
For Peer Review

1

Ca2+ mishandling in heart failure: potential targets

Short title: New calcium -targets for heart failure

Almudena Val-Blasco1*, Marta Gil-Fernández1*, Angélica Rueda2$, Laetitia Pereira3$, 
Carmen Delgado4,6$, Tarik Smani5,6$, Gema Ruiz Hurtado7,8$, and Maria Fernández-
Velasco1,6#

*Co-first authors

$ Contributed equally 

1 La Paz University Hospital Health Research Institute, IdiPAZ, Madrid, Spain

2 Department of Biochemistry, Center for Research and Advanced Studies of the National 
Polytechnic Institute (CINVESTAV-IPN), México City, México 

3 INSERM UMR-S 1180, Laboratory of Ca2+ signaling and cardiovascular physiopatholy, 
University Paris-Saclay, Châtenay-Malabry, France

4 Instituto de Investigaciones Biomédicas Alberto Sols, Madrid Department of Metabolism and 
Cell Signalling, Biomedical Research Institute "Alberto Sols" CSIC-UAM, Madrid, Spain.

5 Department of Medical Physiology and Biophysics, University of Seville, Seville, 41009, 
Spain. Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, 
University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, 41013, Spain.

6 Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 
Madrid, Spain. 

7 Cardiorenal Translational Laboratory, Institute of Research i+12, University Hospital 12 de 
Octubre, Madrid, Spain

8 CIBER-CV, University Hospital 12 de Octubre, Madrid, Spain

#Author for correspondence:

Maria Fernández Velasco

Instituto de Investigación Hospital Universitario La PAZ; IdiPAZ

Paseo de la Castellana 261

Madrid 28046

E-mail: maria.fernandez@idipaz.es/ mvelasco@iib.uam.es

Page 1 of 53 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2

Twitter: @Mvelasco, @CIBER_CV, @idiPAZscience, @Cardiorenal_Lab; @cardio_ciencia; 
@IIBmCSICUAM

Keywords: Calcium handling, Ryanodine, Heart failure, EC coupling.

The authors declare that there is no conflict of interest

Page 2 of 53Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3

ABSTRACT

Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure 

(HF). In many cases, the impairment of key players of thein intracellular Ca2+ homeostasis has 

been determinant inidentified as the underlying mechanism of cardiac dysfunction and cardiac 

arrhythmias associated with HF. In the presentthis review, we summarized the main primary 

and novel findings related to Ca2+ mishandling in HF progression. Increasing HF -research has 

increasingly been focused on the identification of new targets and the contribution of their role 

in the management of Ca2+ handling with significance into the progression of the disease. 

Experimental Recent rresearch studies have pointed identified potential targets in out three 

major emerging fieldsareas implicated in regulation of Ca2+ handling:, the innate immune 

system, bone metabolism factors, and post-translational modifications of key proteins involved 

in regulation of Ca2+ handling in the regulation of the Ca2+ handling. Here, we described their 

possible contributions to the progression of HF.

1. INTRODUCTION

Heart failure (HF) is a complex syndrome that affects more than 15 million people in 

Europe.1–3 HF occurs when the heart is unable to maintain cardiac output at normal filling 

pressures caused by various aetiologies such as ischaemia, stroke, mechanical stress and 

pressure overload, genetic diseases, diabetes, or atherosclerosis, among others.4 HF is 

commonly associated with mechanical stress-induced cardiac remodelling, neuro-hormonal 

activation, structural changes, and Ca2+ mishandling. Nowadays, oOur knowledge of the 

molecular pathways involved in HF has is continually growngrowing, rendering revealing HF 

as a highly complex pathology. Since the eighties, two distinct phenotypes of HF have 

emerged: HF with reduced ejection fraction (EF) (HFrEF), characterized by systolic 

dysfunction, and HF with preserved EF (HFpEF), with diastolic dysfunction. Recently, Kilfoil 

PJ et al., have  described whether different  regulation in of Ca2+ handling is shown in HFrEF 

or HFpEF.5 This Our review focuses on the cardiomyocyte intracellular Ca2+ dependent 

mechanisms involved in early, mild or end stages of HFrEF.

