attractors,
here a four-dimensional extension of the well-known Lorenz chaotic system. We demonstrate that a reservoir computer can infer entirely
unexplored parts of the phase space; a properly trained reservoir computer can predict the existence of attractors that were never approached
during training and, therefore, are labeled as unseen. We provide examples where attractor inference is achieved after training solely on a
single noisy trajectory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065813

Reservoir computing is a brain-inspired machine learning
scheme that can be used to mimic dynamical systems. Reservoir
computers can be trained to learn the characteristics of a target
dynamical system purely from a sample time series. In partic-
ular, properly trained autonomous reservoir computers can act
as surrogate systems while still preserving many properties of
the original ground truth such as the largest Lyapunov expo-
nents, embedded unstable periodic orbits, or correlation mea-
sures. Importantly, dynamical systems can exhibit more than just
a single stable long-term behavior, called an attractor. A com-
mon scenario is the existence of pairs of symmetric solutions,
but more complex co-existences can also often be found. Systems
with multiple attractors are called multistable. Here, we provide
examples where a reservoir computer is able to learn the various
attractors of a multistable system. We feed the reservoir just a

single noisy trajectory of one of the attractors, while the other
attractors remain outside of the training data range. Then, in
separate autonomous operation, the trained reservoir is able to
reproduce and, therefore, infer the existence and shape of these
unseen attractors.

I. INTRODUCTION

Reservoir computing is a brain-inspired machine learning tech-
nique that was popularized by the works of Maass et al.1 and Jaeger2

in the form of liquid state machines and echo state networks, respec-
tively. At its core, a reservoir computer usually consists of three
elements: a fixed input layer; a fixed dynamical system with a
high-dimensional phase space, called the “reservoir;” and a linear,
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trainable readout layer. In particular, the reservoir can be a recur-
rent artificial neural network (RNN) with fixed connection weights,
in which case, the system is still referred to as an echo state network.

Regardless of the type, the reservoir introduces transforma-
tions and memory for the input sequence by virtue of responding
to an input while being in a state induced by the previous input.
By reading out the many degrees of freedom of the reservoir and
potentially performing low-order polynomial transformations, the
reservoir provides a large number of transformations of the input
sequence, i.e., a multitude of responses. As opposed to other RNN
schemes, the readout layer is the only part that is trained in reser-
voir computing. A linear readout layer is often sufficient, given a
nonlinear reservoir, and can easily be optimized via a straightfor-
ward regression on a set of training data. It has recently been shown
mathematically that linear reservoirs with nonlinear readouts can
also provide universal computational properties.3,4

It was soon discovered that reservoir computers are highly
capable at predicting chaotic time series, improving accuracy by
orders of magnitude compared to previous methods.5 By feeding
the reservoir a chaotic time series and choosing the target to be the
next point of the chaotic trajectory, the reservoir computer learns to
perform the so-called one-step-ahead prediction. Intriguingly, after
training for one-step-ahead prediction, such a reservoir can be put
into a “closed loop configuration,” where its own prediction can be
used as the next input. In this way, the reservoir computer becomes
an autonomous dynamical system that can accurately continue the
original data. Generally, in a chaotic attractor, the predicted time
series does not agree with the specific original training data forever,
as even tiny differences will eventually lead to divergence of trajecto-
ries. However, the autonomously created time series can reproduce
the general structure of the chaotic attractor it was trained on even
for long time scales. This is sometimes referred to as the “climate
prediction” property, as opposed to the short-term prediction error,
which analogously is referred to as “weather prediction” property.
It is worth emphasizing that the reservoir is reproducing the source
system in a model-free manner, i.e., without any knowledge about
the origin of the training data.

Chaotic time series prediction using reservoir computing con-
tinues to be an active field of research with several noteworthy
results. Pathak et al.6 showed that properly trained reservoir com-
puters can be used to reconstruct the largest Lyapunov eigenvalues
inside the chaotic attractor. Chen et al.7 showed that such reser-
voir computers also reproduce several typical geometric metrics.
Estebanez et al.8 demonstrated how noise can be used to improve
the long-term attractor reconstruction, and Zhu et al.9 showed how
delayed-feedback control can be combined with reservoir comput-
ing to find the unstable periodic orbits embedded inside the chaotic
attractor. Furthermore, unstable fixed points can be found using
reservoir computing, even when the trajectory never visits them
during training.4,10 Kim et al.11 recently showed that a reservoir com-
puter can correctly predict bifurcations if training is done with the
bifurcation parameter as an input explicitly fed to the reservoir.
Remarkably, they only used training trajectories taken from time
series data generated below the bifurcation point to teach the reser-
voir the influence of the bifurcation parameter. These results hint
at the ability of a properly trained reservoir computer to reproduce
the phase space structure of the original system accurately and even

its control parameter dependence when operated in an autonomous
mode.

