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Abstract— Transferring human motion to a mobile robotic
manipulator and ensuring safe physical human-robot interac-
tion are crucial steps towards automating complex manipu-
lation tasks in human-shared environments. In this work, we
present a novel human to robot whole-body motion transfer
framework. We propose a general solution to the correspon-
dence problem, namely a mapping between the observed human
posture and the robot one. For achieving real-time imitation and
effective redundancy resolution, we use the whole-body control
paradigm, proposing a specific task hierarchy, and present a
differential drive control algorithm for the wheeled robot base.
To ensure safe physical human-robot interaction, we propose
a novel variable admittance controller that stably adapts the
dynamics of the end-effector to switch between stiff and
compliant behaviors. We validate our approach through several
real-world experiments with the TIAGo robot. Results show
effective real-time imitation and dynamic behavior adaptation.
This constitutes an easy way for a non-expert to transfer a
manipulation skill to an assistive robot.

I. INTRODUCTION
Service robots may assist people at home in the future.

However, robotic systems still face several challenges in
unstructured human-shared environments. One of the main
challenges is to achieve human-like manipulation skills [1].
Learning from demonstrations is arising as a promising
paradigm in this regard [2][3][4]. Rather than analytically
decomposing and manually programming a desired behavior,
a controller can be derived from observations of human
performance. However, transferring human motion, in a way
that demonstrations can be easily reproduced by the robot,
ensuring a compliant and safe behavior when physically
interacting with a person in assistive or cooperative domains,
is not straightforward. Imitation is an intuitive whole-body
motion transfer approach due to the similarities in embod-
iment between humans and service robots (Figure 1). A
fundamental problem is to create an appropriate mapping
between the actions afforded to achieve corresponding states
by the model and imitator agents [5]. This problem is known
in literature as the correspondence problem. It implies deter-
mining what and how to imitate. Another key challenge on
the whole-body motion transfer problem, in human-centered
robotics applications, is to ensure that the learned skill can
be reproduced in a safe and compliant manner. This requires
to adequately balance two opposite control objectives: a tight
tracking of the motion being imitated, and a reactive behavior
to interaction forces, allowing a steady-state position error.
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Fig. 1. Transferring human motion to robots while ensuring safe human-
robot physical interaction can be a powerful and intuitive tool for teaching
assistive tasks such as helping people with reduced mobility to get dressed.

The classical approach for human motion transfer is
kinesthetic teaching. The teacher holds the robot along the
trajectories to be followed to accomplish a specific task,
while the robot does gravity compensation [6]. The main
advantage of this approach is that it avoids solving the
correspondence problem. However, since the robot must
be held, is not suitable for robots with a high number of
degrees of freedom (DOF) such as humanoids, limiting the
taught motions. By solving the human-robot correspondence,
the robot can learn more human-like motion policies. This
field has been very active in the recent years. In [7] the
authors present an approach for imitating the human hand
and feet position with a Nao robot by solving the inverse
kinematics (IK) of the robot, while ensuring stability with
a balancing controller. Instead of solving the IK for the
robot end-effectors, in [8] the authors propose a direct joint
angle retargeting, alleviating the computational complexity.
The main limitation of these works is that their solutions
are strongly robot-dependent. This issue is addressed in [9],
where the authors enhance scalability for motion transfer
by establishing a correspondence between human and robot
upper-body links in task space. Although excellent results are
achieved regarding the motion imitation, physical interaction,
which is of critical importance for robots operating in human
environments, is not considered in these works.

Variable admittance control [10] is a suitable approach
for modulating the robot behavior during physical human-
robot interaction. However, research efforts have been mainly
focused on cases where the robot motion is only driven by the
force exerted by a human [11][12]. This is not the case for a
robot imitating the human posture, where a reference position
should also be considered. An approach with a constant
impedance profile has been proposed recently in [13].



In this work we propose a general framework for easily
transferring human-like motion to a mobile robot manip-
ulator. We propose a novel imitation based whole-body
motion transfer interface. The main contributions are on
the formulation of a general solution to the correspondence
problem, and the definition of a control scheme for effective
real-time whole-body imitation while ensuring compliance
and stability during physical human-robot interaction. The
paper is organized as follows: in Section II we discuss the
main aspects of the proposed system; in Section III we
present the conducted experiments to validate our approach;
finally in Section IV, we summarize the main conclusions.

