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Adsorption of a diatomic molecular fluid into random porous media
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Structural and thermodynamic properties of a homonuclear hard dumbbell fluid adsorbed into a disordered
hard sphere matrix are studied by means of integral equation techniques and computer simulation. In particular,
we have rewritten the replica Ornstein-Zernike equations to deal with orientational degrees of freedom and we
have solved them in two different approaches: the hypernetted chain equation and a semiempirical extension of
Verlet’s approximation. We have also derived direct expressions to calculate the chemical potential in these
approximations. Comparison with grand canonical Monte Carlo results shows that both theoretical treatments
describe adequately the physical behavior of the system, Verlet’s approach being, however, clearly superior in
accordance with previous findings for equilibrated hard core mixtures.
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I. INTRODUCTION

The behavior of a fluid confined in a porous material h
been since long a problem of interest both from the theo
ical and experimental standpoint. In particular, the phase
gram of confined fluids can present peculiarities due to
effects of the disorder, the finite pore size and pore geome
and obviously adsorption phenomena will also play a sign
cant role in the physics of these systems. Phase separa
wetting transitions, and the shift in the location of the pha
boundaries are key aspects to be considered.

A variety of experiments have been carried out to stu
these phenomena using different techniques. For insta
the phase transitions in CO2 confined in Vycor glass@1#, or
the capillary condensation of N2 in the same substrate@2#
have been successfully studied through positron/positron
annihilation. Recently, adsorbed N2 has also been used as
probe to determine the pore structure of highly ordered
rous materials@3#. The samples of these materials exhibi
narrow pore size distribution, but the determination of t
pore geometry and size and the pore wall thickness are
markably difficult problems. It has been shown that the u
of nitrogen as an adsorption probe combined with x-ray d
fraction provides relevant information for the structural ch
acterization of these type of materials.

From a statistical mechanical standpoint, the probl
posed by the adsorption of a fluid into a disordered matrix
equivalently a gas inclusion in a quenched random subst
can be mapped onto that of a general quenched-anne
mixture, a multicomponent system in which one of its co
stituents has its translational degrees-of-freedom frozen
this connection, the pioneering work of Madden and Gla
@4# and the theoretically sound reformulation made by Giv
and Stell@5#, set a firm basis from which these problems c
be tackled with the standard tools of equilibrium statisti
mechanics. Following Given and Stell@5#, it is possible to
make use of Edward’s replica trick@6#, and thus transform
our non-equilibrium mixture into a fully annealed multicom
ponent system, in which, together with the matrix particl
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one hasn noninteracting replicas of the fluid. This equiva
lence is only fulfilled in the limit of vanishing number o
replicas, i.e., n→0. It is then possible to write down
Ornstein-Zernike equations for this new annea
(n11)-component system and, once the limitn→0 is taken,
a new set of equations denoted by replica Ornstein-Zern
~ROZ! is obtained. Thus, ROZ equations coupled with a v
riety of closure relations constructed via similar procedur
will describe the correlation functions~and hence the ther
modynamics! of our quenched-annealed mixture. Simul
tions of quenched hard sphere matrices with hard sphere
ids adsorbed@7#, have shown that simple approximations lik
the hypernetted chain~HNC! and Percus-Yevick~PY! equa-
tions are already remarkably accurate. Recently, a more
phisticated closure implementing thermodynamic and str
tural consistencies—zero separation~ZSEP! closure—has
also been applied to the same system@8# obtaining more
accurate results and minimizing at the same time the inc
sistency problems of PY and HNC.