We demonstrate that the ability of phase space reconstruction
can be exploited even further. We show that a properly trained reser-
voir computer can not only reconstruct the attractor it is trained
on but also can even infer other unseen co-existing attractors in
the system’s phase space and reconstruct their structure. By unseen
co-existing attractors, we specifically mean those attractors in a mul-
tistable system whose basin of attraction was never reached during
training so that no direct traces of them can be found in the orig-
inal time series data. To this end, we test the ability of a reservoir
computer to infer unseen attractors for a four-dimensional chaotic
extension of the Lorenz system with co-existing attractors in two
scenarios. The first scenario comprises a torus solution co-existing
with a pair of symmetric limit cycles. In the second scenario, a pair
of symmetric chaotic attractors coexists with a torus.

Attractor reconstruction is arguably related to the field of
nonlinear system identification, which aims to derive the govern-
ing equations from a sample set of time series data. In particu-
lar, techniques such as Sparse Identification of Nonlinear Dynam-
ics (SINDy),12 ResNet-based approaches,13 auto-regressive moving
average (ARMA) models, and variants (ARMAx and NARMAx) are
capable of producing accurate model descriptions in some cases.14

However, all of these either require previous knowledge about the
general structure of the system or multiple sets of training trajec-
tories. Moreover, those that only estimate the vector field would
have to be combined with an integrator to facilitate one-step-ahead
prediction.

In contrast, we show that reservoir computers, operated in the
autonomous mode, can serve as model-free surrogates of target sys-
tems even outside of their training region with minimal input, i.e.,
they can learn to reconstruct unseen attractors after learning from
a single, noisy trajectory. Thus, reservoir computers can satisfac-
torily mimic target systems in cases where the training data are
noisy, not a lot of training data are available, and nothing concrete
about the shape of the underlying differential equation is known.
Here, the reservoir computers do not learn the governing equa-
tions of the original system, instead they learn how to integrate
and propagate along trajectories. Thus, the reservoir computers are
learning the phase space flow without formulating any intermediate
model. From recent studies, it is known that attractor reconstruction
can sometimes fail even for parameter-sets optimized for one-step-
ahead prediction.15,16 This also applies to the cases presented here,
where a reservoir computer infers the existence of other attractors.
Lacking a way to verify the prediction on the original system, this
failure mode is harder to detect because the original data does not
contain any sampling from the unseen attractors. Obtaining a quan-
titative estimate of the quality of the attractor reconstruction without
knowing the target system remains an open problem.

In the following, we first introduce the model used and the tar-
get system chosen. We then analyze the reservoir computers’ ability
to reproduce unseen attractors. We find that for a set of parame-
ters the reservoir computer succeeds in predicting the existence of a
torus and symmetric limit cycle with low errors. In the second sce-
nario, involving two chaotic attractors and a torus, it is more difficult
to succeed. We analyze cases of partial success and discuss what the
current limitations are.
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II. THEORY

A. Echo state network

We use a continuous time version of an echo state network
based on ordinary differential equations similar to those used by Lu
et al.17 The reservoir computer consists of a network of N coupled
real-valued nodes with the total state X ∈ R

N describing all nodes
evolving according to

Ẋ = −X + tanh (WresX + GWinu(t) + B), (1)

where the random matrices Wres ∈ R
N×N and Win ∈ R

N×U describe
the internal and the input weights, respectively. The input gain
is given by scalar G. The time-varying input u(t) ∈ R

U is a step-
function with period θ , with the amplitude of each plateau cor-
responding to one point of data of the discrete source series
uk ∈ R

U×K. B ∈ R
N is a random bias vector. The network and input

matrices are sparse, and the details of the random initialization and
the list of all parameters are given in Appendix A.

The state X of the network is periodically recorded at intervals
θ and used to construct the state matrix S ∈ R

K×N+1. We add a bias
column into the state matrix such that a row Sk is finally given by

Sk = [X1(tk), X2(tk), . . . , XN(tk), 1], (2)

where tk = Tw + kθ with Tw being the “washout” or “warmup” time
used to remove the influence of the starting state of the reservoir.
The prediction Y ∈ R

K×U of the reservoir is then given by

Y = SWout. (3)

A training series of Ktraining elements is used to drive the system
to generate Straining, which, in turn, is used to determine the out-
put weights Wout ∈ R

N+1×U. The error between the prediction Y

and the known true targets Ŷ is minimized using an L2-norm. To
reduce the amount of over-fitting, we use Tikhonov regularization as
described in Appendix C. The regularization strength η is an impor-
tant parameter as it controls the level of detail the training data are
approximated to. High η will fit the training data too crudely, ren-
dering attractor inference impossible. Conversely, low η will lead to
over-fitting and poor generalization.

Once the reservoir computer is successfully trained, we use it to
probe other parts of the phase space of the target system. To this end,
we feed the reservoir computer the beginning of a different ground-
truth transient, which for now is required. We then observe how it
evolves in the autonomous mode. See Appendix C for details.