II. WHOLE-BODY MOTION TRANSFER FRAMEWORK

Achieving accurate, real-time robotic imitation of human
motion while ensuring safe physical human-robot interaction,
involves several steps. The first one is to adequately capture
human motion [14][15]. Then, we should determine what
and how to imitate. This implies not only to determine
a correspondence between human posture and the robot
configuration, but also an effective management of the DOF
and account for the robot constraints [16][17]. Finally, com-
pliance and an accurate position control should be adequately
balanced since they involve different dynamics [18]. In this
section we present the proposed methods to address these
challenges.

A. Motion Capture
Motion capture is a way to digitally record human move-

ments. Data is mapped on a digital model in 3D [19]. Inertial
motion capture, compared to camera-based systems, does not
rely on any external infrastructure allowing it to be used
anywhere [20]. We use the Xsens MVN motion capture
suit. It uses 17 body-attached inertial measurement units
(IMUs) to obtain a body configuration and provide a real-
time estimation of the human posture. The suit is supplied
with MVN Studio software that processes raw sensor data
and estimates body segment position and orientation. It is
capable of sending real-time motion capture data of 23 body
segments using the UDP/IP communication protocol.

B. Correspondence Problem
The correspondence problem can be stated as: given an

observed behaviour of the human, which from a given start-
ing posture evolves through a sequence of subgoals in poses,
the robot must find and execute a sequence of actions using
its own (possibly dissimilar) embodiment, which from a
corresponding starting posture, leads through corresponding
subgoals to corresponding poses [5]. This accounts that the
human and robot may not share the same morphology or
affordances. This problem requires adequate considerations
regarding the differences in the kinematic chains and joint
limits. It can be divided into three subproblems:
• Observation: Measure the person state

(
f o
p : P →O

)
.

• Equivalence: Establish a relation between the observed
state and the robot desired posture

(
f g
o :O→G

)
.

• Imitation: Determine the robot configuration that allows
to achieve the goal state

(
f g
r :R→G

)
.

where f a
b is the mapping from B to A and P , O, G and

R refer to the person state, observation, goal and robot
configuration spaces respectively.

Formally, the problem is finding f r
p : P →R, defined as:

f r
p = f o

p ◦ f g
o ◦ ( f g

r )
−1 (1)

where ◦ is the composition operator and ()−1 the inverse.
Based on this definition, the solution depends on the motion
capture system, as it conditions the observation space. Using
a system like the one presented in Section II-A, O = SE (3)n,
where n is the number of observed person segments and
SE (3)n an n-dimensional array of three-dimensional Eu-
clidean groups. Each element of the array is a homogeneous
transformation from reference i to j:

T j
i =

(
R j

i p j
i

0 1

)
(2)

where R j
i ∈ SO(3) and p j

i ∈ R3 are the rotational and trans-
lational components, respectively.

Then, f o
p : P → SE (3)n and f g

o ◦
(

f g
r
)−1 : SE (3)n→R.

Ultimately, the problem is finding a mapping between Carte-
sian and robot configuration spaces. This is a problem
widely studied in robotics. Currently, specially in humanoid
robotics research, where robots have a high number of DOF,
frameworks for defining

(
f g
r
)−1 : SE (3)m→R in such a

way that the pose of m robot links can be constrained in
Cartesian space are being developed, such as Whole-Body
Control [21]. Therefore, in order to make our proposed
solution as general as possible, it seems convenient to define
a correspondence function such as f g

o : SE (3)n→ SE (3)m.
This can be summarized in the following scheme:

P
person

f o
p−−−→O = SE (3)n

observations

f g
o−−−→ G = SE (3)m

goal

( f g
r )
−1

−−−−→ R
robot

We consider that the pose is equivalent if, with respect to
an arbitrary fixed reference frame, the difference in position
and orientation of the person’s right (or left) wrist, elbow,
chest, and the projection of the pelvis onto the floor; and
the equivalent links of the robot up to an scaling factor,
is zero. Given Tp f

po , Tpt
p f , Tpe

ps and Tpw
ps where po, p f , pt,

ps, pe and pw stand for the person arbitrary origin, virtual
footprint, torso, shoulder, elbow and wrist reference frames
respectively and an example of an equivalent person-robot
pose i.e. corresponding state (e.g. Figure 2). We propose that
the analogous robot pose is fully-determined by Tr f

ro , Trt
r f , Tre

rs
and Trw

rs , where ro, r f , rt, rs, re, rw are the equivalent robot
links. Their rotational components are defined as:

Rr j
ri = Rsri

pi ·R
p j
pi (3)

where pi and ri (also p j and r j) are arbitrary equivalent
person and robot links, and Rs is the rotation when both are
in the equivalent example pose. The translational components
are similarly defined as:

pr f
ro = pp f

po prt
r f = Lrt

r f ·
ppt

p f∥∥∥ppt
p f

∥∥∥ (4)



pre
rs = Lre

rs ·
ppe

ps∥∥ppe
ps
∥∥ prw

rs = pre
rs +Lrw

re ·
ppw

ps −ppe
ps∥∥ppw

ps −ppe
ps
∥∥ (5)

where Lrt
r f is the robot’s base to torso height when the

torso is fully extended, Lre
rs and Lrw

re are the lengths of the
robot’s equivalent shoulder to elbow and elbow to wrist
segment respectively. Therefore, a complete definiton of
f g
o : SE (3)n→ SE (3)m is provided.

Fig. 2. Mapping in Cartesian space for an equivalent pose between a
human model and the TIAGo robot. The colors red, green and blue are
the x, y and z axes of each reference frame, respectively. Note that for the
particular case of a robot with a morphology like TIAGo rt ≡ rs.

C. Whole Body Control

Whole-Body Control (WBC) [22] has been proposed as a
promising research direction when using robots with many
DOF and several simultaneous objectives. The redundant
DOF can be conveniently exploited to meet the multiple tasks
constraints [23][24]. Given a set of k control actions targeting
an individual task xi ∈ SE(3), which defines a desired motion
in Cartesian space, a generic definition of a WBC is [21]:

.q = J†
1

.x1 +J†
2

.x2 + · · ·+J†
k

.xk (6)

where q ∈R is the robot configuration, J†
i = JT

i
(
JiJT

i
)−1 is

the Moore-Penrose pseudo-inverse of the ith task Jacobian
which is defined by .xi = Ji

.q. A task can represent, for
example, the end-effector pose or the available joint range.

A hierarchical ordering among tasks can be defined. Let
NAi = I− JA

†
i JAi be the null-space projector of the aug-

mented Jacobian JAi = (J1, . . . ,Ji). Then, the joint velocity
can be determined with the following relationship [25]:

.qi =
.qi−1 +JiNAi−1 (

.xi−Ji
.qi−1)

.q1 = J†
1

.x1 (7)

This allows the ith task to be executed with lower priority
with respect to the previous i− 1 task, not interfering with
the higher priority tasks. If Ji is singular, the ith task cannot
be satisfied. However, the subsequent tasks are not affected
since the dimension of the null-space of JAi is not decreased.

For whole-body imitation, the robot needs to achieve mul-
tiple varying goals in Cartesian space simultaneously. This
makes WBC a suitable control framework, since they can
be defined as a set of tasks with an adequate hierarchy. The
main advantage over other inverse kinematic solvers is that
the WBC can find online solutions automatically preventing
self-collisions and ensuring joint limits. We are using PAL

robotics implementation for the upper-body, which is based
on the Stack of Tasks [26]. Taking into consideration the
equivalence human-robot relations presented in the previous
section, we propose the following task hierarchy:

1) Joint limit avoidance
2) Self-collision avoidance
3) Torso position control
4) End-effector pose admittance control
5) Elbow pose control

The first two tasks should always be active with the higher
priority for safety reasons. The torso task is of higher priority
because, by constraining the torso, the arm DOF are not
affected, but the opposite is not true. Then, defining the end-
effector task with the higher priority we ensure a correct end-
effector goal tracking, which is important for manipulation
tasks. The use of admittance control for this particular task
in discussed in Section II-E. Then, with the elbow task we
ensure the arm posture imitation. In the particular case that
the robot arm has human-like structure, which is the case of
the TIAGo robot, a correct imitation can be achieved with the
presented hierarchy. With the WBC we focus on redundancy
resolution, finding the optimal configuration to accomplish
the high-level task.

D. Differential Drive Base Control

Differential drive base is a mechanism used in many
mobile robots, such as TIAGo or Roomba [27]. It usually
consists on two drive wheels mounted on a common axis
[28]. Linear and angular velocity are the control commands
[29]. Let (x,y,θ)T be the coordinates that define the base
pose. Let v and ω be the instantaneous linear and angular
velocity commands respectively. The kinematic model is:( .x .y

.
θ
)
=
(

vcosθ vsinθ ω
)

(8)

with the non-holonomic constraint .ycosθ− .xsinθ = 0, which
does not allow movements in the wheels’ axis direction.