More realistic systems have also been considered u
soft potentials. Thus, for instance, through grand canon
simulations a system of repulsiven alkanes confined in a
porous medium was studied by Padilla and Vega@9#. Theo-
retically, Padillaet al. @10# also extended the ROZ equation
to associating fluids using Wertheim’s statistical associat
fluid theory @11# to calculate structural properties and th
adsorption isotherm of a dimerizing fluid inside a ha
sphere matrix. They solve the associative ROZ equation
the HNC and PY approximations that compare well w
grand canonical Monte Carlo~GCMC! simulations. Also
phase separations have been studied by means of GC
simulations by Page and Monson@12# and Alvarez,
Levesque, and Weis@13#. A theoretical approach devised b
Rosinberget al. @14# was also put to test in this type o
problems with relative success.

In this work we introduce an extension of ROZ equatio
to study the adsorption of a molecular fluid inside a poro
medium somewhat different in scope to the treatment of
dilla et al. @10#. Here we propose the treatment of the m
lecular fluid, in this case a homonuclear hard diatomic, us
©2001 The American Physical Society01-1
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the standard spherical harmonic expansion. This appro
has proved to be extremely successful in describing
structure of linear molecular fluids in the framework of t
molecular Ornstein-Zernike equation@15,16#. The extension
of the ROZ equations to molecular fluids is conceptua
straightforward and its practical implementation using
spherical harmonic technique will be seen to be rat
simple. The equations thus developed have been solved
two different closures, the HNC and an appropriate extens
of the Verlet’s modified~VM ! @17,18# approach.

As to thermodynamics, the calculation of the isotherm
compressibility is straightforward, and for the chemical p
tential we have derived direct formulas both in the HNC a
in the VM approximations. Other quantities would have
be evaluated using appropriate reformulations of the exp
sions proposed by Rosinberg and co-workers@14,19#, but
their explicit calculation is somewhat cumbersome and is
considered here. In this work, a variety of systems with d
ferent fluid and matrix densities and two different relati
fluid-matrix size ratios have been studied and both struct
and thermodynamic results have been compared with ex
sive GCMC simulation data. Our aim here is to investig
the ability of the molecular version of the ROZ equations
provide an adequate description of the adsorption beha
of a standard model molecular fluid, namely, the diatom
hard dumbbell. It will be shown how this approach furnish
a correct description of the structure and thermodynamic
this type of systems and in particular how the influence
the molecular shape can be elucidated from the results.

The rest of the paper is sketched as follows. In Se
II–IV, we introduce the ROZ equations for the present
stance, the corresponding closure relations and the exp
sions derived for the calculation of the thermodynamic pr
erties. Finally, in Sec. V, integral equation results a
presented and compared with simulation data. The most
nificant conclusions are also commented upon therein.

II. THE ROZ EQUATIONS FOR A MOLECULAR FLUID

As mentioned before, we have extended the ROZ eq
tions to the case of a molecular fluid adsorbed into a dis
dered atomic matrix. Following the replica method guid
lines@5#, one first considers a completely equilibrated syst
of s11 species. Nows of them are replicated molecula
species and the other remaining species is atomic. Then
Ornstein-Zernike equation for such a system reads

gab~r12,v1 ,v2!

5(
l

rlE cal~r13,v1 ,v3!@glb~r32,v3 ,v2!

1clb~r32,v3 ,v2!#dr3dv3 , ~1!

whererl is the number density of speciesl, andv i desig-
nates the orientation of particlei, cab is the direct correlation
function, andgab the indirect correlation function defined b
gab5gab212cab, with gab being the pair distribution
function between particles of typea and b. Hereafter, we
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will label the matrix particles by 0, the fluid particles by 1
and each of itss21 noninteracting replicas as 2.

To deal with the orientational degrees of freedom of t
molecular species, we make the usual spherical harm
expansion of the correlation functions. One explicitly has

f 00~r12!5 f 00~r 12!,

f 01~r12,v2!5A4p (
l 2 ,m

f 0 l 2 m
01 ~r 12!Yl 2m~v2!,

f 10~r12,v1 ,!5A4p (
l 1 ,m

f l 1 0 m
10 ~r 12!Yl 1m~v1!,

f 11~r12,v1 ,v2!