B. Target system by Li and Sprott

We study the properties of unseen attractors and the ability of a
reservoir computer to infer their existence. As our target dynamical
system, we use a four-dimensional extension of the Lorenz attractor
as proposed by Li and Sprott,18 based on earlier work by Gao and
Zhang,19 whose dynamics is given by

ẋ = y − x + σξx, (4)

ẏ = −xz + u + σξy, (5)

ż = xy − a + σξz, (6)

u̇ = −by + σξu, (7)

which has only two parameters a and b. Here, we add additive inde-
pendent identically distributed Gaussian noise terms ξi with mean
0 and unit variance, E[ξi(t)ξj(t

′)] = δijδtt′ . For the sake of simplicity,
different variables share the same noise strength σ . This simplifi-
cation is acceptable because all variables share the same order of
magnitude. For σ = 0, the system is noise-free and deterministic.
We chose this system because it shows coexisting attractors of dif-
ferent complexities depending on parameters. This allows us to test
the ability of reservoir computers to infer the existence of unseen
attractors in various scenarios involving periodic, quasiperiodic, and
chaotic attractors.

By initializing the system (4)–(7) in different initial conditions,
we can reach different attractors, as each trajectory will eventu-
ally reach one of the stable attractors. The volume of phase space
from which trajectories lead to a certain attractor is called its basin
of attraction. Notably, the system (4)–(7) never features any fixed
points, and hence, the attractors are called hidden and the basins of
all attractors studied in this work are fractal.18

C. Error estimates

We use a quantitative measure for the quality of attractor
reconstruction. For the reconstructed and target attractors, we take
the time average for each variable 〈x〉, 〈y〉, 〈z〉, 〈u〉, and the time aver-
age of the absolute values 〈|x|〉, 〈|y|〉, 〈|z|〉, 〈|u|〉. The absolute values
help differentiate when averages become 0, such as for periodic
states centered around the origin.

We determine the differences 1 between prediction x and the
ground-truth x̃, normalizing by the average ground-truth absolute
averages

1x = 〈x〉 − 〈x̃〉
〈|x̃|〉 , (8)

1|x| = 〈|x|〉 − 〈|x̃|〉
〈|x̃|〉 (9)

and similarly for y, z, and u. From this, we calculate an error estimate
1att for the target attractor as the root of the sum of all squares

1att =
√

∑

i={x,y,z,u}
12

i + 12
|i|. (10)

While the quantitative error 1att does not capture the full picture,
it allows us to easily discriminate between (partially) successful and
failed attractor inference. To judge the power of a particular reser-
voir computer for a given scenario, we sum 1att for all existing target
attractors to the total error 1tot via

1tot =
√

∑

12
att. (11)

The applicability of other geometric error measures can also be con-
sidered, in particular, the symmetric Hausdorff distance and the
average Euclidean distances per point between the real and inferred
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attractor. However, the former is unsuited because it only measures
the worst point. The latter suffers from requiring too many data
points. Our sets sample the chaotic attractors too thinly, poorly cov-
ering rare trajectories, whose points, in turn, dominated the average
Euclidean distance. In contrast, the simple error measure 1att of
Eq. (10) uses averages and is quite robust, even for small dataset
sizes.

We optimize the meta-parameters of the reservoir comput-
ers with the help of this error measure 1att. In this context, a
meta-parameter is any parameter of the reservoir, i.e., a parameter
that does not refer to the Li–Sprott oscillatory system. Some meta-
parameters differ between simulations for the chaotic vs the limit
cycle scenarios. We obtain optimal values via a rough grid search for
the number of nodes N = 300, the network sparsity ρ = 0.1, input
strength G = 0.3 or G = 0.01, the regularization strength η = 10−3

or η = 10−5, the bias strength b = 1.0 or b = 3.0, the time per input
θ = 2.5, the washout time Tw = 2500 and the maximum eigenvalue
of the reservoir Re(λ)max = 0.95 or Re(λ)max = 0.99.

III. RESULTS

We first focus on the parameters a = 2.0 and b = 0.8 in the
noise-free case σ = 0, for which the target system possesses three
stable solutions: two periodic limit cycles and a quasiperiodic torus
as shown in Fig. 1. The two limit cycles are symmetric with respect to
the transformation (−x, −y, z, −u). For these parameters, the limit
cycles have oscillations on a time scale of 15 units, while the slow
oscillation in the torus lasts 30 and the fast one 5 units, respectively.

FIG. 1. Solutions of the Li–Sprott equation system for a = 2.0, b = 0.8, and
σ = 0. Panels (a) and (c) show x–u projection, panels (b) and (d) a z-y pro-
jection. A pair of symmetric limit cycles [red and blue lines in (a) and (b)] coexists
with a torus [black dots in (c) and (d)].

We sample the training time series with a step size of 0.3 or about 15
points per fast oscillation of the torus.

The starting values for the transients used for training and
details of numerical integration of the source system are described in
Appendix B. We always train on trajectories with 11 000 data points
that stay within one basin of attraction. Of these, 1000 points are
used as initial warmup time Tw.

We then train a continuous time echo state network of Eq. (1)
with N = 300 on the Li–Sprott system with the phase space and
attractors as shown in Fig. 1. We designate one of the two limit
cycles as our training attractor and initialize a transient that con-
verges to this limit cycle. Using this transient, we drive the reservoir
computer, recording the activation of all the nodes. As per standard
approach for attractor reconstruction, our training target is a one-
step-ahead prediction. The optimal output matrix Wout is found and
used subsequently.