Using the notation presented in Section II-B, the robot
footprint pose should coincide with the person’s, plus an
arbitrary constant offset for a successful imitation. It is an
inverse kinematics problem i.e., find the velocity commands
that allow the robot to reach a given pose. Common path
planning frameworks address this problem [30]. However,
most of them are not suitable for cases where the goal is
constantly changing at a rate of a human walking, which
makes the robot remain in a planning state. Additionally,
they do not consider backwards motion, which might be
needed. We propose a computationally simple implementa-
tion, summarized in Algorithm 1 to address these issues.
When initialized, it assumes the person and the robot foot-
print frames are coincident in an arbitrary fixed reference
frame. Then the relative transform between the person and
the robot footprint is determined at each time step. When
the robot is further than a certain margin to the reference,
angular velocity commands orientate the robot towards the
goal position. If the robot position is close enough, angular
velocity commands align the robot with the goal orientation.



Algorithm 1: Differential Drive Base Imitation
/* ε,δ,λ,σ: design parameters */
/* ()yaw: yaw component of rotation */
/* ()x,y: x,y component of translation */
/* Tb

a: transforms defined in Section II-B */
/* x axis is assumed as forward */

Tpo
ro = Tr f

ro Tpo
p f ; // Initialize Tp f

r f = I
while True do

Tp f
r f =

(
Tp f

ro

)−1
Tpo

ro Tp f
po ; // Relative transform

if
∥∥∥pp f

r f

∥∥∥< ε then

v = 0 ω = λ ·
(

Rp f
r f

)
yaw

else if
(

pp f
r f

)
x
< 0 and

∣∣∣(Rp f
r f

)
yaw

∣∣∣< δ then

v =−σ ·
∥∥∥pp f

r f

∥∥∥
ω = λ ·

(
arctan

(
pp f

r f

)
y(

pp f
r f

)
x

−π · sgn

[
arctan

(
pp f

r f

)
y(

pp f
r f

)
x

])
else

v = σ ·
∥∥∥pp f

r f

∥∥∥ ω = λ · arctan

(
pp f

r f

)
y(

pp f
r f

)
x

end
end

E. Variable Admittance Control

Admittance control [31] is a method where, by measuring
the interaction forces, the set-point to a low-level motion
controller is changed through a virtual spring-mass-damper
model dynamics to achieve some preferred interaction re-
sponsive behavior [32]. In simple cases, the parameters of
such a system can be identified in advance and kept fixed.
However, when interaction forces are subject to uncertain-
ties, the desired response can be adaptively regulated [33].
Variable admittance control allows to change the dynamics
in a continuous manner during the task. When imitating
the human posture in real-time, an accurate pose control is
desirable, so a stiff behavior is preferable. On the other hand,
when physically interacting with a human, a compliant (i.e.
low stiffness) behavior is of vital importance to ensure safety
[34][35]. The virtual end-effector dynamics:

M(t)
..e(t)+D(t)

.e(t)+K(t)e(t) = Fext (t) (9)

where inertia M(t) ∈R6×6, damping D(t) ∈R6×6 and stiff-
ness K(t) ∈ R6×6 determine the virtual dynamics of the
robot, e(t) = x(t)− xre f (t) ∈ R6×1, when subjected to an
external force Fext (t) ∈ R6×1. xre f (t) and x(t) are, in our
particular case, the reference position provided by the human
and the position passed to the WBC, respectively.

If M(t), D(t) and K(t) are constant, the system will
be asymptotically stable for any symmetric positive definite
choice of the matrices. However, in this work we assume that
M remains constant while D(t) and K(t) vary in time. It can
be proved (see [36]) that for a constant, symmetric, positive
definite M, and D(t), K(t) continuously differentiable, the
system is globally asymptotically stable if there exists a γ > 0
such that, ∀t ≥ 0:

1) γ M−D(t) is negative semidefinite
2)

.
K(t)+ γ

.
D(t)−2γ K(t) is negative definite

Without loss of generality, we can assume that M, D(t)
and K(t) are diagonal matrices, since they can always
be expressed in a suitable reference frame. Therefore, the
system can be uncoupled in six independent scalar systems.
To condense, we focus on the translational DOF. However,
for the rotational components, the deduction is analogous:

m ..e(t)+d (t) .e(t)+ k (t) e(t) = fext (t) (10)

As design criteria, we will ensure a constant damping ratio
ζ > 0. Thus, the damping is chosen as d (t) = 2ζ

√
mk (t).

