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We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion
and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and
topologicity can be independently accommodated by a suitable choice of the parameters featuring this new
Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi
parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the
dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We
focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial
singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal
coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time
singularities, but we show that such critical points do not spoil the geodesic completeness and wave
regularity of these spacetimes.
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I. INTRODUCTION

The theory of general relativity (GR) [1,2] is based on
the geometric interpretation of the gravitational field,
described in terms of a metric tensor and a connection
on a pseudo-Riemannian manifold. Both GR and many
alternative theories of gravity rely on a metric formulation,
in which the connection is completely determined by the
metric tensor and its derivatives, resulting in the Levi-Civita
connection, which is both symmetric and metric compat-
ible. Geometric theories of gravity can also be formulated
following the metric-affine paradigm, according to which
the metric tensor and the connection are considered as
independent variables. In this scheme, symmetry and
metric compatibility of the connection are not a priori
assumed, allowing for the presence of nonvanishing torsion
and nonmetricity tensors, respectively. Well-known exam-
ples of metric-affine theories are Ricci-based gravity [3,4]
(which encloses a large variety of subcases, as, e.g., Palatini
fðRÞ theory [5], quadratic gravity [6], and Born-Infeld-type

models [7]), general teleparallel models [8], generalized
hybrid metric-Palatini gravity [9–13], and metric-affine
extension of higher-order theories [14–17].
The connection plays a fundamental role also in one of

the current attempts to quantize gravity, i.e., loop quantum
gravity (LQG) [18,19], where the gravitational interaction
is reformulated in terms of a gauge SUð2Þ connection
(Ashtekar-Barbero-Immirzi connection) and its conjugate
momentum (densitized triad) [20–23]. This representation,
indeed, is usually derived by including an additional
contribution to the first-order (Palatini) action of GR,
namely, the Holst term [24], which results eventually
vanishing when the equations of motion for the connection
are satisfied (on half-shell). This guarantees the classical
dynamics be preserved, and a proper set of smeared
variables suitable for quantization is introduced [25,26].
We are mainly interested, however, in an equivalent
formulation of LQG, which relies on the use of the
Nieh-Yan (NY) topological invariant [27,28] in place of
the Holst term [29]. The NY invariant, initially discovered
in the context of Riemann-Cartan theory, goes beyond the
on half-shell vanishing character of the Holst term because
of its main property, i.e., topologicity: it simply reduces to a
boundary term without affecting the field equations at all.

*flavio.bombacigno@ext.uv.es
†simon.boudet@unitn.it
‡gonzalo.olmo@uv.es
§giovanni.montani@enea.it

PHYSICAL REVIEW D 103, 124031 (2021)

2470-0010=2021=103(12)=124031(18) 124031-1 © 2021 American Physical Society

https://orcid.org/0000-0003-2869-0907
https://orcid.org/0000-0001-8933-3861
https://orcid.org/0000-0001-9857-0412
https://orcid.org/0000-0002-2550-5553
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.124031&domain=pdf&date_stamp=2021-06-11
https://doi.org/10.1103/PhysRevD.103.124031
https://doi.org/10.1103/PhysRevD.103.124031
https://doi.org/10.1103/PhysRevD.103.124031
https://doi.org/10.1103/PhysRevD.103.124031


Now, these additional terms are driven by the so-called
Immirzi parameter β [30,31], which is used in defining the
Ashtekar variables and is related to a quantization ambi-
guity [31]. Attempts to address this issue led to the proposal
of considering the Immirzi parameter as a new fundamental
field [32–34], an idea that has been later developed within
more general modified gravity models [35–42], revealing
interesting phenomenology, such as bouncing solutions in
isotropic cosmological models [32,34,43] or hairy black
hole solutions [44], together with implications at a more
fundamental level regarding the strong CP problem
[45,46], the chiral anomaly [47], and the implementation
of Ashtekar variables [34,41]. The promotion of such
constant parameter to a dynamical field is usually pursued
by substituting β → βðxÞ in the Lagrangian and possibly
adding a potential term VðβÞ. More recently, there has been
interest in the NY term also in the context of teleparallel
gravity, where it was considered in the formulation of parity
violating extensions of teleparallel models [48] (see also
[40], where the Holst term is taken into account), and in the
field of condensed matter physics [49–54]. Beside top-
ologicity, another important property featuring metric-
affine gravity is projective invariance [55,56], which has
been recently shown to be of crucial importance for the
dynamical stability of metric-affine theories [57]. This
aspect demands special caution in the formulation of
metric-affine models featuring additional degrees of free-
dom, whose pathological nature may be determined by the
presence of ghostlike instabilities. In this regard, wewant to
stress that, while the Holst term is projective invariant, the
NY term breaks this symmetry, a feature usually neglected
in literature. Therefore, in order to properly account for the
projective symmetry in general metric-affine NY models,
a revision of previous formulations seems necessary.
Moreover, when considering a completely general met-
ric-affine setup also, the topological character of the NY
term is lost, since it holds only for vanishing nonmetricity.
The approach followed in this note relies on the choice of

including these features from the very beginning in the
action, without imposing any restriction on the affine
sector. We do this by proposing a generalization of the
NY term to metric-affine geometries with arbitrary torsion
and nonmetricity. We include two parameters in its defi-
nition, allowing to restore topologicity and projective
invariance independently, keeping track of these two
features separately. In particular, for appropriate values
of the parameters, one can have projective invariance
without topologicity, while the former is automatically
implied by the latter. We then consider an action defined by
a general function of two arguments, the Ricci scalar (built
from the independent connection) and the generalized NY
term, and perform the transformation to the Jordan frame.
Here, we retain two additional scalar degrees of freedom
and we propose to identify one of them with the Immirzi
field. In this way, we are able to induce a dynamical

character for the Immirzi field and to include its own
potential in a more natural way, without the need of
introducing these features by hand in the action. Then,
we study the effective scalar-tensor theory stemming from
this model and we compare our results to previous treat-
ments [33,34,37,38,47,58–60] where metricity was a priori
postulated and the role of projective symmetry neglected.
We are able to reproduce such results for the appropriate
values of the parameters featuring the generalized NY term
and imposing the vanishing of nonmetricity via a Lagrange
multiplier in the action. The fact that the usual Einstein-
Cartan NY invariant and related models are properly
recovered in this way, supports the correctness of our
expression for the newly defined NY term, in favor of other
possible generalizations preserving projective invariance
and topologicity. Moreover, in comparison with previous
models, a further outcome stands out: despite the violation
of projective symmetry in the action due to the choice of the
parameters, projective invariance is somehow recovered
on-shell, ensuring the absence of unstable modes, in
contrast to [57].
After the formal discussion, our focus is put on the

implementation of the constructed theory into a cosmo-
logical arena. In particular, we investigate the dynamics of a
Bianchi I model (having zero spatial curvature and three
distinct cosmic scale factors, each for each space direction)
[61–63], limiting our attention to the case in which the
two basic parameters of the underlying Lagrangian are
equal to unity. Such a restriction corresponds to dealing
with a topological NY term and allows us to construct a
semianalytical solution for the considered cosmological
model. For concreteness, we consider a quadratic correc-
tion (recall that the theory relies on a Palatini approach)
because this choice is natural in the spirit of extending the
GR Lagrangian to the fðRÞ domain and considering a
Taylor series expansion.
The main result provided by our semianalytical study of

the Bianchi I model consists on the emergence of a classical
bouncing cosmology (see also [43,64–70]) for negative
values of the parameter controlling the quadratic correction
to the Ricci scalar. However, the interest for the present case
is due to the presence of 3 degrees of freedom, each of them
contributing, with its own specific behavior, to the universe
volume dynamics. Indeed, while the universe volume
naturally follows a bouncing evolution, characterized by
a minimum value and a symmetric behavior before and
after it, the evolution of the scale factors can introduce other
features in the cosmological scenario. In particular, in the
presence of matter (we include the contribution of an
incoherent dust, mimicking the matter universe component
and a radiationlike perfect fluid, corresponding to the
primordial thermal bath energy momentum), the value of
such a parameter can drastically affect the dynamics after
the bounce. Indeed, as long as pertaining to a specific
range, scale factors suffer of singular points, where some of
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them may diverge while others approach zero at a given
instant of time. We show that this cosmological picture is
nonviable, because photon trajectories are dramatically
affected, preventing their propagation forward, and scalar
perturbations are not bounded. By contrast, in vacuum or
when the quadratic correction parameter stays below a
critical value, we recover a cosmological setting featured by
instants in which the time derivative of the volume diverges
(finite time singularity, see [71,72]). These divergences,
however, do not preclude a reliable cosmological evolution.
In fact, in this scenario, the scale factors remain always
finite and nonvanishing during their evolution and, in the
presence of matter, their asymptotic behavior provides an
isotropic late universe. Furthermore, we show that both
photon paths and scalar perturbations have a regular
behavior and phenomenology. In other words, neither
the primordial black body radiation, i.e., the cosmic micro-
wave background, nor its spectrum of scalar perturbation
seems to be affected in a critical manner.
The paper is structured as follows. In Sec. II, we briefly

summarize the formalism of metric-affine gravity. In
Sec. III, the generalized NY invariant is presented and
its properties are discussed. Sections IV and V are devoted
to the analysis of the gravitational model considered in this
work, including the comparison of the results with previous
treatments and the equivalence with degenerate higher-
order scalar-tensor (DHOST) theories. In Sec. VI, we
present the cosmological solutions, whose properties are
discussed in Sec. VII. Eventually, conclusions are drawn
in Sec. VIII. Spacetime signature is chosen mostly plus,
i.e., ð−;þ;þ;þÞ, and indices symmetrization, and anti-
symmetrization is defined as AðμνÞ ¼ ðAμν þ AνμÞ=2 and
A½μν� ¼ ðAμν − AνμÞ=2, respectively.

