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Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermal-
ization, which determine the mechanisms of spread and processing of information. Here we address the
impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm
recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal
tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir
computing and report an increased performance at the thermalization transition for the studied tasks.
Uncovering the underlying physical mechanisms behind optimal information processing capabilities of
spin networks is essential for future experimental implementations and provides a new perspective on
dynamical phases.
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Introduction.—Unconventional computing is an inter-
disciplinary branch of science that aims to uncover new
computing and information processing mechanisms in
physical, chemical, and biological systems [1]. In this
field, the challenge is to develop a device theory guarantee-
ing that a given system, used as an analog computer, is able
to accomplish a computational task. When it comes to
solving temporal tasks, a natural “computer” is represented
by a system exhibiting rich dynamical properties. An
example of such an approach can be found in reservoir
computing (RC), an unconventional framework belonging
to the broad family of machine learning, derived from
recurrent neural networks [2–4] but with the major advan-
tage of low training cost and fast learning. RC is also
especially suited for hardware implementations [5–8].
For big-data processing, an exceptional playground where

a rich dynamics can be exploited is certainly provided
by quantum systems, whose exponentially large number
of degrees of freedom pushes them toward computational
limits that are not achievable by classical systems [9]. This is
the potential envisaged in quantum reservoir computing
(QRC) [10,11], as recently explored in spin-based imple-
mentations [10,12–15], continuous-variable bosonic systems
[16–19], and fermionic setups [20]. Efforts to demonstrate
proof-of-principle QRC physical experiments are ongoing
[21,22]. Although all the previous works provide examples
of functioning quantum reservoir computers, the fundamen-
tal issue raised at the beginning remains open: what
conditions must a physical system fulfill to be a good
quantum reservoir computer? The aim of this Letter is to
establish the relation between the operation regime of
complex computing systems and the performance of QRC.
Networks of interacting spins enable complex dynam-

ics providing a source of memory needed for temporal

tasks in QRC. The time evolution of these systems and
the conditions for thermalization have been recently
debated in the context of statistical physics. Indeed
isolated quantum many-body systems can display ther-
malization in local observables, as explained by the
eigenstate thermalization hypothesis, which can be seen
as the manifestation of ergodicity in quantum mechanics
[23–25]. A remarkable case of a dynamical regime in
which this hypothesis is violated is many-body localiza-
tion (MBL), where strong disorder causes the emergence
of an extensive number of local integrals of motion that
break down the thermalization hypothesis [26]. Indeed,
such conserved quantities make local observables retain
memory of their initial states. Transitions between locali-
zation and thermalization manifest in a critical change of a
time-averaged order parameter and are referred to as
dynamical phase transitions [26,27].
The different physical mechanisms underlying the

presence or the absence of thermalization deeply influence
the computational capabilities of the different dynamical
phases. For instance, systems presenting MBL can pro-
vide quantum memories at finite temperature [28] and
avoid overheating in Floquet systems [29,30]. In quantum
machine learning, MBL can improve the trainability of
parametrized quantum Ising chains [31]. Contrariwise,
localization can be computationally detrimental in
quantum annealing [32,33] or quantum random walk
algorithms [34,35]. Our work establishes that optimal
information processing capabilities in QRC not only are
favored in the ergodic phase but also that the onset of this
regime can be particularly advantageous. We uncover the
underlying physical mechanisms favoring machine learn-
ing and also provide a new computing perspective on
dynamical phases.
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Reservoir layer and dynamical phases.—We choose as a
reservoir a spin network described by the transverse-field
Ising Hamiltonian plus on site disorder:

H ¼
XN
i>j¼1

Jijσxi σ
x
j þ

1

2

XN
i¼1

ðhþDiÞσzi ; ð1Þ

where N is the spin number (from now on we will fix
N ¼ 10), h is the magnetic field, Di is the on site disorder,
σai (a ¼ x, y, z) are the Pauli matrices, and Jij are the
spin-spin couplings, randomly selected from a uniform
distribution in the interval ½−Js=2; Js=2� as is often done
in QRC [10,12,13]. Di will be also randomly drawn from
the uniform distribution ½−W;W�, where W is the disorder
strength. For convenience, all the parameters will be
expressed in units of Js.
To characterize the dynamical phases of Eq. (1), we use