For our goal of having a system that can find unseen attractors,
we use the autonomous operation of the reservoir computer. For
this, we feed the reservoir its own prediction. In our case, additional
care must be taken to avoid a training failure. First, it is typical that
the beginning of the training data does not directly translate into
the state matrix Straining. In fact, we want the state X of our reservoir
to be only dependent on the drive signal u(t). Thus, to avoid any
influence of the initial state X(0) of the reservoir on training, the first
Tw of u(t) is used to “washout” or “warmup” the reservoir. We use
1000 of the 11 000 training data points for this. But the training limit
cycle is highly attracting. Therefore, any reasonably long “washout”
period Tw leads to the loss of all information contained in the initial
transient of the Li–Sprott system. The reservoir will effectively be
trained only on the target limit cycle itself.

Second, when the training data is too low dimensional, the
reservoir does not get to “see” the full shape of the dynamical
flow. Even for relatively short Tw, the remaining training data only
consists of the one-dimensional limit cycle. Even when training suc-
ceeds in achieving a low fitting error on the training set, the system
is susceptible to being unstable in the autonomous mode. Because
certain phase space directions might never be seen during training,
the output of the reservoir computer in the autonomous mode tends
to diverge in those directions.

Fortunately, these problems can be overcome with a modifi-
cation that makes training both more stable and makes the whole
procedure more appropriate for realistic problems, by the inclusion
of noise in the training data. When σ > 0, the training data pro-
duced by the Li–Sprott system (4)–(7) is in a sense permanently
transient. Even small noise is enough to allow the trajectory to at
least partially diverge from the pure limit cycle, effectively sam-
pling all directions in the four-dimensional phase space. While not
explored in detail, there is likely a trade-off between training length,
noise strength, and regularization that influences the performance of
the reservoir. We ensure that the noise does not lead to any attractor
hopping in the training dataset by visual inspection. We also tried
using additive noise combined with a noise-free time series as has
been studied previously,8 but did not achieve success, likely due the
fact that we are not only targeting chaotic attractors.

In comparison to Kim et al.,11 we do not use multiple parallel
training trajectories. Instead, we only train on a single, noisy trajec-
tory. Also, compared to their work, we use a much coarser sampling
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of the original time series as they used every point of the source data
without any sampling and even included the Runge–Kutta auxiliary
terms.

We always feed the reservoir all four variables of the Li–Sprott
system both during training and the start of the autonomous mode,
i.e., in this work, there are no unseen degrees of freedom. Therefore,
the reservoir obtains the full information about the target system
in each time step. In principle, this should imply that no memory
is needed and that removing the recurrent connections by setting
Wres = 0 in an approach similar to an extreme learning machine
could suffice.20 We performed a few preliminary investigations with
Wres = 0 and find that performance worsened. However, a detailed
study of such an approach is outside the scope of this work. In
general, we believe that the results presented in this paper can be
extended to partially observed target systems in which case memory
would be necessary. Furthermore, our chosen architecture is com-
patible with experimental reservoir computing, where the memory
of the reservoir is an important aspect.

A. Inferring the torus and symmetric limit cycle

Figure 2 shows a case of successful training and attractor infer-
ence: The system is trained on a single noisy trajectory of with
Ktraining = 104 points and noise strength σ ' 6 × 10−3. For testing,
we feed the system the first 1000 points of a ground-truth reference
trajectory (see Appendix C for details) for each of the three attrac-
tors (top, middle, and bottom rows in Fig. 2) and then put it into the
autonomous mode generating 10 000 points on its own. We always
use noise-free (σ = 0) transients for initializing the reservoir in the
autonomous mode and as targets.

The red dots in Fig. 2 represent the reconstructed attractor by
the reservoir, while the black dots show the true attractors of the
Li–Sprott system, the latter are almost completely covered by the
former. The system learns the attractor it is trained on [Figs. 2(a)
and 2(b)] with a low error of 1att = 8.4 × 10−3. Moreover, it can
also predict with high fidelity the existence and full shape of the
second, symmetric limit cycle (1att = 7.6 × 10−3) and of the torus
[Figs. 2(e) and 2(f), 1att = 5.6 × 10−2]. The total error in this case
was 1tot ≈ 0.06.

All attractors have complex shapes. It had been shown that
a reservoir computer trained on a chaotic system can implicitly
learn the position of surrounding and defining unstable fixed points
and the implicit unstable periodic orbits within.4,9,10 Figure 2 clearly
shows a case where we can go beyond this by demonstrating how an
autonomous reservoir computer can infer entirely separate attrac-
tors in a target system. In particular, because the attractors of an
autonomous system are always disjoint, this means that the sys-
tem has to infer the properties of parts of the phase space that were
neither part of the training data nor are connected to it via any tra-
jectories, unlike unstable structures which might be connected via
heteroclines. Here, the reservoir computer must make a plausible
inference of the global phase space flow of the dynamical system
from local knowledge.