54p (
l 1 ,l 2 ,m

f l 1 l 2 m
11 ~r 12!Yl 1m~v1! Yl 2m̄~v2!,

f 12~r12,v1 ,v2!

54p (
l 1 ,l 2 ,m

f l 1 l 2 m
12 ~r 12!Yl 1m~v1! Yl 2m̄~v2!,

wheref is an arbitrary correlation function. As usual, we w
express our ROZ equations in Fourier space, denoting
transformed functions byf̃ . The OZ equation for the equili-
brateds11 mixture after the expansion of the correlatio
functions and the use of the orthogonality properties of
spherical harmonics, transforms into

g̃ l 1l 2m
ab ~k!5~21!m(

l
rl(

l 3
c̃l 1l 3m

al ~k!@ g̃ l 3l 2m
lb ~k!

1 c̃l 3l 2m
lb ~k!#. ~2!

This equation can be rewritten in matrix form defining t
elements@ F̃m

ab# l 1l 2
5 f̃ l 1l 2m

ab . Note that Eq.~2! is the general

OZ equation for a molecular mixture. Now, once the lim
s→0 is taken, one finally gets the ROZ equations for t
molecular fluid

h̃005 c̃001r0c̃00h̃00,

H̃m
105 S̃00G̃m C̃m

10,

H̃m
115 G̃m @C̃m

11G̃m1~21!mr0S̃00C̃m
10C̃m

01G̃m

2~21!mr1C̃m
c G̃mC̃m

c #,

H̃m
c 5C̃m

c 1~21!mr1G̃m ~C̃m
c !2, ~3!

where
1-2
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ADSORPTION OF A DIATOMIC MOLECULAR FLUID . . . PHYSICAL REVIEW E64 051501
G̃m5@ I2~21!mr1C̃m
c #21 ~4!

S̃00511r0h̃00 ~5!

The connected part of the correlation functions is defined
f c5 f 112 f 12. Obviously, the matrix-matrix equation is com
pletely decoupled and can be solved independently, while
remaining coupled equations have to be solved simu
neously in conjunction with their corresponding closure
lations.

III. THE CLOSURE RELATION

For the closure relation we have the usual expression

hab~12!5exp@2buab~12!1hab~12!2cab~12!

1bab~12!#21, ~6!

where (12)5(r12,v1 ,v2), bab(12) is the bridge function,
anduab(12) is the interaction potential between the spec
a and b. In our case, we will be dealing with hard sphe
matrix speciesu00(r 12)5uHS(r 12) and hard diatomic fluid,
u11(r12,v1 ,v2)5(stust

HS(r 12
st), where st denote the sitess

and t in particles 1 and 2, respectively. Similarly, we w
have a fluid-matrix interactionu10(r12,v1)5(sus

HS(r 12
s ) and

following the replica definitions,u1250. Note that the fluid-
fluid, fluid-matrix, and replica-replica terms in Eq.~6! have
to be expanded in spherical harmonics and consequently
has

hl 1 l 2 m
ab ~r 12!5^exp@2buab~12!1hab~12!2cab~12!

1bab~12!#u l 1l 2m&2d l 1l 2m,000, ~7!

where we use ^•••u l 1l 2m& to denote the projection
of the exponential onto the spherical harmon
Yl 1 m(v1)Yl 2 m̄(v2). For the bridge function, we have stud

ied two different approximations: HNC, for whichbab(r12)
50;a,b, and an extension for mixtures of hard spheres
the modified Verlet’s approach@20,21# made by Henderson
et al. @17#. The latter was already used with success by A
et al. @18# for a fully equilibrated mixture of hard sphere
and hard dumbbells. The bridge function in this approxim
tion has the form

bab~12!52
1

2

gab~12!2

11habgab~12!
. ~8!

The set of parametershab are calculated following Refs
@17,18# so thatbab(0) are exact at low densities. Using a
appropriate notation for our system
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hab5aabe2j10.820.45j ~9!

and

j5
p

6
r~x0d00

3 1x1d11
3 !, ~10!

a005
3

4pr~x0d00
3 1x1d01

3 !