By substituting on the second stability condition, it yields
the following upper bound for the stiffness derivative:

.
k (t)<

2γ

√
k (t)3√

k (t)+2ζ γ
√

m
(11)

In order to switch the robot role between follower, i.e.
compliant to the external force (kmin), and leader (kmax)
[37][38], we propose a continuously differentiable scalar role
factor α (t)∈ [0,1] and the following varying stiffness profile:

k (t) = kmin +α (t)(kmax− kmin) (12)

Role adaptation can be derived from the interaction force
feedback. Experience of varying stiffness control suggests
that continuous and smooth variations show no destabiliza-
tion tendencies. We propose the following role factor profile:

α (t) =
1

1+ e−(aψ(t)+b)
(13)

where a and b are design parameters and ψ (t) ∈ [0,1] is
a proposed interaction factor that varies according to the
interaction force feedback. Note that higher values of a
give a faster transition between roles while b determines the
value of ψ (t) at which the transition starts. We propose the
following interaction factor dynamics:

.
ψ (t) =


c+ if ‖Fext (t)‖> Fthres and ψ 6= 1

c− if ‖Fext (t)‖ ≤ Fthres and ψ 6= 0

0 else

(14)

where Fthres is the force threshold to consider physical
human-robot interaction, and c− < 0 and c+ > 0 are design
parameters. Note that the values of c+ and c− modulate
the transition speed when switching from leader to follower
and from follower to leader roles respectively. As a design
guideline, for safety reasons it is important to achieve a fast
stiff to compliant transition, but that is not the case for the
opposite. Thus, high c+ values are desirable but c− values
should be kept relatively smaller in absolute value.

From the first stability condition, since the damping profile
is bounded, taking the least conservative constraints, we
obtain γ = 2ζ

√
kmin. Given that all the varying parameters are

bounded, we can determine an upper bound of the stiffness
profile derivative, and a lower bound for the second stability
condition. Thus, a sufficient stability condition is:

−a · e−b (kmax− kmin)c−

(1+ e−b)
2 <

4ζ

√
k3

min

1+4ζ
√

m
(15)



Fig. 4. From left to right: The operator hand reference (in dashed line) and the robot’s end-effector (in continuous line) trajectories on the x-y plane;
evolution over time of the operator and the robot elbow-wrist and elbow-shoulder segments angle φ ; finally, a series of snapshots of the experiment using
the TIAGo robot and the motion capture system. The mean absolute error for the end-effector position is 11 cm and 0.05 rad for the elbow angle.

Tuning the parameters empirically, we have assigned ζ =
1.1, m = 1 kg, kmin = 10 Nm−1, kmax = 500 Nm−1 (Nmrad−1

for the rotational components), a = 20, b =−5.5, c− =−0.2
and c+ = 1.5 for all the DOF. By direct substitution, the
sufficient stability condition holds. For filtering the noise in
the interaction force feedback signal coming from the 6-axis
force sensor we implemented a moving average filter [39]
of 25 samples (40 Hz sampling rate). An overview of the
variable admittance controller can be seen in Figure 3.

Fig. 3. Role adaptive admittance controller with human in the loop.

III. EXPERIMENTAL RESULTS

We carried out three different real-world experiments to
validate the proposed approach, using the TIAGo robot, with
10 DOF excluding the head, and the Xsens motion capture
system. The objective of the first experiment was to show
the upper-body motion similarity when using the proposed
solution for the correspondence problem and the WBC with
the presented task hierarchy. In the second experiment we
tested the mobile base imitation using the proposed algorithm
for differential drive control. For the third experiment we
evaluated the performance of the role adaptation mecha-
nism and that the stability condition derived analytically is
sufficient to ensure a stable behavior. Additionally, several
demonstrations are included as a supplementary video.

A. Upper-body Motion Transfer

The robot performed real-time imitation while the human
operator described a spiral trajectory with the hand. To

evaluate the motion similarity, we compared the trajectory
described by the robot’s end-effector and the evolution of
the angle formed by the robot elbow-wrist and elbow-
shoulder segments with the reference trajectories. Results
are shown in Figure 4. The obtained mean absolute error
for the end-effector position is of 11 cm and of 0.05 rad
for the elbow opening angle. As it can be seen, the robot
is able to describe a spiral with the end-effector accurately
while imitating the arm posture with its 7 DOF, proving a
successful redundancy resolution. It can also be seen, from
inspecting the results, that although a real-time imitation is
achieved, the commanded motion is of an average speed of
11 cm/s. During the experiments, we observed that due to
the robot’s joint speed limits and own inertia, the operator
movements should be limited to low speed motions.