as usual the ratio of adjacent gaps rn ¼ min½δnþ1; δn�=
max½δnþ1; δn�, where the gaps are δn ≡ En − En−1, and
fEng is the sorted list in ascending order of the Hamiltonian
eigenvalues [36]. We compute the eigenvalues via exact
diagonalization limited to one symmetry sector, as the
model possesses a parity (Z2) symmetry [37]. In the
localized phase, the level spacing is expected to display
a Poisson distribution with hri ≃ 0.386, while in the
ergodic phase, according to the random matrix theory,
hri ≃ 0.535 [48].
The full dynamical phase diagram of Eq. (1) depending

on magnetic field strength and disorder is shown in Fig. 1,
displaying four different regions: two localization areas
(regions I and III, black) and two ergodicity areas
(regions II and IV, bright yellow). The localized regime
in I corresponds to an MBL paramagnetic phase where
the eigenvalue statistics is Poissonian, while region III

corresponds to a spin-glass phase, where the eigenvalue
statistics is also Poissonian, but it presents a mobility
edge [49]. These regimes have been described in different
models as for the transitions III-IV [49–51], IV-I [52,53], or
between different localization phases I-II-III [28,54,55].
While such transitions are strictly found in the thermody-
namic limit [56,57], signatures are already evident for
finite-size systems.
Quantum reservoir dynamics.—The QRC algorithm can

be divided into three steps associated with the relative
system layers: (i) feed an input into the dynamical system;
(ii) let the reservoir, i.e. the spin network (1), evolve; and
(iii) extract information from the reservoir, using all or
some of its degrees of freedom via an output layer [4].
Let us assume that our input is given by a sequence
fs0; s1;…; sk;…g that is injected into the same spin
(named qubit 1 for convenience) every time step k [10].

This spin state is updated every Δt as follows: ρðkÞ1 ¼
jψ skihψ sk j, where jψ ski ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − sk

p j0i þ ffiffiffiffi
sk

p j1i, with
sk ∈ ½0; 1�. The completely positive, trace-preserving
map summarizing the input encoding and information
processing is

ρðkΔtÞ ¼ e−iHΔtρðkÞ1 ⊗ Tr1fρ½ðk − 1ÞΔt�geiHΔt; ð2Þ

where e−iHΔt is the operator of the unitary dynamics and
Tr1f·g denotes the partial trace performed over the first
qubit. The output layer will be built using some of the
observables of the system such as the projections hσzi i of
each spin over the z axis or the spin correlations hσziσzji
(Sec. V in Supplemental Material [37]).
The spin network response to the input injection through

the dynamics of the observables hσzi i provides insightful
evidence as shown in Fig. 2. The evolution of the
observables in Fig. 2(a) corresponds to the ergodic region
(IV in Fig. 1). Colored lines represent the different spins,
the input qubit being the blue line. This plot displays that
all spin observables are driven to an input-dependent

FIG. 1. Heat map of hri for different values of the magnetic
field h and the disorder strength W in units of Js. Results are
averaged over 1200 realizations.

FIG. 2. Dynamics of observables hσzi i with a binary input
(sk ¼ f0; 1g). Parameters are (a) W ¼ 0, and h=Js ¼ 10;
(b) W=Js ¼ 10 and h=Js ¼ 1. We use JsΔt ¼ 10 here and in
all of the next figures. Input is fed to the first spin (blue line), and
the rest of the lines correspond to the other spins. The initial
condition is a random density matrix in both (a) and (b).
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stationary state within each Δt. The explanation behind this
behavior is based on the role of the conserved quantities of
the system. In the ergodic regions, total energy hHi and
parity hPi ¼ hQN

i σzi i are the only conserved quantities,
and both of them are delocalized. As detailed in Sec. II of
the Supplemental Material [37], their values after the kth
input injection [hHðkΔtÞi and hPðkΔtÞi] only depend on
the initial condition of the system ρ0 and the input history
up to sk. Then, provided that the unitary dynamics is
applied during a time Δt allowing for the eigenstate
thermalization, all local observables, like hσzi i in Fig. 2(a),
only depend on hHðkΔtÞi and hPðkΔtÞi up to finite-size
fluctuations [26]. Therefore, output observables become
functions of the input history through hHi and hPi, as for
the driven dynamics of Fig. 2(a). We anticipate that
resetting the first spin state with the input protocol defined
above implies a partial information erasure. Repeating this
operation several times amounts to losing all trace of the
initial conditions as for the convergence property addressed
in the following.
Figure 2(b) corresponds to the transition from ergodic