3F2
16p2~x0d00

3 1x1d01
3 !2

9~x0
2C00012x0x1C0011x1

2C011!
21G ,

a115
3

4pr~x0d01
3 1x1d11

3 !

3F2
16p2~x0d01

3 1x1d11
3 !2

9~x0
2C00112x0x1C0111x1

2C111!
21G , ~11!

a015aii

where i designates the species of smallest size. In Eq.~11!
also

C00052
5p2

6
d00

6 ,

C00152
p2

18
~32d01

3 218d00d01
2 1d00

3 !d00
3 ,

C01152
p2

18
~32d01

3 218d11d01
2 1d11

3 !d11
3 ,

C11152
5p2

6
d11

6 , ~12!

wherer5r01r1 is the total number density,x0 andx1 are
the matrix and fluid mole fractions, respectively,d00 is the
hard sphere diameter, andd11 is the equivalent sphere diam
eter of the molecules

d11
3 5

1

2
da

3F ~11g3!1
3

2
L!~11g2!2L!31

3

16

~12g2!2

L! G ,

~13!

and here,g5db /da , db and da being the diameters of the
spheres forming the dumbbell, andL!5L/da , L being the
elongation of the molecule. Ford01 we have assumed add
tive diameters, i.e.,d015(d001d11)/2. The above expres
1-3



fo
.

ve

d
er
ic

fo
y
po

ix

e
o-
o

ten-
mic
ten-

rst
t
ys-
cal
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sions apply to a binary mixture and consequently account
the matrix-matrix, matrix-fluid, and fluid-fluid correlations
As to the replica-replica bridge function, in Ref.@8# it was
found that it is practically negligible. Consequently we ha
here assumedb1250.

IV. THERMODYNAMIC PROPERTIES

A full account of the thermodynamics of the quenche
annealed mixtures can be found in the work of Rosinb
et al. @14#. Here, we have focused on two thermodynam
properties of the fluid that can be evaluated in a straight
ward way in the framework of integral equation theor
namely, the isothermal compressibility and the chemical
tential.

1. Isothermal compressibility

The isothermal compressibility of a fluid inside a matr
is given by the expression

b
]P1

]r1
U

T

512r1E drdv1dv2cc~r ,v1 ,v2!, ~14!

where cc(r )5c11(r )2c12(r ) is the connected part of th
fluid-fluid direct correlation function. In the case of the m
lecular fluid, integration over the orientational degrees
freedom leads to

b
]P1

]r1
U

T

5124pr1Edrr 2c000
c ~r !. ~15!
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2. Chemical potential

Following Lee’s star function method@22#, we have de-
veloped a direct expression to calculate the chemical po
tial of the fluid that bypasses cumbersome thermodyna
integrations. It can be shown that the excess chemical po
tial of component 1 of a molecular mixture is given by@23#,

bm185(
n

rnE drdv1dv2Fg1n~r ,v1 ,v2!1b1n~r ,v1 ,v2!

2h1n~r ,v1 ,v2!1
1

2
h1n~r ,v1 ,v2!g1n~r ,v1 ,v2!

1h1n~r ,v1 ,v2!b1n~r ,v1 ,v2!G2S1n
! , ~16!

where the star seriesS! is given by@22#

S1n
! 5r1E dr

h1n~r ,v1 ,v2!

g1n~r ,v1 ,v2!
E

0

g1n

dg81nb1n~r ,v1 ,v2 ;g81n!.

~17!

Following again the steps of the replica method, we fi
consider an equilibrateds11 mixture and then take the limi
s→0 to obtain the expression for the partially quenched s
tem. After expanding the correlation functions in a spheri
harmonic basis, the final expression reads
bm185r0F2 c̃000
10 ~0!1

1

2E dr(
l 1

hl 100
10 g l 100

10 1
1

4pE drdv1b10~r ,v1!@h10~r ,v1!11#2
1

4pE drdv1

h10~r ,v1!

g10~r ,v1!