It is important to note that there is quite a variation in the
quality of the attractor reconstruction depending on both the tar-
get as well as the randomly generated reservoir. In the following,

FIG. 2. An example of successful attractor inference for a = 2.0 and b = 0.8 of
the Li–Sprott system [Eqs. (4)–(7)]. The two columns show two projections of the
four-dimensional system. The original system has three attractors (black dots):
a pair of symmetric limit cycles (a)–(d) and a torus (e) and (f). A reservoir com-
puter in the autonomous mode is used to reproduce the shape (“climate”) of these
attractors (red points). Training is done only on the first limit cycle (a) and (b).
The existence and shape of the other two attractors (c)–(f) is inferred by the
reservoir. G = 0.3, b = 1.0, η = 1e − 3, Re(λ)max = 0.95, θ = 2.5. (a) and
(b) 1att = 8.4 × 10−3, (c) and (d) 1att = 7.6 × 10−3, and (e) and (f)
1att = 5.6 × 10−2.

we address a more difficult parameter region of the Li–Sprott sys-
tem and demonstrate how partial successes and inference failure
manifest themselves in such cases.

B. Training in chaos and quasiperiodic dynamics

Here, we change the target of training. Using the Li–Sprott
system with a = 6.0 and b = 0.1, we enter a regime where two sym-
metric chaotic attractors coexist with a torus. Once again, we train
the system on one of the attractors using a single noisy trajectory.
We find that attractor reconstruction and inference in this regime
are significantly harder. In particular, we never achieve a total error
1tot < 2, which is almost two orders of magnitude larger than in the
previous case.

When training on one of the chaotic attractors, the system
has to infer the existence of its symmetric counterpart and a torus.
Despite extensive numerical investigation, we do not find a case
where the reservoir computer fully succeeds. Figure 3 shows one
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FIG. 3. Partially successful inference for a = 6.0 and b = 0.1. The two columns
show two projections of the four-dimensional system. The original system has
three attractors (black dots): a pair of symmetric chaotic regions (a)–(d) and
a torus (e) and (f). A reservoir computer in the autonomous mode is used to
reproduce these attractors (red points). Training is done only on the positive-u
chaotic region (a) and (b). The existence and shape of the other chaotic attrac-
tor (c) and (d) and torus (e) and (f) is inferred by the reservoir. G = 0.01,
b = 3.0, η = 1e − 5, Re(λ)max = 0.99, θ = 2.5. (a) and (b) 1att = 0.14, (c)
and (d) 1att = 0.65, (e) and (f) 1att = 2.3.

of the most successful results with an error of 1tot = 2.4. The sys-
tem is able to learn the chaotic region it is trained on [Figs. 3(a)
and 3(b), 1att = 0.14] and it correctly infers the existence and type
of the two other attractors, as depicted in Figs. 3(c)–3(f). These other
reconstructed attractors show obvious deviations. For the recon-
structed symmetric chaotic region, the dynamics of the x, y, and z
variables are, in fact, almost accurately predicted with errors 1i at
most 0.18. However, the u variable shows a persistent positive off-
set from the ground truth, as can be seen in Figs. 3(c) and 3(e), and
this is reflected by higher errors 1u ≈ −1|u| ≈ 0.43. Similarly, the
torus [Figs. 3(e) and 3(f)] is mismatched in the u-dimension with
1u ≈ 0.7. In addition, the shape is distorted increasing the error
of the average absolute values 1|x| ≈ 0.6, 1|y| ≈ 1.0, 1|z| ≈ 1.9, and
1|u| ≈ −0.3.

The deviation in the u variable for the unseen attractors is likely
due to the large separation between the training and target attractor;
the two chaotic regions are clearly separated from the torus and from
each other in the u-variable. We assume that this large separation

makes an accurate inference harder as compared to the case of the
intertwined limit cycles and torus studied earlier. The reservoir is
required to correctly infer the phase space flow over longer dis-
tances, which accumulates the visible deviations between ground
truth and prediction in Figs. 3(e) and 3(f).

Furthermore, the different time scales cannot be ignored in
this case. While the limit cycle and torus dynamics of Sec. III A
allowed for a sampling that was reasonably adequate for all oscil-
lations involved, this is not the case here. In particular, the chaotic
dynamics show both slow oscillations on a time scale of 100 and
fast oscillations on the order of 3. Similarly, the torus contains slow
oscillations around 6 and fast oscillations of order 120. This is a sep-
aration of almost two orders of magnitude, which makes choosing a
suitable sampling rate a difficult compromise. We chose a sampling
interval of 0.2, mostly adapted to the fast oscillations. Nevertheless,
even in this more difficult case, the system correctly predicts the
type, shape, and rough position of the unseen attractors. If knowing
the exact u position and torus shape is not required, the reservoir
successfully predicts the unseen attractors.