to MBL (regions IV and I, respectively) and displays a
significant change of the system response with respect to
the previous ergodic case. The observables now show little
correlation with respect to the dynamics of the first spin
(blue line). This behavior becomes more evident deep in the
localized regimes, where none of the hσzi i are driven by the
input, being instead determined by the initial condition
[[37], e.g., in the Supplemental Material, Fig. S2(d)]. The
physical reason is that the presence of an extensive number
of local conserved quantities hinders the information
transport across the network. As a prominent effect of
MBL, only those conserved quantities involving the first
spin are modified by the input, while all the others keep
memory of their initial conditions.
Convergence.—A fundamental property a system must

exhibit to serve as RC is the convergence or echo state
property [2]. This means that, after repeated input injection,
the reservoir forgets its initial condition. This is closely
related to the so-called fading memory, which is the ability
of the output variables to only depend on the recent history
of the input sequence [58]. The convergence property is
captured by the distance between two different reservoir
states after several (here 200) input injections through the
protocol in Eq. (2). The initial conditions considered are
two random density matrices with a typical distance around
jjρA − ρBjj ∼ 0.044 measured using the Frobenius norm,
defined as jjAjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA†AÞ

p
[37]. Convergence as a

function of h and W is shown in Fig. 3 and exhibits an
insightful correspondence with the phase diagram in Fig. 1.
Indeed, the convergence property is enhanced in the
ergodic phase enabling then the realization of QRC with
the spin reservoir in this regime. The influence of different
initial conditions persists in the localized phases, which
hinders the QRC performance as it will be shown later.

Even if the map (2) is contractive due to the partial trace,
the local conserved quantities make the contractiveness of
this dynamical map much weaker than in the ergodic phase.
Indeed, in the MBL phase the creation of entanglement
between the first qubit and the rest of the network is very
weak, as it only grows logarithmically in time [26]. This
provides a different focus of dynamical phases, in terms of
their response to external perturbations.
RC performance.—While convergence can be seen as a

necessary condition to identify suitable RC systems, a
characterization of the information processing capabilities
of the spin network is needed in order to determine if the
reservoir computer can accomplish a given task. A con-
venient known advantage of RC is that the output layer is
the only one that needs to be trained, by optimizing a linear
combination of the responses of the reservoir to the task at
hand [4]. Given the set of observables xk chosen as output,
we write the output layer as yk ¼ w⊤xk, where w are the
weights that are adapted by minimizing the error with
respect to a target function ȳk. Training of the output
weights w is usually done using a linear regression [4,37].
To evaluate the reservoir performance, we will consider

two different specific tasks as well as a more general
indicator for the processing capacity [59]. Let us start with
the nonlinear autoregressive moving average (NARMA)
model, which is widely used to characterize recurrent neural
networks [60]. The general NARMAn task is defined as

ȳk ¼ 0.3ȳk−1 þ 0.05ȳk−1

�Xn
j¼1

ȳk−j

�
þ 1.5sk−nsk−1 þ 0.1;

ð3Þ

FIG. 3. Convergence of the system for two different (random)
initial conditions after 200 inputs. Distance values are averaged
over 600 realizations, and those below the threshold of 10−8 are
kept to this minimum value for clarity. The white-dashed line
corresponds to an intermediate value of hri ¼ 0.46 in Fig. 1, used
to guide the eye.
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where n is the maximum delay, ȳk is the target, and sk is a
random input uniformly distributed, as detailed in Sec. VI of
the Supplemental Material [37]. For this task, the quantum
reservoir computer needs to learn to emulate Eq. (3) from the
random input sk, i.e., to reproduce a quadratic nonlinear
function of the input sequence up to a maximum fixed delay.
We fix the maximum delay of Eq. (3) to n ¼ 10. In order to
address performance both in nonlinear and linear temporal
tasks, we also evaluate the linear temporal task ȳk ¼ sk−τ
fixing τ ¼ 10. The value 10 in both tasks sets the target
memory: indeed the reservoir needs a memory of at least
ten past inputs at each time step k to solve them. The
performance of the spin network for each task can be
measured as C ¼ cov2ðȳ; yÞ=½σ2ðyÞσ2ðȳÞ� where cov is
the covariance, σ2 is the variance, and y and ȳ are the time
series of prediction and target, respectively. The performance
C is bounded between 0 (target not approximated; the
system is useless for this task) and 1 (perfect match between
prediction and target).
In this Letter, we benefit from the high dimensionality