II. FORMALISM AND NOTATION

In this section, we briefly discuss the notation we adopt
throughout the paper, in order to make the presentation as
plain as possible. Since we consider metric-affine theories
of gravity, where the connection Γρ

μν is assumed to be an
independent degree of freedom with respect to the metric
field gμν, we include in the analysis torsion and non-
metricity tensors, defined by

Tρ
μν ≡ Γρ

μν − Γρ
νμ;

Qρμν ≡ −∇ρgμν; ð1Þ

where we introduced the covariant derivative operation,
denoted by ∇μ, and acting as

∇μAρ
σ ¼ ∂μAρ

σ þ Γρ
λμAλ

σ − Γλ
σμAρ

λ: ð2Þ

Spacetime curvature is then encoded in the Riemann tensor,
given by

Rρ
μσν ¼ ∂σΓρ

μν − ∂νΓρ
μσ þ Γρ

τσΓτ
μν − Γρ

τνΓτ
μσ; ð3Þ

and Ricci tensor and Ricci scalar are obtained from

Rμν ¼ Rρ
μρν; R ¼ gμνRμν: ð4Þ

We note that when torsion and nonmetricity are taken into
account, the Riemann tensor is skew-symmetric only in its
last two indices, and a further contraction, the so-called
homothetic curvature, can be built,

R̂μν ¼ Rρ
ρμν: ð5Þ

Now, it is useful to decompose torsion and nonmetricity in
their irreducible parts. Concerning torsion, these are the
trace vector,

Tμ ≡ Tν
μν; ð6Þ

the pseudotrace axial vector

Sμ ≡ εμνρσTνρσ ð7Þ

and the antisymmetric tensor qρμν ¼ −qρνμ satisfying

εμνρσqνρσ ¼ 0; qμνμ ¼ 0; ð8Þ

which allow us to write the torsion tensor as

Tμνρ ¼
1

3
ðTνgμρ − TρgμνÞ þ

1

6
εμνρσSσ þ qμνρ: ð9Þ

Regarding the nonmetricity, instead, it can be split as

Qρμν ¼
5Qρ − 2Pρ

18
gμν −

QðμgνÞρ − 4PðμgνÞρ
9

þΩρμν; ð10Þ

whereQρ ¼ Qρ
μ
μ is the Weyl vector, Pρ ¼ Qμ

μρ ¼ Qμ
ρμ is

the other independent trace, and Ωρ
μ
μ ¼ Ωμ

ρμ ¼ Ωμ
μρ ¼ 0

is the traceless part. Then, it is possible to rewrite the
connection as

Γρ
μν ¼ Γ̄ρ

μν þ Nρ
μν ¼ Γ̄ρ

μν þ Kρ
μν þDρ

μν; ð11Þ

where we introduced the contorsion and disformal tensors,

Kρ
μν ¼ −Kμ

ρ
ν ¼

1

2
ðTρ

μν − Tμ
ρ
ν − Tν

ρ
μÞ; ð12Þ

Dρ
μν ¼ Dρ

νμ ¼
1

2
ðQμν

ρ þQνμ
ρ −Qρ

μνÞ; ð13Þ

and we denoted by Γ̄ρ
μν the Levi Civita connection for the

metric gμν. We observe that the symmetric and the skew-
symmetric part of the connection result in
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ΓρðμνÞ ¼ Γ̄ρ
μν þ KρðμνÞ þDρðμνÞ; ð14Þ

Γρ½μν� ¼ Kρ½μν�: ð15Þ

Finally, in terms of the distorsion tensor Nρ
μν, we can

rewrite the Riemann tensor as

Rρ
μσν ¼ R̄ρ

μσν þ 2∇̄½σNρ
μjν� þ 2Nρ

λ½σNλ
μjν�; ð16Þ

where bar quantities are built out of the Levi-Civita
connection. Now, let us introduce the notion of projective
transformation acting on the connection, i.e.,

Γ̃ρ
μν ¼ Γρ

μν þ δρμξν; ð17Þ

where ξμ represents an unspecified one-form degree of
freedom, which implies the following transformation rules
for torsion and nonmetricity:

T̃λμν ¼ Tλμν þ gλμξν − gλνξμ; ð18Þ

Q̃μνλ ¼ Qμνλ þ 2gνλξμ; ð19Þ

or in terms of their vector components,

T̃ρ ¼ Tρ − 3ξρ; ð20Þ

S̃ρ ¼ Sρ; ð21Þ

Q̃ρ ¼ Qρ þ 8ξρ; ð22Þ

P̃ρ ¼ Pρ þ 2ξρ; ð23Þ

while qμνρ and Ωμνρ are left unchanged. Under (17), the
Riemann tensor transforms as

R̃ρ
μσν ¼ Rρ

μσν þ δρμð∂σξν − ∂νξσÞ; ð24Þ

and we see that only the symmetric part of the Ricci tensor
remains unaffected, i.e.,

R̃μν ¼ Rμν þ ∂μξν − ∂νξμ; ð25Þ

implying the invariance of the Ricci scalar R̃ ¼ R.

III. THE ROLE OF NONMETRICITY
IN THE NIEH-YAN TERM

The starting point of our discussion is the observation
that in the presence of nonmetricity, the Nieh-Yan term
[27,28]

NY ≡ 1

2
εμνρσ

�
1

2
Tλ

μνTλρσ − Rμνρσ

�
; ð26Þ

is spoilt of its topological character. This can be seen by
taking into account (11) and (16), which lead to

NY ¼ −
1

2
∇̄ · S −

1

2
εμνρσTλ

μνQρσλ; ð27Þ

where we used

εμνρσRμνρσ ¼ ∇̄ · Sþ 1

2
εμνρσTλ

μνðTλρσ þ 2QρσλÞ: ð28Þ

It is therefore clear that when Qρμν ≠ 0 the Nieh-Yan term
cannot be simply expressed as the divergence of a vector,
and the appearance of nonmetricity explicitly breaks up
topologicity. Even if in literature this feature has been
always neglected by simply disregarding nonmetricity from
the very beginning (see [33,34,37,38,47,58–60]), when we
are interested in a proper metric-affine generalization of
LQG-inspired actions, it seems sensible to look for exten-
sions of (27) able to recover such a property. Moreover,
because of the torsion tensor transformation rule (18),
we can easily verify that (27) is also not invariant under
projective transformations, i.e.,

1

4
εμνρσT̃λ

μνT̃λρσ −
1

4
εμνρσTλ

μνTλρσ ¼ −Sμξμ; ð29Þ

and, in this respect, it has been recently suggested that
projective breaking terms in the Lagrangian could be
associated to dynamical instabilities,1 when higher-order
curvature terms are considered [57]. Now, by looking
at (27), we point out that a newly topological Nieh-Yan
term can be recovered by simply setting

NY� ≡ NY þ 1

2
εμνρσTλ

μνQρσλ; ð30Þ

which can be rewritten also as

NY� ¼ 1

2
εμνρσ

�
1

2
Tλ

μνðTλρσ þ 2QρσλÞ − Rμνρσ

�
: ð31Þ

We note that projective invariance is now enclosed as well,
since

1

2
εμνρσT̃λ

μνQ̃ρσλ −
1

2
εμνρσTλ

μνQρσλ ¼ þSμξμ; ð32Þ

which exactly cancels out (29). We stress, however, that
projective invariance is not strictly related to topologicity,
and suitable generalizations of (31) breaking up only with
the latter can be actually formulated. Let us consider, e.g.,
the following modified Nieh-Yan term:

1In particular, it has been outlined as the choice of neglecting
torsion could offer a viable mechanism for restoring stability
conditions.
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NYgen ≡ 1

2
εμνρσ

�
λ1
2
Tλ

μνTλρσ þ λ2Tλ
μνQρσλ − Rμνρσ

�
;

ð33Þ

where we introduced the real parameters λ1, λ2. In this case,
the term (33) transforms as

NYgen → NYgen − ðλ1 − λ2ÞξμSμ; ð34Þ

so that by setting λ1 ¼ λ2 we can recover again projective
invariance, despite topologicity being in general violated if
λ1 ¼ λ2 ≠ 1,

NYgen ¼ −
1

2
∇̄ · Sþ ðλ1 − 1Þ

4
εμνρσTλ

μνTλρσ

þ ðλ2 − 1Þ
2

εμνρσTλ
μνQρσλ: ð35Þ

In addition, we note that it is in general possible to include
in (33) a quadratic term in the nonmetricity,

NYgen þ λ3ε
μνρσQμν

λQρσλ ¼ NYgen þ λ3ε
μνρσQμν

λΩρσλ;

ð36Þ

such that by selecting the purely tensor part of nonmetricity
is trivially preserved under projective transformations.
However, since a term of the form (36) does not affect
at all the equations for the vector part of the connection, and
does not alter the solution for the tensorial part (Ωρμν ¼ 0 is
still the solution, see Sec. IV), we can safely omit it from
the analysis.
In the following, therefore, we will consider the

general form (33), which by a suitable choice of the
parameters λ1;2 can reproduce all the well-known actions
usually studied in LQG, as the Holst (λ1 ¼ λ2 ¼ 0) or the
standard Nieh-Yan (27) (λ1 ¼ 1, λ2 ¼ 0) terms.

IV. GENERALIZED NIEH-YAN MODELS

Let us therefore consider for the gravitational sector
the action2

Sg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
FðR;NYgenÞ; ð37Þ

where F is a function of the Ricci scalar R and the
generalized Nieh-Yan term NYgen. Now, if the following
holds:

∂2F
∂R2

∂2F
∂NY2

gen
−

∂2F
∂R∂NYgen

≠ 0; ð38Þ

we can introduce the scalar tensor representation

Sg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðϕRþ βNYgen −Wðϕ; βÞÞ; ð39Þ

with ϕ≡ ∂F
∂R, β≡ ∂F

∂NYgen
, and W ≡ ϕRðϕ; βÞþ

βNYgenðϕ; βÞ − Fðϕ; βÞ.
Now, it is clear that by considering actions of the

form (37) we are able to generate in a natural way an
Immirzi scalar field, denoted by β, as one of the scalar
degrees of freedom emerging from the Jordan frame
representation (39). This procedure, moreover, offers a
viable mechanism able to produce the interaction term
Wðϕ; βÞ. Finally, matter is included in the model by
adding to (37) the action Smðgμν; χÞ, where we denote
with χ generic matter fields which we assume do not
couple with the connection and are minimally coupled to
the metric.
Now, varying (39) with respect to the connection, we get

−∇λð
ffiffiffiffiffiffi
−g

p
ϕgμνÞ þ δνλ∇ρð

ffiffiffiffiffiffi
−g

p
ϕgμρÞ þ −∇ρð

ffiffiffiffiffiffi
−g

p
βελ

ρμνÞ
þ ffiffiffiffiffiffi

−g
p

ϕðgμνTλ − δνλTμ þ Tνμ
λÞ

þ ffiffiffiffiffiffi
−g

p
β

�
ελ

ρμνTρ þ
1

2
ελ

μρσTν
ρσ −

λ2
2
ελ

νρσTμ
ρσ

þ εμνρσ
��

λ1 −
λ2
2

�
Tλρσ þ λ2Qρσλ

��
¼ 0; ð40Þ

where we used the Palatini identity for the torsional case

δRρ
μσν ¼ ∇σδΓρ

μν −∇νδΓρ
μσ − Tλ

σνδΓρ
μλ ð41Þ

and the relationZ
d4x∇μð

ffiffiffiffiffiffi
−g

p
VμÞ ¼

Z
d4x∂μð

ffiffiffiffiffiffi
−g

p
VμÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Tρ

μρVμ: ð42Þ

From (40), one can extract the equations for the four-vector
components describing torsion and nonmetricity by suc-
cessive contractions with δλμ, δλν, gμν, and ελμνσ , i.e.,8>>>>><
>>>>>:

ðλ1 − λ2ÞSμ ¼ 0

Qμ − 4Pμ þ β
ϕ ðλ1 − λ2ÞSμ ¼ 0

Qμ − Pμ þ 2Tμ þ β
2ϕ ð1 − λ1ÞSμ ¼ 3∇μ lnϕ

ð1 − λ2ÞðQμ − PμÞ þ 2ð1 − λ1ÞTμ −
ϕ
2β Sμ ¼ 3∇μ ln β:

ð43Þ

We see that the system is always characterized by
Weyl geometry configurations, namely, by Qμ ¼ 4Pμ,
which allows to recast nonmetricity in the simpler form2We set κ ¼ 8πG and c ¼ ℏ ¼ 1.
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Qρμν ¼ Pρgμν þ Ωρμν. The system (43) can be put therefore
in the form

8>>>>>><
>>>>>>:

ðλ1 − λ2ÞSμ ¼ 0

Qμ ¼ 4Pμ

3Pμ þ 2Tμ þ β
2ϕ ð1 − λ1ÞSμ ¼ 3∇μ lnϕ

3ð1 − λ2ÞPμ þ 2ð1 − λ1ÞTμ −
ϕ
2β Sμ ¼ 3∇μ ln β:

ð44Þ

Eventually, we can extract from (40) the last equation for
the tensor part encoded in qρμν and Ωρμν, which after quite
lengthy calculations results in

ϕ

β
ðΩλμν − qνμλÞ

¼ 1

2
ερσλμqνρσ −

λ2
2
ερσλνqμρσ

þ ερσμν

��
λ1 −

λ2
2

�
qλρσ þ ðλ2 − 1ÞΩρσλ

�
; ð45Þ

where we used repeatedly (44). Then, by taking the
symmetric part of (45) in the indices μ, ν, we can express
the nonmetricity 3-rank part in terms of the torsional
analog, i.e.,

ϕΩλμν ¼ ϕqðνμÞλ þ
βð1 − λ2Þ

2
ερσλðμqνÞρσ; ð46Þ

which inserted back in (45) leads to the trivial solution for
the tensor modes Ωλμν ¼ qνμλ ¼ 0. In the following, there-
fore, we can only focus on the purely vector modes (44),
and we see that the structure of the solution depends
crucially on the relation between the parameters λ1 and λ2.
When projective invariance is explicitly broken, as it occurs
for λ1 ≠ λ2, we are compelled to set Sμ ¼ 0 and the general
solution is displayed by8>>>>>>>><

>>>>>>>>:

Sμ ¼ 0

Qμ ¼ 4Pμ

Pμ ¼ 1
λ1−λ2

∇̄μ ln β þ λ1−1
λ1−λ2

∇̄μ lnϕ

Tμ ¼ − 3
2

1
λ1−λ2

∇̄μ ln β − 3
2
λ2−1
λ1−λ2

∇̄μ lnϕ

qρμν ¼ Ωρμν ¼ 0:

ð47Þ

If λ1 ¼ λ2 ≡ λ, instead, we have at our disposal the
projective invariance for getting rid of 1 vector degree of
freedom, which can vanish by properly setting the vector ξμ.
We can decide, e.g., to set ξμ ¼ − 1

2
Pμ, in order to deal

in (44) only with torsion.3 We obtain then

8>>>>>><
>>>>>>:

Qμ ¼ 4Pμ ¼ 0

Sμ ¼ 6βð1−λÞ
β2ð1−λÞ2þϕ2 ∇̄μϕ − 6ϕ

β2ð1−λÞ2þϕ2 ∇̄μβ

Tμ ¼ 3
2

ϕ
β2ð1−λÞ2þϕ2 ∇̄μϕþ 3

2

βð1−λÞ
β2ð1−λÞ2þϕ2 ∇̄μβ

qρμν ¼ Ωρμν ¼ 0:

ð48Þ

We remark that while in (47) the affine structure is strictly
fixed, leading to the presence of torsion and nonmetricity,
in (48), as a matter of fact, we could have chosen ξμ ¼ Tμ

3

and retained the nonmetricity vector Pμ instead of the
torsion trace. Such a flexibility in the specific representa-
tion of the theory, however, does not reflect in a dynamical
vagueness, and the proper degrees of freedom can be
unambiguously identified. Let us reexpress (33), indeed,
in terms of its vector components, i.e.,