We find many cases of partial success and failure. Two types
of obvious failures, in particular, are detectable even in a model-free
setting. First, if the reservoir fails to reproduce the training dataset,
it is safe to assume that its predictions cannot be considered depend-
able. We see this type of failure remarkably often, and the fact that
some randomly generated reservoir topologies work worse than oth-
ers is a known issue.15 A second detectable failure shows the attractor
inference time series veering off toward infinity or settle at unrea-
sonably large values. Reservoirs with such unphysical predictions are
also easily discarded.

To quantify these errors rates, we investigate the variability of
the reservoir performance. Keeping all parameters and training tar-
gets fixed at the values used for Fig. 3, we simulate a set of 2000
random reservoir topologies. Out of these 2000 simulations, over
1300 show a deviation of 1i ≥ 100 in at least one variable. This
indicates that the trajectory failed to converge. Out of the remain-
ing roughly 700 reservoirs, only 240 stay below an error of |1i| < 2
in every metric. These reservoirs show different degrees of success.

We show the subset of simulations with the lowest total error
1tot in Fig. 4. The histogram shows a clear bimodal distribution.
While the different predictions do not cleanly fall into classes, after
investigating the source of this bimodality, we conjecture that the
first peak is related to predictions that approximate the targets as
good as possible. The second peak corresponds to cases in which
inference fails and only the training region is predicted to be stable,
i.e., the multistability cannot be inferred.

Ultimately, the error measures 1 always compress informa-
tion. When there is a significant deviation between ground truth and
prediction, many cases of partial success arise with different quali-
ties. We show an additional example to highlight how partial success
can manifest itself.

Figure 5 shows an example where inference deviates from the
ground truth by one attractor exhibiting a different type and another
not being detected. Figures 3 and 5 only differ in their randomly gen-
erated topology. As in the successful trial, the reservoir succeeds in
reproducing the training attractor [Figs. 5(a) and 5(b)] with a low
error of 1att = 0.09 and, therefore, barring additional information,
the attractor inference of both Figs. 3 and 5 appears equally valid.
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FIG. 4. Histogram of the distribution of the total error 1tot for a set of 2000 ran-
domly generated reservoir topologies, while the other parameters are fixed. Note
that more than 1300 simulations exhibit large errors 1tot and lie outside of the
range depicted here.

Nevertheless, the prediction of the two unseen attractors is less suc-
cessful for Fig. 5. The total error is slightly larger with 1tot ≈ 2.5.
Inference of the torus is not fully achieved and instead a limit cycle
is predicted [Figs. 5(e) and 5(f), 1att = 2.1]. We still call this a partial
success. When reconstructing the dynamic behavior of a completely
unknown dynamical system, the information that there might be
an object of interest in a particular phase space region is still valu-
able information. The reservoir can at least predict the existence of
some attracting structure despite failing to predict the torus. Simi-
larly, we can sometimes observe cases where a torus or limit cycle is
predicted with slightly distorted shape. Furthermore, this limit cycle
roughly follows the outline of the torus, indicating that it correctly
reflects some truth about the underlying phase space. It might also
be possible that this limit cycle exists in the original system but is
only slightly unstable.

In contrast, the inference of the chaotic region fails for Figs. 5(c)
and 5(d) with 1att = 1.5. The reservoir does not even detect the exis-
tence of an attracting structure and converges to the same attractor
as Figs. 5(e) and 5(f). In this case, there is no obvious trace in the
reconstructed reservoir time series about this symmetrical chaotic
region.

In general, we observe that the behavior in cases of such partial
successes and failures exhibits a broad range of types. It ranges from
underestimating the width of a torus over simplifications of attrac-
tor shapes to predicting the entirely wrong class of attractor, e.g., a
limit cycle in place of the torus. Furthermore, the quality of repro-
duction of one of the unseen attractors does not directly translate to
the quality of the other.

For now, we have no method for preventing this kind of failure.
If a method could be devised that can judge the quality of inferred
attractors, one could use this to discriminate between successful and
failing reservoirs. One potential avenue is a scenario for which one
does know two attractors of the target system: In this case, one can
use one of them as a training dataset and the other as an independent

FIG. 5. Partial inference success and failure for a = 6.0 and b = 0.1. The two
columns show two projections of the four-dimensional system. The original sys-
tem has three attractors (black dots): a pair of symmetric chaotic regions (a)–(d)
and a torus (e) and (f). A reservoir computer in the autonomous mode is used
to reproduce these attractors (red points). Training is done only on the positive-u
chaotic region (a) and (b). The existence and shape of the other chaotic attractor
(c) and (d) is not correctly inferred by the reservoir, despite success on the train-
ing data and instead of the torus (e) and (f) a limit cycle is predicted. G = 0.01,
b = 0.1, η = 1 × 10−5, Re(λ)max = 0.99, θ = 7.5. (a) and (b) 1att = 4.5
× 10−2, (c) and (d) 1att = 1.4, (e) and (f) 1att = 2.1.

test. For systems with only a single training dataset, independent
error estimation remains an open question for now.