HFrEF is characterized by a depressed cardiomyocyte contractile function, which of 

cardiomyocytes leadsing to reduced left ventricular contraction during systole. DThe  defective 

cardiac contractility is associated with an impaired excitation-contraction (EC) coupling, a 

mechanism that converts electrical stimuli from the pacemaker cells into contraction via 
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through a massive Ca2+ release from the sarcoplasmic reticulum (SR).6 The most common 

changes of in EC coupling associated with HF are: a) reduced systolic SR-Ca2+ release through 

type 2 ryanodine receptors type 2 (RyR2s), b) decreased reuptake of Ca2+ into the SR by the 

Sarcoplasmic/Endoplasmic Reticulum Ca2+ ATPase 2a (SERCA2a pump), c) increased Ca2+ 

extrusion through sodium-calcium exchanger (NCX), and d) increased diastolic SR Ca2+ leak. 

All of these alterations contribute to reducing SR Ca2+ load, limiting the amount of SR Ca2+ 

needed to produce optimal cardiomyocyte contractions. Moreover, several studies have 

reported a reduction in the maximal force-generating capacity of the myofilaments in HF, as 

well as, biochemical alterations of the contractile apparatus, including suppression of α-myosin 

heavy chain expression,7 switching of troponin T isoforms,8 and decreased basal cyclic 

adenosine-monophosphate (cAMP)-dependent phosphorylation.9 More Additional elements 

are likely involved in the control of cardiac intracellular Ca2+ handling, such as transient 

receptor potential (TRP) channels. The fineExquisite orchestration of all these elements results 

is required for in an adequate EC-coupling and cell contraction.

This review aims seeks to provide an overview of the main processes underlying changes 

observed in EC coupling during HF. We have also compelled compiled interesting data 

relatinged to promising new targets in Ca2+ handling management, uncovering emerging 

research areas such as including new mediators of the immune system, bone metabolism 

factors, and post-translational modifications of key proteins involved in Ca2+ handling 

regulation. 

2. BASIS OF EXCITATION-CONTRACTION COUPLING 

In the heart, EC coupling in the heart relies on the Ca2+-induced Ca2+-release (CICR) 

mechanism. Following Eelectrical stimulation from the sinoatrial node and travels through the 

conduction system during the plateau phase of the cardiac action potential, triggering an inward 

Ca2+current (ICaL) from through the voltage-dependent L-type Ca2+ channels (LTCCs, localized 

in the T-tubules). ICaL, in turn, stimulates the opening of Ca2+ channels/ryanodine receptors 

type 2 (RyR2s) found in the junctional SR (jSR). The RyR2sthat mediate the release of a large 

quantity of Ca2+ from luminal SR into the cytoplasm, increasing free intracellular Ca2+ 

concentration ([Ca2+]i). Ca2+ binds to troponin C, allowing enabling cardiac contraction. After 

cardiomyocytes contract, the [Ca2+]i returns to diastolic levels, which leadsing to 

cardiomyocytes relaxation. There are two principal mechanisms by which Ca2+ is removed 

from the cytoplasm: a) Ca2+ is pumped back to the SR by the SERCA2a pump, and b) Ca2+ is 
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extruded via the NCX. Additional minor mechanisms contribute to Ca2+ removal, including the 

plasmalemma Ca2+-ATPase and the mitochondrial Ca2+  uniporter ( Panel I, Figure 1).10   

2.1 Key actors in the EC-Coupling

2.1.1 L-Type Calcium channel

The LTCC is a macromolecular protein complex comprised of pore-forming Cav1.2 (α subunit) 

and auxiliary subunits that modulate channel function.11,12 These channels are mainly primarily 

found on the transverse (T)-tubules of cardiomyocytes and are activated by depolarization of 

the sarcolemma.13,14 LTCCs have play a central role during the plateau phase of the action 

potential by allowing an inward ICaL for cardiac EC coupling,13  intracellular signalling 

pathways,15 and gene regulation.16 T-Tubular LTCCs and RyR2s from the SR membrane 

associate closely to form a dyad microdomain in ventricular cardiomyocytes. Their proximity 

is essential to developing an adequate sufficient CICR process. Application Studies of healthy 

rat and human ventricular myocytes using of super-resolution scanning patch-clamp, along 

with confocal and fluorescence microscopy techniques to healthy rat and human ventricular 

myocytes, indicated demonstrated that the probability of finding LTCCs on the sarcolemmal 

surface was 3- to 4- fold less than in T-tubules,17 which is consistent with previous reports 

supporting reporting that the majority of ventricular LTCCs are found on T-tubules.18 Evidence 

suggests that some regulatory proteins such as junctophilin-2 (JPH2),  or protein bridging 

integrator 1, or amphiphysin-2 (BIN1) are crucial for the maintenance of dyad microdomain 

integrity.19  JPH2 is essential for T-tubologenesis during postnatal development of the heart,20 

and because it  promotes T-tubules structural stability, allowing enabling connections between  