NYgen ¼ −
1

2
∇̄ · S −

ð1 − λ1Þ
3

S · T −
ð1 − λ2Þ

2
S · P: ð49Þ

Then, looking at (47), it is clear that the solution Sμ ¼ 0

remarkably implies that the generalized Nieh-Yan term (33)
is identically vanishing on half-shell. In other words, the
theory can rearrange its affine structure in such a way that
terms violating projective invariance be harmless along the
dynamics. This can be further appreciated by looking at
the effective scalar tensor action stemming from (39),
when (47) are plugged in it.4 Explicit calculations lead to

S¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR̄þ 3

2ϕ
∇̄μϕ∇̄μϕ−Wðϕ;βÞ

�
; ð50Þ

which resembles the form of a Palatini fðRÞ theory, with a
potential depending on two scalar fields. In particular, we
see that in this case the equation for the Immirzi field is
simply given by

∂Wðϕ; βÞ
∂β ¼ 0; ð51Þ

which actually fixes the form of the Immirzi field in terms
of the scalaron ϕ, i.e., β ¼ βðϕÞ. Then, it can be easily
verified that the variation of (50) with respect to ϕ,
combined with the trace of the equation for the metric
field, results in the canonical structural equation featuring
Palatini fðRÞ theories [5], i.e.,�

2Wðϕ; βÞ − ϕ
∂Wðϕ; βÞ

∂ϕ
�
β¼βðϕÞ

¼ κT; ð52Þ

3For the sake of clarity we omit the tilde notation for trans-
formed quantities.

4We could have also varied (39) with respect to the other
degrees of freedom and then inserted the solutions for connec-
tions. Since in this case we would obtain the same equations of
motion for the metric and the scalar fields, for the sake of clarity
we chose to deal directly with (50).
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which shows that the dynamics of the scalaron ϕ is frozen
as well and completely determined by the trace of the stress
energy tensor of matter. Conditions (51) and (52) then
establish that the scalar fields ϕ, β are not truly propagating
degrees of freedom, and reduce to constants in vacuum,
where the theory is stable and the breaking of projective
invariance does not lead to ghost instabilities as in [57].
When we set λ1 ¼ λ2 ¼ λ, instead, with a bit of effort,

the effective action stemming from (48) can be rearranged
in the form

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR̄þ 3ϕ

2ðβ2ð1 − λÞ2 þ ϕ2Þ

×

�
∇̄μϕ∇̄μϕ − ∇̄μβ∇̄μβ þ 2βð1 − λÞ

ϕ
∇̄μϕ∇̄μβ

�

−Wðϕ; βÞ
�
; ð53Þ

where the mixing term ∇̄μϕ∇̄μβ can be always reabsorbed
by the transformation5 ψ ≡ βϕλ−1, which puts the action in
the diagonal form

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR̄þ 3

2ϕ
∇̄μϕ∇̄μϕ

−
3ϕ

2

1

ϕ2λ þ ð1 − λÞ2ψ2
∇̄μψ∇̄μψ − Vðϕ;ψÞ

�
; ð54Þ

where we redefined Vðϕ;ψÞ ¼ Wðϕ;ψϕ1−λÞ. It is clear,
therefore, that we expect in general the Immirzi field to be a
well-behaved dynamical degree of freedom, as it can be
appreciated in the Einstein frame defined by the conformal
rescaling g̃μν ¼ ϕgμν (see [73,74] for details). In the
Einstein frame, the nonminimal coupling of ϕ with the
Ricci scalar is removed along with its kinetic term, and we
can just look at the kinetic term for the Immirzi field which
takes the form

−
3

2

g̃μν∇μψ∇νψ

ϕ2λ þ ð1 − λÞ2ψ2
: ð55Þ

Now, since the inequality ϕ2λ þ ð1 − λÞ2ψ2 > 0 holds
irrespective of the values of ϕ, ψ , and λ, (55) has always
the correct sign and no ghost instability arises.

A. Comparison with Riemann-Cartan solutions

We saw that when projective invariance is conserved, as
a matter of fact nonmetricity can be entirely neglected by
properly fixing the vector ξμ. This seems to suggest,
similarly to what outlined in [55,75], a duality between

torsion and nonmetricity when fðRÞ-like extensions of
general relativity are considered. In this respect, therefore,
it is interesting to analyze the structure of the solutions for
vanishing nonmetricity, when this property is not the result
of a projective transformation but a preliminary condition
we impose on the metric-affine structure.
When we simply disregard nonmetricity contributions

in (44), we are just selecting a particular subset of solutions
for the models violating projective invariance, i.e.,

8>><
>>:

Sμ ¼ 0

Tμ ¼ 3
2ϕ ∇̄μϕ

∇̄μβ ¼ 0;

ð56Þ

which, coherently, leads again to the effective action (50).
Now, however, we are compelled to select a constant
Immirzi parameter, and by virtue of (51), the last one of
(56) simply implies

∂μβ ¼ ∂β
∂ϕ ∂μϕðTÞ ¼ 0; ð57Þ

which for a generic T ≠ 0 is satisfied if ∂β=∂ϕ ¼ 0, that is
to say whenever the potential Wðϕ; βÞ does not depend
on β. This requirement eliminates the Immirzi parameter
from (50) and fully restores the equivalence of the form of
the action with the Palatini fðRÞ gravity.
The Riemann-Cartan structure of [33,34,37,38,47,

58–60] can be instead properly replicated by implementing
in (37) the condition of vanishing nonmetricity with a
Lagrange multiplier, i.e.,

SRCg ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½FðR;NYgenÞ þ lρμνQρμν�; ð58Þ

where lρμν ¼ lρνμ. In so doing, indeed, we are not forcing
Sμ ¼ 0, because of the appearance of traces of lρμν in (44),
which for Qρμν ¼ 0 takes the form

8>>>>><
>>>>>:

qμ ¼ β
2
ðλ1 − λ2ÞSμ

pμ ¼ − 1
2
qμ

Sμ ¼ 6βð1−λ1Þ
β2ð1−λ1Þ2þϕ2 ∇̄μϕ − 6ϕ

β2ð1−λ1Þ2þϕ2 ∇̄μβ

Tμ ¼ 3
2

ϕ
β2ð1−λ1Þ2þϕ2 ∇̄μϕþ 3

2

βð1−λ1Þ
β2ð1−λ1Þ2þϕ2 ∇̄μβ;

ð59Þ

where the traces qμ ≡ lμρρ and pμ ≡ lρμρ are completely
solved in terms of the axial vector Sμ. Then, results of
[33,34,37,38,47,58–60] are simply obtained6 by setting
λ1 ¼ 1 and (54) reproduced.

5We see that in the special case of λ ¼ 1, when also top-
ologicity is restored, no redefinition for the Immirzi field is
required and his kinetic term simply boils down to − 3

2ϕ ð∇βÞ2.
6Obviously, the parameter λ2 does not appear at all in the

expressions for the vectors.
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V. DYNAMICAL IMMIRZI MODELS

Here we focus on models described by (54), which
we saw to be endowed with a dynamical Immirzi
field. Then, let us evaluate the equation of motion for
the metric

Ḡμν ¼
κ

ϕ
Tμν þ

1

ϕ
ð∇̄μ∇̄ν − gμν□̄Þϕ

þ −
3

2ϕ2
∇̄μϕ∇̄νϕþ 3

2

∇̄μψ∇̄νψ

ϕ2λ þ ð1 − λÞ2ψ2

þ 1

2
gμν

�
3ð∇̄ϕÞ2
2ϕ2

−
3

2

ð∇̄ψÞ2
ϕ2λ þ ð1 − λÞ2ψ2

−
Vðϕ;ψÞ

ϕ

�
ð60Þ

and the scalar fields, i.e.,

2Vðϕ;ψÞ − ϕ
∂Vðϕ;ψÞ

∂ϕ
þ 3λϕ2λþ1

ðϕ2λ þ ð1 − λÞ2ψ2Þ2 ð∇̄ψÞ2 ¼ κT; ð61Þ

□̄ψ −
ð1 − λÞ2ψ

ϕ2λ þ ð1 − λÞ2ψ2
ð∇̄ψÞ2

þ
�
1 −

2λϕ2λ

ϕ2λ þ ð1 − λÞ2ψ2

�
∇̄μ lnϕ∇̄μψ ¼ ∂Vðϕ;ψÞ

3∂ψ ;

ð62Þ

where (61) is obtained in analogy with (52). From the first
equation, we see that the scalaron ϕ can be algebraically
solved in terms of the Immirzi field and its kinetic term
X ≡ ð∇̄ψÞ2, i.e.,