A final open question regards the role of noise in the training
data: minute details of the phase space flow that might be impor-
tant for long range inference are washed out by the noise. We,
therefore, tried to reduce the noise as much as possible. However,
a certain level of noise is necessary for our scheme to succeed. Sys-
tematically investigating the relationship between necessary noise
levels (as compared to computational noise levels), training series
length, inference distance, and regularization strength is an interest-
ing challenge for future work to give insights into these important
aspects.

IV. DISCUSSION

We report the successful use of an autonomously operated
reservoir computer for attractor reconstruction. This includes the
reconstruction of not only the training attractor but also the
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attractors that the system never sees during training. Moreover, we
perform training using only a single noisy trajectory. This demon-
strates that reservoir computers are powerful tools for model-free
system analysis and attractor prediction, as there are no assumptions
put into the reservoir about the target system.

We show how the system is able to correctly predict the exis-
tence and shape of a pair of symmetric intertwined complex limit
cycles and a torus in a four-dimensional extension of the Lorenz sys-
tem. We then explore more difficult scenarios involving two chaotic
regions and a torus. For this problem, we obtain partial success.
Even for cases when we cannot find reservoirs that fully succeeded in
attractor inference, some useful partial information is still extracted
such as the approximate location of an attractor or just the existence
of “some kind” of attractor.

Several open questions remain to further develop this
approach. First, and foremost, the fraction of randomly generated
reservoirs that fail is quite high. For non-optimized parameters, it
can be more than 95%. Even for optimized networks, the percentage
remains high. For the parameters used in Fig. 2, about 1500 out of
2000 randomly generated reservoirs cannot predict the existence of
the symmetric limit cycle solution. The reservoir might simply fail
to predict any kind of other attractor in the system. Some failures
are detectable even if nothing else is known about the target system.
Some failures, however, produce plausibly looking but false recon-
structions. Finding methods for quality control of the reproduced
attractors remains an open problem.

The inference errors are higher in the second investigated case
involving two chaotic regions and a torus. Here, we observe much
larger deviations 1i on average. Out of 2000 simulations differing
only in their random topology, only 251 did not exceed 1i > 2 in
at least one metric. Over 1300 even had a deviation of 1i ≥ 100
in at least one variable, indicating that the trajectory failed to con-
verge. We speculate that this is due to larger separation in phase
space of the attractors as well as the larger difference in time scales of
the involved oscillations. The widely separated time scales might be
better tackled and the prediction errors are alleviated by using dif-
ferent reservoirs adapted to the different time scales. This remains a
question for future studies.

Another remaining question concerns the full understanding of
the role of noise.14 In our scheme, noise in the source system helps
us to explore all directions in the phase space and enables the system
training to succeed. However, noise also results in the destruction of
fine details. Finding the best trade-off between noise and accuracy
remains a future challenge, which will give important hints as to the
kind of information the reservoir is exploiting when inferring the
existence of unseen attractors. Conversely, it will be fruitful to study
how to achieve improved training on noise-free data or data with
minimal noise.

We speculate that the Ridge regression parameter likely plays a
crucial role. It controls how much importance the reservoir assigns
to small differences in the training data and to what extent it tries
to reproduce those. In fact, the Ridge regression parameter might
control the “model complexity;” training with strong regularization
should lead to simpler models, while training with weak regular-
ization allows for more complexity but is also more susceptible to
over-fitting. This also relates to the influence of finite precision and
its role in attractor inference.

Taking a broader view, the reservoir has to perform its task
based on a finite amount of noisy data. Thus, the amount of infor-
mation that can be extracted about “unseen parts” of the phase
space should also have some fundamental limit. We expect that a
more complex target dynamical system will also require a longer
training sequence for a reservoir to be able to emulate it. Ques-
tions about the relationship of data length, target system complexity,
and related fundamental limits will give further insights into how
close an “optimal” prediction can be made by a particular reservoir
computer.

Furthermore, in a real-world scenario, a way to fully explore the
phase space without the need of initial transients from other regions
is vital. We suspect that a rough initialization with artificial data such
as constant values is possible but have not tested this proposition.

With the examples shown in our work, we provide a proof-of-
principle what can be achieved. A reservoir computer can definitely
infer the existence of unseen attractors with varying degrees of suc-
cess. As such, this further proves their suitability as model-free
substitutes for a target system.
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APPENDIX A: CONSTRUCTION OF THE RANDOM

ECHO STATE NETWORK

The echo state networks used in this work always consists of
N = 300 real-valued nodes, whose vectorial state X evolves accord-
ing to

Ẋ = −X + tanh (WresX + GWinu(t) + B). (A1)

The real-valued reservoir weight matrix Wres, input weight matrix
Win, and bias vector B are random but fixed and initialized as fol-
lows. The bias vector B consists of N = 300 uniformly distributed
random numbers in [−b, b]. Win is a 300 × 4 dimensional matrix
for our system. Each of the N = 300 rows has only a single non-zero
entry, whose column is randomly chosen with equal probabilities.
The real-valued entry itself is drawn from a uniform random distri-
bution in [−1, 1] for each row. The strength of the input weights is
globally controlled via parameter G.