3E
0

g10

dg810b10@g810#G1r1F2 c̃000
11 ~0!1

1

2E dr (
l 1l 2m

hl 1l 2m
11 g l 1l 2m

11 1
1

~4p!2E drdv1dv2b11~r ,v1 ,v2!

3@h11~r ,v1 ,v2!11#2
1

~4p!2E drdv1dv2

h11~r ,v1 ,v2!

g11~r ,v1 ,v2!
E

0

g11

dg811b11@g811#G2r1F2 c̃000
12 ~0!1

1

2E dr

3 (
l 1l 2m

hl 1l 2m
12 g l 1l 2m

12 1
1

~4p!2E drdv1dv2b12~r ,v1 ,v2!@h12~r ,v1 ,v2!11#2
1

~4p!2E drdv1dv2

3
h12~r ,v1 ,v2!

g12~r ,v1 ,v2!
E

0

g12

dg812b12@g812#G , ~18!
1-4
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FIG. 1. Center-to-center fluid-fluid correlatio
functions with size ratio,d00/da53 and densities
r0da

350.0275 andr1da
350.1605. Simulation re-

sults are denoted by circles, and integral equat
data are represented by solid~VM ! and dashed
~HNC! curves.
a
ed
th

er

Eq.

the
t,
s-
where we have taken into account thatr25r1. This general
expression is now to be written for the particular approxim
tion used for the bridge function. Thus, when HNC is us
since the bridge function vanishes for all the interactions,
excess chemical potential expression is reduced to

bm185r0F2 c̃000
10 ~0!1

1

2E dr(
l 1

hl 100
10 g l 100

10 G
1r1F2 c̃000

11 ~0!1
1

2E dr (
l 1l 2m

hl 1l 2m
11 g l 1l 2m

11 G
2r1F2 c̃000

12 ~0!1
1

2E dr (
l 1l 2m

hl 1l 2m
12 g l 1l 2m

12 G .
~19!

In the VM approximation, the functional integration ov
g can be explicitly performed to give
05150
-
,
e

E
0

gab

dg8abb@g8ab;r #

52
1

4~hab!3
@~11habgab!224~11habgab!

12 log~11habgab!13#. ~20!

Additionally, the last two terms in Eq.~18! are to be
dropped when the replica-replica bridge function,b12, is ne-
glected.

From a numerical standpoint, one has to recall that in
~18! gab(r12,v1 ,v2) andhab(r12,v1 ,v2) have to be recon-
structed from the spherical harmonic expansion. Whereas
gab(r12,v1 ,v2) expansion is rapidly convergen
hab(r12,v1 ,v2) must be evaluated from the closure expre
-
.
the
u-
FIG. 2. Center-to-center fluid-fluid~left! and
fluid-matrix ~right! correlation functions for a
fixed matrix densityr0da

350.2 and three increas
ing fluid densities,r1da

350.1289,0.1847,0.2696
The size ratio here is 1. Solid curves represent
VM solutions, and the circles stand for the sim
lation data.
1-5
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FIG. 3. Center-to-center fluid-fluid~left! and
fluid-matrix ~right! correlation functions for a
fixed matrix densityr0da

350.025 and three in-
creasing fluid densities,r1da

350.0478,0.1276,
0.1824. The size ratio here is 3. Labels as
Fig. 2.
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-
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ma-
sions~6! and~8!. Finally, the full chemical potential,bm1 is
given by

bm15 logr11bm18 . ~21!