ϕ ¼ ϕðψ ; X; TÞ; ð63Þ

so that we are left with an only propagating degree of
freedom, the Immirzi field. Moreover, Eq. (63) suggests an
intriguing analogy with the so-called DHOST theories
[76,77], where higher-order derivatives of the scalar field
in the action do not actually lead to dynamical instabilities,
by virtue of some degeneracy conditions on the kinetic
matrix. An important subclass of DHOST theories is that
one in agreement with the absence of graviton decay and
the experimental constraint on the speed of gravitational
waves [78], which are described by the action

SDHOST ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
F0 þ F1□̄φþ F2R̄

þ 6F2
2X

F2

φμφνφμλφ
λ
ν

�
; ð64Þ

where φμ ≡∇μφ;φμν ≡∇μ∇νφ, and F0, F1, F2 are func-
tions of the kinetic term X ≡ φμφμ. In this regard, then,
consider for (37) the FðRÞ þ NY� model in vacuum
(T ¼ 0), identified by λ ¼ 1 and the condition ∂V=∂ψ ¼ 0
(or V2ðψÞ ¼ 0, see below). In this case, Eq. (63) simply
reads ϕ ¼ ϕðXÞ. Direct substitution of the latter into (54)
yields the equivalence at the Lagrangian level with (64),
upon identification of the DHOST scalar field φ with the
Immirzi field and considering the following functional
choices:

F0 ¼ −VðϕðXÞÞ − 3X
2ϕðXÞ ; ð65aÞ

F1 ¼ 0; ð65bÞ

F2 ¼ ϕðXÞ: ð65cÞ

In particular, the requirement that the field equations
stemming from (64) and (37) be equivalent, leads to the
additional condition

X −
ϕðXÞ
ϕXðXÞ

≠ 0; ð66Þ

which rules out the linear case ϕðXÞ ∝ X. We note, in
addition, that for the subclass (64), the degeneracy con-
dition preventing the arising of Ostrogradsky instabilities
simply reads F2ðXÞ ≠ 0, which is consistent with the
requirement ϕ ≠ 0.
Moreover, it is interesting to note that the dependence

of ϕ on the trace T of the stress energy tensor, which
holds in general for projective invariant models, introduces
a dependence of the affine structure on the matter, even
if we assumed at the beginning a vanishing hyper-
momentum, i.e.,

Δλ
μν ≡ −

2ffiffiffiffiffiffi−gp δSM
δΓλ

μν
¼ 0: ð67Þ

This, possibly, suggests a mechanism for circumventing
the inconsistencies which usually arise when one tries
to implement symmetries, like the projective invariance,
in the presence of matter fields which couple to the
connection [56].
Finally, we see that at the first order in perturbation (63)

implies in vacuum δϕ ∼ δψ , and the inspection of (60)
suggests that in this case the Immirzi field could actually
mimic the scalar polarization of gravitational waves in
metric fðRÞ gravity (see [79,80] for details). On the other
hand, observations on gravitational waves propagation [81]
and Solar System dynamics [82,83] put severe constraints
on the mass of additional scalar degrees of freedom, which
for many purposes can be satisfactorily considered mass-
less. Since this amounts to disregarding the potential term
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in (62), it makes sense to seek for a subclass of functions
FðR;NYgenÞ able to generate separable potentials
Vðϕ;ψÞ ¼ V1ðϕÞ þ V2ðψÞ, under the assumption that
V2ðψÞ can be safely neglected. At first sight, a vanishing
Immirzi potential may conflict with the requirement of
reproducing standard LQG predictions, as it can occur
whenever the Immirzi field collapses on a minimum
configuration. Below, however, we demonstrate that this
is not actually mandatory, since the dynamics of the Immirzi
scalar can be adequately frozen by cosmological evolution as
well, featured by classical big-bounce scenarios.

VI. BIG BOUNCE IN BIANCHI I COSMOLOGY

Let us set λ ¼ 1, corresponding to the projectively
invariant Nieh-Yan model, and fix the form of the potential
as Vðϕ;ψÞ ¼ VðϕÞ. In this case, the equations of motion
can be rearranged as

Ḡμν ¼
κ

ϕ
Tμν þ

1

ϕ
ð∇̄μ∇̄ν − gμν□̄Þϕ

þ −
3

2ϕ2
∇̄μϕ∇̄νϕþ 3

2ϕ2
∇̄μψ∇̄νψ

þ 1

2
gμν

�
3

2ϕ2
ð∇̄ϕÞ2 − 3

2ϕ2
ð∇̄ψÞ2 − VðϕÞ

ϕ

�
ð68Þ

and

2VðϕÞ − ϕ
dVðϕÞ
dϕ

¼ κT −
3ð∇̄ψÞ2

ϕ
; ð69Þ

□̄ψ − ∇̄μ lnϕ∇̄μψ ¼ 0: ð70Þ

Now, we consider the metric for a Bianchi I flat spacetime,
i.e.,

ds2 ¼ −dt2 þ aðtÞ2dx2 þ bðtÞ2dy2 þ cðtÞ2dz2; ð71Þ

which represents the simplest example of homogeneous
spacetime endowed with anisotropies, encoded in the three
different scale factors aðtÞ, bðtÞ, cðtÞ. We assume, more-
over, that matter is described by a perfect fluid, whose
stress energy tensor in the comoving frame is given by

Tμν ¼ diagðρ; a2p; b2p; c2pÞ; ð72Þ

where ρ is the energy density and p the pressure. Then,
it is easy to check that it is covariantly conserved, i.e.,
∇̄μTμν ¼ 0, leading to the continuity equation7

_ρþ
�
_a
a
þ

_b
b
þ _c
c

�
ðρþ pÞ ¼ 0; ð73Þ

which for a equation of state of the form p ¼ wρ results in

ρðtÞ ¼ μ2

ðabcÞwþ1
; ð74Þ

where μ2 is a constant. Last, in accordance to what we
discussed in Sec. V, we take for the function FðR;NYgenÞ
an effective form FðR;NYgenÞ ≃ Rþ αR2 þ NYgen,
which amounts to considering the Starobinsky quadratic
potential [84]

VðϕÞ ¼ 1

α

�
ϕ − 1

2

�
2

: ð75Þ

Thus, we observe that with the metric (71) the equation for
the Immirzi field (70) can be solved analytically for _ψ
taking the form

_ψ ¼ k0ϕ
abc

; ð76Þ

which plugged into (69), and by taking into account (72)
and (75), allows us to express the field ϕ in terms of scale
factors as

ϕ ¼ v2fðvÞ
6αk20 þ v2

; ð77Þ

where we introduced the volumelike variable v≡ abc and
the function fðvÞ≡ 1–2ακð3w − 1ÞρðvÞ. It follows that the
only nonvanishing elements of (68) are the tt, xx, yy, and zz
components, which take the form, respectively

_a _b
ab

þ _a _c
ac

þ
_b _c
bc

¼ κρ

ϕ
þ 3k20
4v2

−
�
_a
a
þ

_b
b
þ _c
c

�
_ϕ

ϕ
−
3 _ϕ2

4ϕ2
þ VðϕÞ

2ϕ
; ð78Þ

b̈
b
þ c̈
c
þ

_b _c
bc

¼ −
�
_b
b
þ _c
c

�
_ϕ

ϕ
þΦ; ð79Þ

ä
a
þ c̈
c
þ _a _c

ac
¼ −

�
_a
a
þ _c
c

�
_ϕ

ϕ
þΦ; ð80Þ

ä
a
þ b̈
b
þ _a _b

ab
¼ −

�
_a
a
þ

_b
b

�
_ϕ

ϕ
þΦ; ð81Þ

where
7We denote with a dot derivative with respect to the coordinate

time t.
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Φ≡ −
κp
ϕ

−
3k20
4v2

−
ϕ̈

ϕ
þ 3 _ϕ2

4ϕ2
þ VðϕÞ

2ϕ
: ð82Þ

The purpose of our analysis is now to rearrange (78), which
in the limit a ¼ b ¼ c reproduces the Friedmann equation
of the scale factor for the Friedmann-Robertson-Walker
(FRW) Universe, in such a way that its lhs is manifestly
positive and the rhs displays a rational function in v.
This allows us to qualitatively determine the behavior of v
by means of algebraic techniques, since the existence of
singularities, turning points, or big-bounce scenarios can be
related with the zeros and the poles of the function in
the rhs. In order to see that, we start by noting that
combining (80) with (81), we get

b̈
b
−
c̈
c
þ
�
_b
b
−
_c
c

�
_a
a
¼ −

�
_b
b
−
_c
c

�
_ϕ

ϕ
; ð83Þ

which can be solved for a as

a ¼ k1
ϕð _bc − b_cÞ ; ð84Þ

with k1 an integration constant. Analogously, similar
relations can be derived for the other scale factors, which
take the form

b ¼ k2
ϕð _ac − a_cÞ ; ð85Þ

c ¼ k3
ϕð _ab − a _bÞ ; ð86Þ

resulting in the constraint k1 − k2 þ k3 ¼ 0. We introduce
thus the Hubble-like functions