Finally, the reservoir weight matrix Wres is a sparse matrix with
sparsity ρ. We used ρ = 0.1 in all presented simulations. Larger
ρ were tried but did not yield any immediately noticeable differ-
ences, and as sparse matrices are faster to simulate, we chose the
smallest acceptable ρ. The non-zero values are initially distributed in
[−1, 1]. After creation, we calculate the largest real part of the eigen-
values Re(3)max of the resulting matrix Wsparse. We then divide the
entire matrix and multiply by a margin factor such that the resulting
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reservoir weight matrix Wres possesses a maximal real part of any
eigenvalue with Re(λ)max that are related through

Wres = Re(λ)max

Wsparse

Re(3)max

. (A2)

In our simulations, Re(λ)max is either 0.95 or 0.99, depending on
what is found to be better.

APPENDIX B: NUMERICAL INTEGRATION OF THE

TARGET SYSTEM

The four-dimensional extension of the Lorenz system (4)–(7)
as proposed by Li and Sprott18 is numerically integrated using
an Euler–Maruyama integration scheme written in C++. A high-
fidelity time series is created with an integration step of h = 10−3.
From this, we sample the input time series of the reservoir computer
every 300 steps for the first parameter regime (a = 2.0, b = 0.8), and
every 200 steps for the second parameter region (a = 6.0, b = 0.1).
The parameter h has no connection to θ , which is a reservoir com-
puter parameter, whereas here we are solely concerned with the
source time series preparation. This corresponds roughly to taking
15 points per fast oscillation. Slower oscillations are sampled much
more, with up to 500 points in the torus or chaotic regions.

To reach the two limit cycles for a = 2.0, b = 0.8, we start the
time series at (±5, ±1, 1 ± 1). To reach the torus solution, we start at
(4, 1, −1, 1). To reach the two chaotic attractors for a = 6.0, b = 0.1,
the state is initialized at (0, ∓4, 0, ±5); the torus was reached from
(1, −1, 1, −1). We created both trajectories with and without noise.
The noise terms ξi in (4)–(7) are drawn from a pseudo-random stan-
dard Gaussian distribution with mean zero and unit variance. The
noise terms in different variables are uncorrelated. For the trajecto-
ries with noise, the standard deviation of the noise in the numerical
integration is set to 0.2; with a time step of h = 10−3 this implies

that the noise strength σ in (4)–(7) is 0.2/
√

10−3 ≈ 6 × 10−3. The
final sampled time series uk has length 11 000, of which we use 1000
points for washout, 9999 points for training, and 1 point as reserve
to have the future target.

APPENDIX C: RESERVOIR COMPUTING TECHNICAL

DETAILS

We integrate (1) with a fourth order Runge–Kutta integrator.
The state of all nodes Xn ∈ R is initialized as 0 in each element. The
integration time step is 0.1. We let the echo state network evolve
without input for 300 time units or 3000 steps, and then switch to the
“warmup” or “washout” procedure with input. The input sequence
uk is fed as a piece-wise constant function u(t) ∈ R

4 with interval
lengths θ . We use an interval length of θ = 2.5 found through meta-
parameter scans, albeit the exact length does not critically influence
the performance. Each component of u(t) corresponds to one of the
four variables of the Li–Sprott variant of the Lorenz system (4)–(7).

We use the first 1000 points encoded in u(t) to remove any
influence of the starting state, i.e., Tw = 2500. After that, we start
recording the system state for 104 inputs, i.e., 25 000 time units, in
accordance to (2), i.e., every θ time units the state of all 300 nodes is
recorded. We always use the last integration point in each piece-wise
constant interval of u(t) to record the maximally large reaction to the

input. We obtain a state matrix S with 9999 rows and N + 1 = 301
columns.

We create a target vector Y with 9999 rows and four columns.
Each column contains one variable of the input uk shifted one step
into the future. Because both input and output are four-dimensional,
the output weight matrix Wout is of size (N + 1) × 4. We then
solve the following equation for Wout using the solve-function of the
armadillo C++ wrapper21 of the Open-BLAS linear algebra package:

STY = (STS + ηIN+1)Wout, (C1)

where η is the regularization factor of the Tikhonov regularization
and IN+1 is the identity matrix of appropriate size N + 1. ST is the
transpose of the state matrix.

1. Autonomous operation

For the autonomous operation, we use the output weights Wout

learned during training. First, we reset the system state X to the point
it was after the first 300 time units of input-free evolution. We then
feed the first 1000 ground-truth points of a noise-free transient uk

leading to one of the three target attractors.
We observe the system state X at the end of this washout-period

and construct state vector Si(X) ∈ R
301 that looks like recording the

row of a state matrix (2). But instead of saving its entries, we directly
multiply with Wout, which yields four values corresponding to the
four dimensions of the predicted output stream. We treat these four
values as the next element of a self-generating input sequence ũk

and keep track of ũk. With the new response X generated, we repeat
the process for 10 000 steps. The series ũk then is the reconstructed
attractor as inferred or learned by the echo state network.
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