Parallel G-quadruplexes, small nanostructures

with enhanced cellular uptake properties

A. Clua^{1,2}, S. Grijalvo^{1,2}, C. Fàbrega^{1,2}, A. Aviñó^{1,2}, N. Erande³, R. Gargallo⁴, S. Mazzini⁵, M. Manoharan³, R. Eritja^{1,2*}.
¹IQAC-CSIC, ²CIBER-BBN, ³Alnylam, ⁴U. Barcelona, ⁵DEFENS, U. Milan

Nucleic acid Therapies(CSHL, virtual)

March 24-26, 2021

G-quadruplex

Balasubramanian et al. Nat. Rev. Mol. Cell. Biol. 2017, 18, 279

Single-stranded guanine rich DNA can fold into stable intra- and intermolecular four-stranded structures G4s arise from Hoogsteen hydrogen bonding of four guanines that are arranged within a planar quartet (Gquartet)

Self-stacking of two or more Gquartests affords a G4 structures which is further stabilized by monovalent cations ($K^+ > Na^+ > NH_4^+ > Li^+$)

G4 formation has been observed in synthetic ODNs derived from the human genome (gene promoters and telomers)

Applications may range from supramolecular chemistry to medicinal chemistry

Aptamer 93del is positioned into the channel formed by the HIV-IN tetramer to block the HIV1-IN catalytic site

Chou; S-H. et al. TRENDS in Biochem. Sci. 2005, 30, 231-234

Hotoda, H. *et al. J. Med. Chem.* **1998**, *41*, 3655-3663 Di Fabio, G. *et al. Chem. Commun.* **2011**, *47*, 2363-2365 D'Onofrio, J. *et al. Bioconjug. Chem.* **2008**, *19*, 607-616

Koutsoudakis et al, Antimicr. Agents Chemother., 2017, 61, e02354-16-

Antiproliferative G-quadruplexes

AS1411 (AGRO100) aptamer (binding to nucleolin), cytotoxic, exceptional internalization

Mechanism of action unclear. Anti-HIV. Potential toxicity by GMP formation

Bates P.B. et al. *Biochimica et Biophysica Acta*, **2017**, 1861, 1414-1428. Perone et al. *Int. J Antimicrob Agents*, **2016**, 47, 311-316. Métifiot M. et al. *Biochim*ie, **2015**, 118, 173–175. Zhang et al. *Chem Sci*, **2015**, 6, 3831-3838

Aim: Parallel G-quadruplexes to enhance cellular uptake

Cargo: Therapeutic Oligonucleotides: Antisense, FdU oligomers

Delivery Enhancer: Lipid, peptide, GalNAc

Simple self-assembly process: Tetramerization of single stranded oligonucleotides

Potential advantages /disadvantages

Pro's

- Simplicity. The smaller nanostructure accesible by tetramerization of a single oligonucleotide
- Easy to make although tetramerization is a slow process
- Two ends for functionalization
- Tetramerization allows 4 ligands in one end without branching
- Existence of proteins with affinity to G-quadruplex specially in tumor cells

Contra's

- Dissociation is slow but can happen by dilution
- Potential toxicity to cells by production dGMP
- Not compatible with the presence of C's as duplexes are more stable

Parallel G-quadruplex structures increase cellular uptake and cytotoxicity of 5-fluoro-2'-deoxyuridine

Control sequence TTTTTTTT

Parallel G-quadruplex structures increase cellular uptake and cytotoxicity of 5-fluoro-2'-deoxyuridine

Clua A. et al. *Molecules* **2021**, 26, 1741

FU resistant colorectal cancer cell lines

MTT results

Cell death induction

HCC2998

A

HTB-38

B

С

Conclusions

- Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells.
- These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.