HA ¼ _a
a
; HB ¼

_b
b
; HC ¼ _c

c
; ð87Þ

in terms of which we can rearrange (84)–(86) as

HB−HC¼
k1
ϕv

; HA−HC¼
k2
ϕv

; HA−HB¼
k2
ϕv

; ð88Þ

so that they can be combined to give

HAHB þHAHC þHBHC ¼ H2
A þH2

B þH2
C −

3μ2A
ϕ2v2

;

ð89Þ

where we defined the anisotropy density parameter

μ2A ≡ k2
1
þk2

2
þk2

3

6κ for future convenience. Next, we convert
the time derivative of the scalaron ϕ appearing in (78) in a
function of v, i.e.,

_ϕ

ϕ
¼ _v

ϕ

dϕ
dv

; ð90Þ

and we note that

_v
v
¼ HA þHB þHC; ð91Þ

so that we can write

H2
A þH2

B þH2
C ¼

�
_v
v

�
2

− 2ðHAHB þHAHC þHBHCÞ:

ð92Þ

Then, taking into account (89), (90), and (92), we can
finally rearrange (78) in the simple form

H2 ≡
�

_v
3v

�
2

¼
κ
3
ðμ2Iv2 þ ρ

ϕ þ
μ2AN
ϕ2v2Þ þ

VðϕÞ
6ϕ

ð1þ 3v
2

d
dv lnϕÞ2

; ð93Þ

where we introduced the energy density parameter for the

Immirzi field μ2I ≡ 3k2
0

4κ , and we finally observe that the rhs is
a rational function of v.

A. Vacuum case

As a preliminary case, it is useful to consider the vacuum
configuration, where fðvÞ ¼ 1 and (93) reads after a bit of
manipulation as

H2ðvÞ ¼ κðv2 þ ηIÞðPAðvÞμ2A þ PIðvÞμ2I Þ
6v6ðv2 þ 4ηIÞ2

; ð94Þ

where

PAðvÞ ¼ 2v6 þ 6ηIv4 þ 6η2I v
2 þ 2η3I ; ð95Þ

PIðvÞ ¼ 2v4ðv2 þ 2ηIÞ; ð96Þ

and ηI ≡ 6ακμ2I . By inspection of (94), we immediately see
that for α > 0 (i.e., ηI > 0) the rhs is always positive. This
implies that the volume v can span all the positive values,
i.e., v ∈ Rþ, and the dynamics is still singular in v ¼ 0.
Big-bounce or turning points are instead related to those
values of vwhereH2 ¼ 0, corresponding to the zeros of the
numerator on the rhs of (94). In particular, in order to
distinguish between big-bounce and turning points, we
have to select those intervals where H2 > 0 holds: lower
bounds can be identified with big-bounce points and upper
bounds with turning points. For α < 0, therefore, we have
to solve the inequality

ðv2 þ ηIÞðPAðvÞμ2A þ PIðvÞμ2I Þ ≥ 0; ð97Þ
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which a bit of algebraic manipulations reveal to hold in

0 < v2 < v2T ≡ −η;

v2B < v2; ð98Þ

where v2B is the only real root of the third-order equation in
x ¼ v2 which appears in (97) and for whose quite cum-
bersome expression we address the reader to the Appendix.
We have, therefore, two disconnected domains describing,
respectively, a closed universe, where singularity is not
removed and general relativity limit cannot be reached
(ϕ → ∞ for v → −η), and an open universe where singu-
larity is classically tamed by a big bounce in v ¼ vB
and ϕ → 1 for v → þ∞. In the same limit, moreover, we
stress that by virtue of (76) the Immirzi field boils down
to a constant, correctly reproducing the ordinary LQG
picture, and that (94) can be always recast as the Friedmann
equation of a FRW flat universe filled with a scalar
field, i.e.,

H2 ∼
κðμ2I þ μ2AÞ

3v2
; ð99Þ

where with respect to [43] [see Eqs. (53) and (54) therein]
also the anisotropy energy density concurs in defining the
effective energy density for the scalar field. These prelimi-
nary results are confirmed by numerical investigations.
The big bounce can be appreciated in Fig. 1(a), obtained
integrating Eq. (94) for vðtÞ, after having rescaled all
dimensional quantities by the appropriate power of the
Planck time tPl (for the sake of clarity, we use the same
symbols also for rescaled dimensionless quantities). We see
that the volume undergoes a future finite time singularity
(see [71,72] for details concerning their classification),
corresponding to the pole of equation (94) in vc ¼ −4ηI ,
where the Hubble function diverges. This causes a break-
down of the numerical integration, which we tackle by
solving (94) separately in the two regions adjacent to the
troublesome point and matching the solutions across
vc ¼ −4ηI. We note, however, that the occurrence of
divergences in the derivative of v raises reasonable doubts
about whether those solutions can be extended across the
singular points without ambiguities, and the viability of
such a procedure has to be tested. We refer, in particular,
to the geodesic completeness of the solutions and to the
behavior of scalar perturbations, which should be free of

FIG. 1. Numerical solutions for α ¼ −5=3, μI ¼
ffiffiffi
3

p
, μA ¼ 0.2μI as a function of t=tPl. Dotted and dashed lines represent where

bounce and future time singularity happen, respectively. The bounce is centered at the origin of time for convenience, and the values of
the parameters are chosen in order to yield graphs that display features in a clear fashion.
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pathologies in order to guarantee a physically sensible
matching of solutions. These issues will be properly
addressed in Sec. VII, and here we just stress that, in
general, creation of particles in the presence of cosmo-
logical horizons [85–88] can lead to additional terms in the
Friedman equation, able to stabilize the singular behavior
of the Hubble parameter.
The behavior of the scalar fields can be analyzed via

Eqs. (76) and (77), and Fig. 1(c) shows how the scalaron
asymptotically reaches 1 as t → ∞, while the Immirzi field,
as required, relaxes to a constant. Figure 1(d) displays the
specific value of the volume at the bounce vB as a function
of the parameter α (see the Appendix for its explicit
formula), while Fig. 1(b) shows the behavior of each scale
factor.

B. Radiation and dust

In this section, we complete the analysis, including
the energy density of radiation and dust (corresponding
to w ¼ 1=3 and w ¼ 0 in (74), respectively). In this
case, (77) takes the form

ϕðvÞ ¼ vðvþ 2ηDÞ
v2 þ ηI

; ð100Þ

and we see that the presence of dust introduces an addi-
tional zero in vP ¼ −2ηD ≡ −2ακμ2D, which as we will
discuss below can be lesser, then excluded from the domain
of the values of v, or greater than the value vB where the
bounce occurs. In the latter case, it affects the evolution of
the scale factors aðtÞ, bðtÞ, and cðtÞ, since a zero of ϕ
corresponds to a pole in (84)–(86) and, like for the vacuum,
the physical feasibility of such divergences has to be
analyzed. The Hubble rate (93) can be rearranged as

H2 ¼ κðv2 þ ηIÞ
P

jPjðvÞμ2j
6v4ðv3 − ηDv2 þ 4ηIvþ 5ηIηDÞ2

; ð101Þ

where j ¼ D, R, A, I and

PDðvÞ ¼ 2v7 þ 5ηDv6 þ 2ðη2D þ ηIÞv5 þ 7ηIηDv4

þ 7

2
η2I v

3 þ 5η2IηDv
2; ð102Þ

PRðvÞ ¼ 2v5=3ðv5 þ 2ηDv4 þ 2ηIv3 þ 4ηIηDv2

þ η2I vþ 2η2IηDÞ: ð103Þ

In this case, the initial singularity is still regularized by a
big bounce but some properties of the solutions are actually
different with respect to the vacuum configuration, both in
the early phase of the Universe and in the late time
asymptotic region. Regarding the latter, the behavior of
the scale factors is influenced by both radiation and dust

with consequences on the degree of anisotropy of the
Universe, quantified by the function