V. RESULTS AND CONCLUSIONS

The ROZ equations have been solved with the stand
procedure devised by Lado@15#, with r space discretized into
1024 points and a grid size ofDr 50.02da . The expansions
have been truncated at the coefficientsf 444. A variety of
fluid, matrix densities, and two different size ratios (d00/da
51 and d00/da53) have been studied in the HNC. VM
approximations and these results are compared with
GCMC simulation results. The elongation of the fluid pa
ticles has been set toL50.6da , a value characteristic o
molecules like Cl2 and Br2.

Typically a simulation run starts by selecting randomly
configuration of the matrix generated in a canonical
05150
rd

ur
-

-

semble simulation of a hard sphere system at densityr0 in a
cube of volumeV with periodic boundary conditions. Th
equilibrium state of the fluid at chemical potentialm and
fixed matrix configuration is then obtained via GCMC sim
lation @24# with the three types of trial moves were pe
formed ~displacement, creation or deletion! randomly with
equal probability. Average over disorder involved betwee
and 15 matrix configurations depends on the thermodyna
state. For each matrix configuration about 123106 trial
moves were performed after equilibration. The volume of
simulation box wasV51000da

3 for the size ratiod00/da51
and 3200da

3 (r0da
350.025) or 2909da

3 (r0da
350.0275) for

size ratio 3.
In Fig. 1 we show the center-to-center correlation fun

tion ~i.e., g000
ab ) for the fluid-fluid correlation in the two ap

proximations together with simulation data. This case cor
sponds tod00/da53, r0da

350.0275, andr1da
350.1605, a

state point where the differences between both approxi
x
in
FIG. 4. Atom-atom ~left! and atom-matrix
~right! distribution functions for the same matri
and fluid densities as in Fig. 2. Labels as
Fig. 2.
1-6
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FIG. 5. Atom-atom ~left! and atom-matrix
~right! distribution functions for the same matri
and fluid densities as in Fig. 3. Labels as
Fig. 2.
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tions are more significant. In all cases, the VM improv
upon the HNC, specially as to the height of the first peak a
the shift in the phase of the correlation function, which a
well known to be poorly accounted for in the HNC approx
mation. In what follows we will present the structural pro
erties only in the VM approach, since differences with t
HNC are less appreciable.

In Figs. 2 and 3 we again depict the center-to-center
tribution function, now for the fluid-fluid and fluid-matrix
interactions for increasing fluid density and a fixed mat
density.

Figure 2 corresponds to the size ratiod00/da51, r0da
3

50.2, andr1da
350.1289,0.1847,0.2696 and, Fig. 3,d00/da

53, r0da
350.025, andr1da

350.0478,0.1276,0.1824. Th
VM approximation proves to be remarkably accurate, s
cially for the fluid-fluid correlations. The fluid-matrix distri
bution functions present some peculiarities for the larg
size ratio. As can be seen in Fig. 3, the first coordinat
shell splits into two sharp peaks. This splitting increases
05150
s
d
e

s-
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st
n
s

the fluid density is augmented. In the simulation results th
seems to be only a hint of this splitting that is perhaps ov
emphasized by the integral equation.

In Figs. 4 and 5 we show results for the site-site corre
tion functions for the same cases as before. These funct
are calculated from the molecular pair distribution functio
by means of@25#

gab
gd ~r !5

1

~4p!2E E E dR12dv1dv2 exp@2bugd~1,2!

1hgd~12!2cgd~12!1bgd~12!#d„R121 l2b~v2!

2 l1a~v1!2r …, ~22!

wherea andb are the atomic sites andg andd designate the
species. Alsol ia defines the location of thea site in particle
i and R12, is the center-to-center vector between the p
ticles. In the figures, we denote these functions bygatom-atom
al
FIG. 6. Radial dependence of the orientation
order function. Here,r0da

350.2 and the three in-
creasing fluid densities arer1da

350.1289,
0.1847,0.2696 with size ratiod00/da51. Labels
as in Fig. 2.
1-7
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TABLE I. Isothermal compressibility and chemical potential for HNC and VM approximations vs GC
simulations for a hard dumbbell fluid adsorbed in a hard sphere disordered matrix. The size ratio
d00/da51. Fluid densities result from the GCMC calculation and are used as input data in the theory

r0da
3 r1da

3 b]P1 /]r1~HNC! b]P1 /]r1~VM ! bm ~GCMC! bm ~HNC! bm ~VM !