T-tubule invaginations to functional  SR organelles in order to maintain efficient ECC.21,22 

BIN1 is reported to play a key role in LTTC trafficking to the T-tubules23 and in the process of 

folding the T-tubules’ inner membrane to limit ion diffusion.24 

The major functional regulation of LTCCs occurs at its cytosolic C-terminal region, which 

containsing various phosphorylation residues involved in fast regulatory responses,25 as well 

as the IQ motif, a specific interaction domain for calmodulin.26 Calmodulin binding to the IQ 

motif modulates LTCC function by inducing Ca2+-dependent inactivation or Ca2+-dependent 

facilitation.26–28

2.1.2 The type 2 ryanodine receptors
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The RyR2s are high-conductance intracellular Ca2+ channels that mediate the release of Ca2+ 

from the SR. Among mammalians RyR isoforms, type 2 represents the most abundant subtype 

in cardiomyocytes. The RyR2 is the largest ion channel currently known, with a molecular 

mass exceeding 2.2 MDa. A single RyR2 channel is assembled as a homotetramer, in which 

each subunit contains 4,968 aa’s amino acid residues. Images from optical super-resolution 

microscopy have demonstrated that cardiac RyR2s are organized in functional groups or 

clusters within the Ca2+ release units (CRU’s), which , the latter are constituted comprised of 

of four proteins: LTCCs, RyR2s, junctin, and triadin, located in the jSR.29,30. RyR2 contains 

two functional domains: (1) the central rim formed by the N-terminal, central and pore-forming 

domains; and (2) the external region containing the handle, P1, and P2 domains. Of main 

primary importance is the phosphorylation domain in P2 that contains many targets for multiple 

kinases (mainly of which Ser2808, Ser2814, and Ser2030 are most important in regulating Ca2+ 

homeostasis) for multiple kinases.30–33 The RyR2 also forms a complex with two major protein 

kinases, the cAMP-dependent protein kinase A (PKA) and the Ca2+/calmodulin-dependent 

protein kinase II (CaMKII), as well as, three protein phosphatases (PP1, PP2, and PP2B). It is 

thus clear that indicating the importance of RyR2 phosphorylation plays a crucially important 

role in Ca2+ regulation.34 

RyR2s is activated when [Ca2+]i reaches a certain level into in the dyad or when the SR-free 

Ca2+ ([Ca2+]SR) is over theexceeds physiological levels.35 RyR2s regulation relies on several 

mechanisms, including a) direct Ca2+ interactions, both at the cytosolic and luminal sides; b) 

accessory cytoplasmic regulatory proteins, such as 12.6-KDa FK506-binding protein 

(FKBP12.6), sorcin36 and JPH2;37 and c) SR luminal proteins, for instance, calsequestrin, 

triadin, and junctin.38

SA suitable inactivation of RyR2s is critical to minimize inappropriate SR Ca2+ release events 

between heartbeats.10 Several mechanisms are participateing in the termination of Ca2+ release 

via RyR2: (1) Ca2+-dependent inactivation/adaptation of RyR2s by cytoplasmic and luminal-

SR proteins,; (2) spontaneous decay of RyR2s activity due to stochastic attrition, and (3) 

depletion of SR-Ca2+ stores, which that induces the RyR2 inactivation.39 There are different 

forms of diastolic Ca2+ release: Ca2+ quarks, Ca2+ sparks, Ca2+ waves, or and spontaneous Ca2+ 

transients.40 Ca2+ sparks have a physiological role in maintaining the balance of SR-Ca2+ stores 

balanced between systole and diastole. 