AðtÞ ¼ ðH2
A þH2

B þH2
CÞ

3H2
− 1: ð104Þ

For its computation, the time evolution of each scale factor
is obtained integrating Eqs. (84)–(86), once vðtÞ and ϕðtÞ
are known. While in vacuum AðtÞ relaxes to a nonvanishing
constant at infinity, the presence of matter is able to flatten
the curve, providing the isotropization of the Universe, as
shown in Fig. 2(b).
Concerning the early phase of the Universe, instead, two

different scenarios may occur, depending on the value of
the parameter α. Whenever ᾱ < α < 0, where

ᾱ ¼ −2μ2I =μ4D; ð105Þ

the early behavior of the volume and the scalar fields is not
much altered with respect to the vacuum configuration and

FIG. 2. Anisotropy degree A as a function of t=tPl for α ¼ −5=3,
μI ¼

ffiffiffi
3

p
, μA ¼ 0.2μI .
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the results are similar to those discussed in the previous
section. In this case, of course, the value vB where the
bounce occurs cannot be determined analytically, as it
generally depends also on the dust and radiation energy
densities. On the other hand, the finite time singularity
corresponds now to the real root of the cubic equation in the
denominator of (101) and for its expression we refer to the
Appendix.
If instead α < ᾱ, the properties of the solutions are

fundamentally different (see Fig. 3). In particular, there is
no future finite time singularity for v, since the value of the
volume at the bounce is always greater than the pole of
(101). The zero of the scalaron, however, is now located after
the bounce, leading to the appearance of zeros and singu-
larities for the scale factors, which can interestingly combine
without introducing singular points for v. The derivative of
the Immirzi field, instead, is appreciable only near the
bounce, where now it is negative, and rapidly approaches
zero, denoting again a constant Immirzi parameter.

VII. PHYSICAL IMPLICATIONS OF
CURVATURE DIVERGENCES

A disturbing aspect of the solutions we presented above
is the fact that the numerical integration breaks down at a
given instant of time, in which the volume of the Universe
is finite but the Hubble function diverges. Obviously, this
divergence inH implies the divergence of various curvature
invariants that involve H and its derivatives, which
demands a detailed analysis of its physical implications.
For concreteness, here we will consider the behavior of
geodesics and of scalar perturbations.
With elementary algebra, one can show that the geodesic

equation for light rays with tangent vector uα ¼ dxα=ds
leads to [89–92]

x00 ¼ −2x0t0HA;

y00 ¼ −2y0t0HB;

z00 ¼ −2z0t0HC;

t00 ¼ −a2HAx02 − b2HAy02 − c2HCz02; ð106Þ

where prime denotes derivative with respect to the
affine parameter s. These equations admit a first integral
of the form

x0 ¼ ka
a2

;

y0 ¼ kb
b2

;

z0 ¼ kc
c2

;

t0 ¼
�
k2a
a2

þ k2b
b2

þ k2c
c2

�
1=2

þ C0; ð107Þ

with ka, kb, kc, and C0 representing integration constants.
From the basic theory of first-order differential equations, it
follows that in those intervals in which the functions aðtÞ,
bðtÞ, and cðtÞ are continuous and nonvanishing, as it occurs
for solutions characterized by finite time singularities, both
in vacuum and in the presence of matter, the geodesic
tangent vector will be unique and well defined. Such cases
are clearly nonsingular since they are geodesically com-
plete, a result that holds both in the anisotropic and in the
isotropic cases [93]. When α < ᾱ, instead, we see that the
volume remains finite all over the interval despite the fact
that some expansion factors collapse to zero while others
diverge [Fig. 3(b)]. The divergence of the individual
expansion factors is not a problem for the geodesics, but
the vanishing of some of them may lead to a lack of
continuity and, therefore, to the impossibility of a unique
extension. To see this, let us consider the situation where
one of the scale factors vanishes at some affine parameter
sc. In particular, suppose that

FIG. 3. Numerical solutions as a function of t=tPl for μI ¼ 0.057,
μA ¼ 2.4, μD ¼ 0.365, μR ¼ 1.56, and α ¼ −8.42 < ᾱ. The
dashed lines represent where the scalaron vanishes.
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aðsÞ ¼ a0ðs − scÞγ; ð108Þ

with γ > 0. Then, by virtue of (107), the relevant equations
would be

x0 ¼ ka
a20ðs − scÞ2γ

; ð109Þ

t0 ¼ C0 þ
ka

a0ðs − scÞγ
: ð110Þ

Now, if we integrate these equations to understand what
happens, we obtain

xðsÞ ¼ xc þ
kaðs − scÞ1−2γ
a20ð1 − 2γÞ ; ð111Þ

tðsÞ ¼ tc þ C0ðs − scÞ þ
kaðs − scÞ1−γ
a0ð1 − γÞ ; ð112Þ

which are smooth if 0 < γ < 1=2 and 0 < γ < 1, respec-

tively. Note that if 1=2 < γ < 1, then xðsÞ !s→sc �∞, which
would imply travel to infinity in finite coordinate time.
Conversely, if 0 < γ < 1=2, then the path of a geodesic will
cover the range ft; xg ∈ ð−∞;∞Þ, and those geodesics
would be complete despite the vanishing of some scale
factors at some instant in time. Since this result is strongly
dependent on how rapidly the zero is reached, we have to
inspect the value of γ relative to the solution in Fig. 3(b).
This can be performed in the following way: for various
values of γ, Eq. (112) can be inverted for sðtÞ which,
substituted in (108), gives the scale factor aðsðtÞÞ as a
function of t. This can be compared with the numerical
solution in Fig. 3(b) obtained in the previous section.
The results shown in Fig. 4 indicate that the solution

approaches zero too rapidly, corresponding to a value of γ
larger than 1=2. We are thus forced to conclude that the
example shown in Fig. 3(b) does represent a geodesically
incomplete spacetime.
Since geodesics describe the propagation of high-

frequency (or infinite frequency) modes, it is convenient
also to have a look at the behavior of scalar field
perturbations in order to test how finite frequencies evolve
upon encountering a divergence in the Hubble function. In
this regard, one can consider a generic scalar field or simply
assume the existence of small inhomogeneous perturba-
tions of the field ψ around a given homogeneous back-
ground solution. In all such cases, for a scalar mode of the

form σk⃗ðt; x⃗Þ ¼ ΘðtÞeik⃗·x⃗, one finds an equation of the form

Θ̈þ hðvÞ _v
v
_Θþ

�
k2x
a2

þ k2y
b2

þ k2z
c2

�
Θ ¼ 0; ð113Þ

where hðvÞ represents some regular function of the volume
v and k⃗ ¼ ðkx; ky; kzÞ represents a set of constants. From
this expression, it is evident that scalar modes feel the
presence of the individual scale factors a, b, and c, and of
the Hubble function 3H ¼ _v=v.
We will now discuss generic situations and will then

particularize to the cases found in our model. First of all, we
note that if the scalar factors a, b, and c do not vanish
anywhere, then the last term in (113) is well behaved and
bounded. Any potential problems should come from the
damping term involving the Hubble function H ¼ _v=3v,
which for finite time singularity diverges. In vacuum, in
particular, one finds that as v2 → 4jηIj≡ v2c the Hubble
function can be approximated as

H2 ≈
κμ2I
210

ð32þ 27λ2AIÞ
ðv − vcÞ2

: ð114Þ

From this equation, we see that the divergent piece _v=v
goes like

_v
3v

≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κμ2I
210

ð32þ 27λ2AIÞ
ðv − vcÞ2

s
≡� C1

jv − vcj
; ð115Þ

where the � sign corresponds to the expanding/contracting
phase. This result can be used to write

_v ≈� 3vcC1

jv − vcj
; ð116Þ

jv − vcj ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
6vcC1

p
jt − tcj1=2: ð117Þ

This solution shows that in the vacuum case scalar
perturbations satisfy a second-order linear differential
equation with an avoidable singular point at t ¼ tc, where
v ¼ vc. The dominant contribution in the neighborhood

FIG. 4. Outcomes of null geodesics test for α < ᾱ. Scale factor
aðsðtÞÞ for different values of γ and ka ¼ C0 ¼ a0 ¼ 1. The
dashed black line represents the numerical solution aðtÞ reported
in Fig. 3(b).
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of tc can be obtained by neglecting the last term in (113),
such that we are left with

Θ̈� h̃c
jt − tcj1=2

_Θ ≈ 0; ð118Þ

where h̃c ≡ hðvcÞ
ffiffiffiffiffiffi
3C1

2vc

q
. It leads to

ΘðtÞ ≈ Θc þ
_Θc

2h̃2c
e∓2h̃cjt−tcj1=2ð1� 2h̃cjt − tcj1=2Þ; ð119Þ

with Θc, _Θc integration constants. As expected, this
expression is finite regardless of the sign of the parameter
h̃c and confirms that scalar field perturbations remain
bounded around tc despite the divergence in the Hubble
function.
Following a similar reasoning, we can explore what

happens to scalar perturbations in scenarios with dust and
radiation such as those corresponding to Eq. (101). In that
situation, the worst case scenario (or strongest divergence)
would correspond to having a triple root in the denomi-
nator, such that H2 ≈ C2=ðv − vcÞ6. This would lead to
jv − vcj ∼ jt − tcj1=4 and _v=v ∼�1=jt − tcj3=4, from which
one finds