of the Hilbert phase space of the quantum reservoir by
considering an output layer of O ¼ 75 observables (going
beyond classical RC with one-body observables): all the
local spin projections hσxji, hσyji and hσzji (1 ≤ j ≤ N), plus
the two-spin correlations along the z axis hσziσzji (1 ≤ i,
j ≤ N, i ≠ j). The measurement of these observables is
experimentally feasible (Sec. V in Supplemental Material
[37]). Figure 4 displays the figure of merit C for the
performance of the spin-based reservoir in the NARMA10
and linear memory tasks. In Fig. 4(a), we plot C versus h
keeping W ¼ 0, while in Fig. 4(b) we fix h=Js ¼ 10 and
vary W, in order to detect the change in performance at the
transition between different dynamical phases. Localized
regimes (regions I and III) show the smallest values of C:
the ability to reproduce the target is poor due to their slow
convergence properties and actually can be influenced both
by the initial elapsed time and the specific choice of initial
conditions for the reservoir. In contrast, the ergodic regime
(region IV) shows a higher performance achieved rapidly
and independently of the reservoir initial state.
Interestingly, in both plots C shows a peak at the

transitions between ergodic and localized phases. To show
the generality of our results beyond specific tasks and to
shed light on the possible performance enhancement at the
phase transition, we evaluate [37] the information process-
ing capacity (IPC) [59]. We find that the linear memory
builds up first as we move away from the localized phase
into the ergodic one. Deep into the ergodic region, non-
linear memory dominates. This trade-off between linear
and nonlinear memory brings the performance enhance-
ment at the transition for the NARMA10 task. Although the
IPC results indicate that one could find nonlinear tasks
where the optimal working point is found in the ergodic
region and not at the transition, it is often the case that RC
tasks precisely require a combination of linear memory and

nonlinearity, as often reported at the edge of stability
between different dynamical regimes [61].
Conclusions.—High performance in QRC can be

achieved thanks to the large dimensionality of the
Hilbert space. Still, the performance of a system to be
used as a quantum reservoir computer crucially depends
on its operation regime. We showed in this Letter that
localization, because of the presence of local conserved
quantities, is detrimental for an optimal information
processing performance due to a slow convergence [62].
We demonstrate this in specific tasks as well as in the
quantification of the reservoir memory through the IPC. In
contrast, the ergodic phase offers a suitable scenario for the
convergence property and facilitates efficient information
extraction. Different tasks can be solved by exploiting the
trade-off between linear and nonlinear memory at the phase
transition, and actually the onset of thermalization can be
particularly advantageous for QRC, a feature reminiscent
of the performance enhancement found in classical RC at
the edge of stability [61]. Our QRC study offers an original
perspective on thermal and localized phases in terms of
their ability to process information and can be further
explored in the context of quantum correlations, informa-
tion scrambling, out-of-time-order correlators [63], and the
transient real-time evolution of Loschmidt echoes [27,64].

FIG. 4. Performance covariance C for the NARMA10 and
linear memory τ ¼ 10 tasks versus h (a) and W (b). We took
W ¼ 0 for (a) and h=Js ¼ 10 for (b). We represent the average
value of C over 100 realizations of the random network
with a solid line, while the shadows represent the standard
deviation. The gray-dashed line corresponds to the intermediate
value hri ¼ 0.46 in Fig. 1, used to guide the eye. The initial
condition for all the realizations is the maximal coherent state
ρ0 ¼ ð1=2NÞP jiihjj.
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Furthermore, our results define the proper conditions
for experimental implementations of QRC. We showed
the importance of tuning the reservoir at the onset of
thermalization, which can be easily achieved by control-
ling the (average) strength of the magnetic field. Another
relevant issue concerns the network topology. It is already
accepted that random connections are necessary for an
optimal performance, avoiding redundancies between
different degrees of freedom. But it is not enough. We
show that even those topologies with disorder leading to
an extensive number of conserved quantities are not
suited for RC. Strategies for online data processing
addressing quantum measurement [22,65] need to be
further explored [37]. The first experiments involve
ensemble computing, obtained by taking many copies
of the reservoir [21], or rely on the use of nondemolition
measurements [22]. Several platforms, ranging from
trapped-ion quantum simulators [53,66,67], to optical
lattices [68,69] to superconducting circuits [70,71], or
photonic simulators [72,73] are mature to establish the
potential of QRC toward applications, both for classical
and quantum time series processing [11].
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