2.1.3 Sarco/endoplasmic reticulum Ca2+ ATPase 2a
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SERCA2a is the predominant cardiac isoform of SERCA, which  and controls cytosolic 

Ca2+  removal rate and SR refilling (SR Ca2+  load) in cardiomyocytes. SERCA2 is distributed 

in the SR (longitudinally and transversely) and near the T-tubules throughout 

cardiomyocytes.41 To transfer Ca2+ ions into the SR, SERCA2a uses two specialized domains: 

E1 and E2. During cardiomyocyte relaxation, Ca2+ binds to E1, after ATP binding42; and the 

SERCA2a then pumps Ca2+ into the SR lumen to restore [Ca2+]SR steady-state. Although 

SERCA2a interacts with a wide array of proteins (including HRC, PP1,; calreticulin, S100A, 

and sarcolipin), phospholamban (PLN) is the most important regulator of its activity.43 At In 

the its unphosphorylated state, PLN inhibits SERCA2a activity by lowering the Ca2+ affinity 

of the pump. PLN has two relevant phosphorylation sites: Ser16, a target of cAMP and cGMP-

dependent protein kinases, such as PKA and protein kinase C (PKC),; and Thr17  by 

CaMKII.44,45 PLN phosphorylation of PLN at either of these residues results in the formation 

of pentameric complexes, relieving PLN inhibition on SERCA2a and  and increasing its 

pumping rate, thereby enhancing SR Ca2+ uptake. Specifically, Thr17 phosphorylation by 

CaMKII increases SR Ca2+ uptake; while phosphorylation of Ser16 also enhances SERCA2a 

activity and SR Ca2+ uptake.46 Finally, SERCA2a is highly sensitive to cytosolic metabolic 

changes, including the ATP/ADP ratio, pH, and redox potential.47,48 

2.1.4 Sodium Calcium exchange and Voltage-gated Na2+  channel 

The NCX is the main route for Ca2+ extrusion from the cardiomyocyte. NCX and others 

participate in cardiomyocyte relaxation by restoring cytosolic Ca2+ levels. In the forward mode, 

NCX exchanges one Ca2+ for three Na+ (INa/Ca);49 while in the reverse mode, NCX produces 

Ca2+ influx. The driving force determining NCX direction and function is the electrochemical 

gradient (Ca2+ and Na+ membrane potential and Ca2+ and Na+ transmembrane gradient).50 NCX 

is regulated by (1) by the small inhibitory protein phospholemman and it is(2) through 

phosphorylationed by PKA and PKC, both of which induceing its inhibition.51 During PKA 

and PKC phosphorylation, phospholemman increases cardiomyocytes’ contractility by 

inhibiting the forward mode of NCX forward mode and increasing [Ca2+]i.

The sodium (Na+) current (INa) in ventricular cardiomyocytes is composed by of a peak (INa-P), 

responsible for the initial upstroke of the AP,; and a late current (INa-L) which that contributes 

to the formation of the AP plateau.  INa is produced by the cardiac isoform of the voltage-gated 

Na+  channel (Nav1.5, Uniprot entry Q14524) operating in special gating modes.52 The 

Na+This  channel is a hetero-multimeric protein composed of a pore-forming α subunit of 2,016 
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aa’s residues, encoded by the  SCN5A  gene, and auxiliary β subunits. The α subunit consists 

of four homologous domains (DI–DIV). Each domain contains 6 transmembrane segments 

(S1–S6), of which the S4 segment functions as a voltage sensor and the S5 and S6 regions form 

the pore with an  intermembrane P-loop.53 More than 400 mutations have been identified in the 

SCN5A gene and are associated with an increasingly wide range of congenital arrhythmias 

including long QT syndrome 3 and Brugada syndrome 1.53 AlsoMoreover, the participation of 

INa-L in the pathophysiology of HF has been extensively studied.pathophysiological 

participation of INa-L in HF has been studied long ago52, and compelling reviews have been 

written about it.54,55

2.1.5 Transient receptor potential channels

The transient receptor potential (TRP) channels are cation channels that contribute to the Ca2+ 

influx evoked by a wide spectrum of chemical and physical stimuli in cardiac cells.56 Since 

their first discovery, several TRP isoforms have been identified and are, grouped into six major 

subgroups based on their specific function and sequence analogies, have been identified: (1) 