0.05 0.054960.0001 1.641 1.651 -2 -1.992 -2.001
0.05 0.092360.0001 2.237 2.272 -1 -0.974 -1.002
0.05 0.133760.0002 3.087 3.192 0 0.066 0.001
0.05 0.154360.0002 3.600 3.762 0.5 0.598 0.505
0.05 0.174260.0001 4.164 4.400 1 1.138 1.010
0.05 0.211260.0001 5.423 5.857 2 2.243 2.023
0.05 0.274160.0002 8.374 9.413 4 4.562 4.092
0.05 0.323360.0004 11.694 13.562 6 6.965 6.180
0.05 0.362760.0004 15.285 18.145 8 9.451 8.284
0.10 0.042160.0002 1.537 1.547 -2 -1.978 -1.995
0.10 0.073760.0001 2.049 2.083 -1 -0.961 -0.997
0.10 0.129960.0002 3.267 3.405 0.5 0.620 0.513
0.10 0.183960.0003 4.935 5.310 2 2.267 2.040
0.10 0.244860.0002 7.667 8.577 4 4.577 4.108
0.10 0.292860.0002 10.758 12.398 6 6.962 6.181
0.10 0.332060.0002 14.164 16.652 8 9.461 8.281
0.20 0.021160.0002 1.343 1.354 -2 -1.957 -2.010
0.20 0.041160.0003 1.695 1.723 -1 -0.927 -1.004
0.20 0.068260.0002 2.246 2.314 0 0.126 0.005
0.20 0.128960.0003 3.913 4.175 2 2.297 2.031
0.20 0.184760.0003 6.181 6.836 4 4.594 4.100
0.20 0.231260.0004 8.863 10.087 6 6.998 6.197
0.20 0.269660.0006 11.827 13.811 8 9.475 8.346
0.30 0.07860.001 2.932 3.104 2 2.383 2.032
0.30 0.16860.001 6.859 7.690 6 7.042 6.170
or
on

n
th

nic
whena andb belong to dumbbells, andgatom-matrix whena
belongs to a dumbbell andb to a matrix particle.

Again the VM approximation is remarkably accurate f
most cases. Only for the highest fluid densities, deviati
with respect to the simulation become significant~see Fig.
5!.

In Fig. 6, we present, again for three different fluid de
sities and a fixed matrix density, the radial dependence of
orientational order function,
05150
s

-
e

^P2~cosu12!&~r !5
1

~4p!2E dr12dv1dv2

3g~r12,v1 ,v2!P2~cosu12!, ~23!

which can be expressed in terms of the spherical harmo
coefficients as
and
ere is
.

TABLE II. Isothermal compressibility and chemical potential for HNC and VM approximations
GCMC simulation of a hard dumbbell fluid adsorbed in a hard sphere matrix. The size ratio h
d00/da53. Fluid densities result from the GCMC calculation and are used as input data in the theory

r0da
3 r1da

3 b]P1 /]r1~HNC! b]P1 /]r1~VM ! bm ~GCMC! bm ~HNC! bm ~VM !

0.025 0.047860.0001 2.160 2.477 0 0.476 0.082
0.025 0.089560.0002 3.525 4.223 2 2.849 2.231
0.025 0.127660.0002 5.325 6.559 4 5.380 4.435
0.025 0.159460.0002 7.431 9.289 6 8.035 6.672
0.025 0.182460.0006 9.431 11.911 8 10.405 8.657
0.0275 0.038160.0002 2.013 2.332 0 0.605 0.105
0.0275 0.075060.0002 3.219 3.943 2 3.002 2.267
0.0275 0.109860.0002 4.877 6.092 4 5.556 4.480
0.0275 0.139160.0002 6.781 8.598 6 8.197 6.715
0.0275 0.160560.0004 8.581 10.987 8 10.527 8.674
1-8
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FIG. 7. Fluid chemical potential vs density fo
various matrix densities and size ratios. Circl
correspond to GCMC data, and dahsed and so
curves to HNC and VM integral equation dat
Note the big discrepancies of the HNC results f
the largest size ratio.
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~24!