Θ̈� h̃c
jt − tcj3=4

_Θ ≈ 0; ð120Þ

where now h̃c ¼ hðvcÞð3C2=v3cÞ1=4. Therefore, one has

Θ ≈ Θc −
_Θc

32h̃4c
e∓4h̃cjt−tcj1=4ð3� 12h̃cjt − tcj1=4

þ 24h̃2cjt − tcj1=2 � 32h̃3cjt − tcj3=4Þ; ð121Þ

which is easy to see to be again bounded. We conclude,
therefore, that in the nearby of finite time singularities, both
in vacuum and in the presence of matter, scalar perturba-
tions are always well behaved, guaranteeing together
with geodesic completeness the physical feasibility of such
solutions. Conversely, when the Hubble function is regular
but one of the scale factors vanishes, Eq. (113) describes a
harmonic oscillator with a time-dependent frequency,

Θ̈ðtÞ þ k2x
a2ðtÞΘðtÞ ≈ 0; ð122Þ

which diverges as aðtÞ → 0. Though there might be cases
in which the integrated solution yields a finite result, for the
values of aðtÞ obtained numerically in the previous section
neither geodesics nor scalar perturbations are well behaved.

VIII. CONCLUSION

In this paper, we proposed an extension of the Nieh-Yan
form to the framework of metric-affine gravity, by includ-
ing an additional term depending on nonmetricity and
featuring two parameters (λ1, λ2), which allow to restore
the projective invariance and the topological character. In
particular, we showed that projective invariance is a
property which can be independently recovered by setting
the values of the parameter as λ1 ¼ λ2 ¼ λ, whereas top-
ologicity is only obtained for λ ¼ 1.
We considered, then, a model described by the Lagrangianffiffiffiffiffiffi−gp
FðR;NYgenÞ, which conveniently expressed in the

Jordan frame features two new scalar fields. We identify
these additional scalar degrees as a fðRÞ-like scalaron ϕ and
the Immirzi field β. In this framework, the latter acquires
dynamical character and a potential term in a more natural
way than in previous treatments, where these features were
introduced by hand in the action.
Two different effective scalar tensor theories arise,

depending on the values of λ1 and λ2. If they coincide,
i.e., in the projective invariant case, the theory is endowed
with an additional dynamical degree of freedom, the
Immirzi field, while the scalaron is algebraically related
to the latter via a modified structural equation. Models with
λ1 ≠ λ2, instead, are nondynamical, in the sense that both
can be expressed as a function of the trace of the stress
energy tensor, by analogy with Palatini fðRÞ theories.
In particular, this implies that in vacuum both scalar fields
boil down to constant values ϕ0 and β0, and we recover GR
with a cosmological constant which now depends on the
value of the Immirzi parameter via the potential term,
i.e., Λ ¼ Wðϕðβ0Þ; β0Þ=2.
Eventually, we controlled that in order to reproduce

previous results in the literature where nonmetricity is
a priori neglected, the vanishing of the latter must be
enforced as a constraint in the action via a Lagrange
multiplier. This comparison with previous works yields
two relevant outcomes. On the one hand, the reduction to
the correct Einstein-Cartan version of the NY term is a
consistency check on the specific expression for NYgen we
defined in (33). On the other hand, the results obtained in
the analysis explain why, despite the violation of projective
symmetry, the degrees of freedom of the corresponding
theories are healthy (as was the case for the models
previously analyzed in [33,34,37,38,47,58–60]). This is
due to an on-shell recovery of projective invariance assured
by the condition Sμ ¼ 0 [see (49)].
We considered, thus, in more detail the dynamical

models. We first established an equivalence with the
subclass of DHOST theories which are experimentally
compatible and verified that, in general, the Immirzi field is
always devoid of ghost instabilities.
Then, we specialized to a quadratic model described

by FðR;NYgenÞ ¼ Rþ αR2 þ NYgen and looked for
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cosmological solutions starting from a Bianchi I metric.
For negative values of the parameter α, we found solutions
characterized by different behaviors of the fields. A
common feature of these solutions is that the big bang
singularity is removed in favor of a big-bounce scenario, in
which the volumelike variable undergoes a contraction up
to a minimum value and then bounces back, reexpanding
symmetrically in another branch. This behavior also arises
in isotropic scenarios when the NYgen term is not included
[70,94], though in Bianchi I configurations, those models
fail to generate nonsingular solutions [69]. The first
investigation carried out in the absence of any matter
content revealed the presence of a finite time future
singularity after the bounce, in which the first derivative
of the volume becomes infinite, while the volume itself and
the scale factors are finite. Nonetheless, in the neighbor-
hood of this point, null geodesics are well behaved and
scalar perturbations bounded, which allows us to conclude
that the solution is physically acceptable. The scalaron and
the Immirzi field reach a maximum during the bounce and
relax to constant values at later times, where the standard
LQG picture, with ϕ ¼ 1 and a constant Immirzi parameter
β ¼ β0, is recovered. When dust and radiation are included
in the analysis, the solutions separate into two classes,
depending on the value of α compared to ᾱ, defined in
(105). If α < ᾱ, the only difference with respect to the
vacuum configuration is that both dust and radiation are
able to provide an isotropization effect at late times, a
feature that is absent in vacuum. In the range ᾱ < α < 0,
instead, we find a different scenario. The future finite
time singularity in the evolution of the volume of the
Universe is absent, and the latter and its derivatives are
always regular, but the singularity is then transposed to
the evolution of the scale factors. These encounter either a
zero or a singularity at finite time tc after the bounce.
Concurrently, the scalar field ϕ vanishes, reaching neg-
ative values in the proximity of the bounce, while the
Immirzi field continues to relax to a constant for late
times. In this case, however, the study of null geodesics
shows that they cannot be extended across the singular
point, where also scalar perturbations grow in time,
leading us to regard such solutions as unphysical.
Summarizing, we showed that a Bianchi I cosmology

can be characterized, in the present geometrical framework,
by a big-bounce scenario for the early Universe and an
isotropization behavior for the late Universe. Furthermore,
the typical singularities appearing in this type of geomet-
rical Lagrangian, when applied to a cosmological sector,
say the various versions of the so-called big rip [71,72], are
here associated to a viable phenomenology.
The value of having investigated the Bianchi I model,

moreover, consists in the general role that a Kasner-like
dynamics plays in constructing the general cosmological
solution [61,95,96] (see also [68,97]) for a Bianchi I
bouncing cosmology in the polymer quantization scheme.

We conclude by observing that, in the considered sce-
nario, the Immirzi field always approaches, in the late
Universe, a constant value, according to the idea that a
geometrical Lagrangian compatible with LQG can be
recovered as a result of the cosmological dynamics, from
more general affine formulations of the geometrodynamics.
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APPENDIX: ANALYTIC EXPRESSIONS FOR
CRITICAL VALUES OF THE VOLUME

In this Appendix, we report the expression for the
volume at the bounce (vB) in the vacuum case, in terms
of the Immirzi and anisotropy energy densities, i.e.,

v2B ¼ −
1

3ð1þ λ2AIÞηI

�
21=3ð4þ 3λ2AIÞ

Q4
3
ðλAIÞ

þ ð2þ 3λ2AIÞη2I þ
Q4

3
ðλAIÞ
21=3

η4I

�
; ðA1Þ

where we define the quantities

Q4
3
ðλAIÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 −Q2ðλAIÞλAI þ 45λ2AI þ 27λ4AI

3

q
; ðA2Þ

Q2ðλAIÞ≡ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ 91λ2AI þ 86λ3AI þ 27λ4AI

q
; ðA3Þ

and the value of the volume at the finite time singularity in
the presence of matter, which results to depend on the
Immirzi and the dust energy densities, i.e.,

vr ¼
1

3

�
ηD −

21=3ð12ηI − η2DÞ
P1ðηI; ηDÞ

þ P1ðηI; ηDÞ
21=3

�
; ðA4Þ

where we introduced

P1ðηI; ηDÞ≡
�
2η3D − 17ηDηI þ P5

3
ðηI; ηDÞ

�
5=3

; ðA5Þ

P5
3
ðηI; ηDÞ≡ 48

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηIðηI þ 4η2DÞ

�
ηI −

5η2D
256

�s
: ðA6Þ
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