B. Base Motion Transfer

The operator described a path with a series of turns while
the robot moved in parallel. The obtained results are shown in
Figure 5. The mean absolute error in position is of 19 cm and
of 0.31 rad in orientation. It can be observed that the robot
motion is very similar to the reference trajectory. We are
able to imitate the operator pose during the walking motion
through velocity commands with the proposed algorithm. It
should be remarked that the non-holonomic constraint does
not apply to human walking motion. Therefore, in order to
achieve a successful imitation the operator trajectory should
not include side steps. However, when the non-holonomic
constraint is not satisfied in the operator movement, for a
sufficient large time, the base position and orientation always
converge to the reference if it remains static.

C. Role Adaptation

A reference trajectory was commanded to the robot, while
executing the motion, the end-effector is grasped by a person,
displacing it from its goal trajectory. Then, it is released.
The experiment results are shown in Figure 6. The results
show how, when the grasping occurs, the interaction factor
starts to increase, while the stiffness rapidly decreases to
switch the robot behavior from stiff to compliant. This allows



Fig. 6. (a) End-effector goal trajectory (dashed line). In blue, the trajectory described by the end-effector when the robot is playing the leader role
(high stiffness). In red, the trajectory followed when the end-effector is grasped and the robot is playing the follower role (low stiffness). (b) Evolution
of the interaction factor. (c) Stiffness profile. (d) Stability bound for the derivative of the stiffness profile (dashed line) and stiffness derivative evolution
(continuous line). (e) A closer look at the area of the previous plot where the derivative and the stability bound reach the minimum difference.

Fig. 5. Position (x and y) and orientation (θ ) along a path described by
the robot base (continuous line) and the goal trajectory (dashed line). The
mean absolute error in position is 19 cm and 0.31 rad in orientation.

to easily move the end-effector away from its commanded
trajectory. When it is released, the interaction factor starts to
decrease while the stiffness starts to restore its initial value
and the robot end-effector position converges to the original
trajectory. Note that when the stiffness is at its minimum
value the difference between the stability bound and the
stiffness profile derivative reaches its minimum value. Nev-
ertheless, stability is fulfilled during the whole realization.
No oscillations or unstable behavior were observed.

IV. CONCLUSION

In this paper we have presented a human to robot whole-
body motion transfer framework. Imitation, on the one hand,
offers many advantages, not only because it is intuitive, but
also because it allows to transfer human-like motion to the
robot. On the other hand, it involves solving the correspon-
dence problem. We present a novel general solution, that first,
defines the equivalence between an arbitrary human body
posture and the corresponding robot posture as a goal pose

for a series of links in Cartesian space. Then, we propose a
whole-body control scheme to find the robot configuration
that attains simultaneous goals. By defining an adequate task
hierarchy, we achieve an effective upper-body redundancy
resolution. Furthermore, we have presented an algorithm
that allows the robot differential drive base to imitate the
human translation (through walking) motion. Finally, when
a robot is operating in human-shared environments it is
important to ensure safe human-robot interaction. However,
achieving a compliant behavior and accurate position con-
trol are opposite objectives. We propose a novel variable
admittance controller that allows continuous adaptation of
the end-effector dynamics when physically interacting with
a human by means of scalar role and interaction factors. For
the proposed controller, we have derived analytically a state-
independent and sufficient condition for ensuring stability.

Experimental results show that an effective whole-body
imitation is achieved in real-time. Moreover, the robot suc-
cessfully adapts its role when physical interaction with a per-
son occurs. Experimentation has shown that the main limiting
factors preventing faster imitation are the robot’s joint speed
limits and inertia. Imitating translation, for differential-drive
bases is limited because of the non-holonomic constraint.

This work has contributed a building block to a robotic
system able to learn skills through demonstrations. The
proposed approach to transfer human body motion to a
mobile manipulator provides an easy way for a non-expert
to teach a rough manipulation skill to a service or as-
sistive robot. Afterwards, the robot would autonomously
practice and improve the skill (e.g., its accuracy) through
reinforcement learning [40]. Future research towards learning
dexterous manipulation skills will address the challenge of
generalizing and adapting the learned motion when dealing
with uncertainty. The combination of imitation learning and
variable admittance control is a promising first step towards
robots performing complex manipulation tasks in human-
shared environments.
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