As regards thermodynamics, in Tables I and and II
present our results for the isothermal compressibility a
chemical potential. This latter quantity is also plotted in F
7, and compared with the GCMC simulation data, for wh
the chemical potential is an input value. Here, the impro
ment of the VM with respect to the HNC is much mo
significant than in the structural properties. The HNC a
proximation seems to always overestimate the chemical
tential whereas the VM performs rather well for all the de
sity range. Finally we have analyzed the effect of t
05150
e
d
.

-

-
o-
-

molecular shape on the adsorption isotherms. This can
seen in Fig. 8~a! where we have plottedm1 vs r1da

3 for
various elongations ranging from plain hard spheres toL
5da . Simulation results are only presented for hard sphe
and forL50.6da . One immediately sees that there is a co
siderable rise in the chemical potential as the elongation
creases. To some extent this can be attributed to a sim
volume effect, since the work required to insert a particle
the sample augments as the volume of the particle is
creased. In order to separate more clearly volume and sh
effects in Fig. 8~b! we have plottedm1 vs r1d11

3 , whered11

is the equivalent diameter defined in Eq.~13! . Thus the
quantityr1d11

3 is proportional to the fraction of volume oc
cupied by the fluid particles. Again we see that the chem
potential grows as the elongation is increased~although to a
lesser extent than when the plain number density is use
the abscissae!. Obviously this is due to the fact that the e
s of
ro-
d

FIG. 8. ~a! Fluid chemical potential vs density
for elongationsL/da50,0.2,0.4,0.6,0.8,1.0~from
bottom to top!, r0da

350.0275 andd00/da53,
calculated in the VM approximation~solid lines!
and GCMC simulation~circles!. ~b! Same as~a!
but the abscissas represent the density in term
the diameter of the equivalent sphere, i.e., is p
portional to the net fraction of volume occupie
by the fluid.
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cluded volume of a hard dumbbell is somewhat larger th
the excluded volume of the equivalent sphere, and this is
evident shape effect. It should be mentioned here tha
agreement with the findings of Ford, Thompson, and Gla
@26# very similar results are obtained for a fully anneal
system. This we have checked performing HNC and V
calculations for equilibrium mixtures of both size ratios, o
taining results hardly distinguishable from those of t
quenched systems. When the matrix particles are much
ger than the fluid particles this is a consequence of the s
larity of the correlation functions as found in Ref.@27#, but
even when correlations are different thermodynamic prop
ties remain very similar@26#. This seems to be a gener
feature in this type of adsorption problems, although
presence of attractive forces tends to make the quenched
annealed systems more dissimilar@28#.

In summary, we find here that the extension of the V
approximation that proved successful for mixtures of m
lecular and atomic fluids, is equally able to provide an ac
.

.

nd

ys

05150
n
n

in
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-

ig-
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r-

e
nd

-
-

rate description of the behavior of molecular fluids adsorb
in quenched atomic random matrices. Moreover, the fact
direct expressions can be derived for the chemical poten
in this approach make it amenable to introduce se
consistent approaches like the one proposed by Fern
Lomba, and Lee@8#.

Future work will focus on the implementation of sel
consistent closures as well as the description of more re
tic systems, incorporating Lennard-Jones interactions. In
latter case, one of the most relevant aspect is the gas-li
transitions, whose location by computer simulation remain
formidable task@12,13# and consequently, an accurate int
gral equation theory may well prove to be a valid alternati
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