TRPC (the canonical channel), (2) TRPV (the vanilloid-related channel), (3) TRPM (the 

melastatin-related channel), (4) TRPA (the ankyrin-related channel), (5) TRPP (polycystin-

related channel), and (6) TRPML (the mucolipin-related channel) (see for review).57,58 The 

expression of TRP isoforms in the heart was examined in isolated cardiomyocytes, in cardiac 

cell lines, and in heart tissue, as reviewed elsewhere.56,59

TRP channels can be activated by vasoactive agonists (e.g., endothelin-1, thrombin, ATP, 

angiotensin-II, or bradykinin),; by extracellular ions (e.g., H+, Ca2+ , and Mg2+),, or intracellular 

second messengers (e.g., diacylglycerol (DAG), phosphoinositide-4,5-bisphosphate (PIP2)), or 

by temperature and mechanical stretch, as reviewed elsewhere.60–62 Interestingly, functional 

TRP channels can be formed by homomeric and heteromeric oligomerization of TRPC, TRPM 

and TRPV subunits.63–65 

Considerable evidence suggestsed that TRP channels, especially TRPC isoforms, play a role 

in the store operated Ca2+ entry (SOCE) in cardiac myocytes.66 SOCE is a Ca2+ entry pathway 

driven mainly by Orai1, the pore-forming sub-unit of the channel.,67 which Orai 1 is activated 

by intercellular Ca2+ stores depletion,, which is  detected by STIM1 (Stromal Interaction 

Molecule 1), a Ca2+ sensor located in the sarcoplasmic reticulum called STIM1 (Stromal 

Interaction Molecule 1).68 
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To examine the intracellular Ca2+ handling in cardiac myocytes, cells are routinely either 

treated with (1) receptor agonists thats evokeing IP3-dependent Ca2+ release from the 

intracellular store or by (2) drugs that depleteing the store, which activates the SOCE. The 

participation of TRPC1, C3, C4, C5 and C6 in SOCE has been examined in adult rodent cardiac 

myocytes, in cardiac cell line and in neonatal rat ventricle myocytes, using RNA silencing, 

neutralizing antibodies, or dominant-negative transgenic micetransgenic mice expressing that 

are dominant-negative of for these proteins.69–73 

3. Ca2+ MISHANDLING IN HEART FAILURE

3.1 EC uncoupling in heart failure

HF is commonly associated with a subcellular dys-synchrony related to the detrimental 

structural and functional detrimental remodeling of the cardiomyocyte.6,47,74 Indeed, the loss of 

the dyadic structure observed in HF, together with a reduction in the overall T-tubules density 

and the consequent loss of tight coupling between LTCCs and RyR2s, results in 

desynchronized CICR and reduced Ca2+ transient amplitude. This, in turn,, leads ing to 

contractile dysfunction,, as observed in rats with experimental heart failureHF induced by left 

coronary artery ligation.75 As part of the dyad, LTCCs on the T-tubules and RyR2s on the SR 

are closely associated to control the control over CICR  Structural alteration of T-tubules has 

been repeatedly observed in animal and human failing hearts associated with ischemic heart 

disease, idiopathic dilated cardiomyopathy, and hypertrophic obstructive cardiomyopathy.18,76 

It has been reported recently that disruption of membrane structure associated with HF 

(decrease in regularity and internal density of T-tubules), led to the redistribution of LTCCs 

from T-tubules to the sarcolemmal surface (extradyadic space). Interestingly, these 

redistributed LTCCs show a significant increase in open probability (Po), which could be linked 

to a higher phosphorylation of the channel12,77 and might help to understandclarify why the 

widely reported, perplexing observation that whole-cell ICaL density has been widely reported 

to not beis not altered in failing cardiomyocytes.78,79 Moreover, it has been postulated that the 

delocalization-induced increased in channel activity can be associated with an enhancement of 

net inward currents during the plateau phase of the AP (window ICaL but alsoand late INa) that 

can contribute to the development of early after depolarizations development and ventricular 

arrhythmogenesis in HF.

T-tubule adaptor proteins JPH2 and BIN-1 play an important role in T-tubules remodeling and 

dyad uncoupling during heart failure progression. As previously explained, JPH2 promotes T-
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tubule structural stability, and connects T-tubules to the junctional SR.21,80,81 Interestingly, 

JPH2 is downregulated in the failing heart of patients and mice with hypertrophic 

cardiomyopathy;.82,83 suggesting that may bethis downregulation could represent an early 

molecular event preceeding pathological remodeling. Moreover, cardiac specific JPH2 

knockdown in adult mice resultsed in HF and increased mortality,21 whereas JPH2 gene therapy  

preventsed loss of T-tubules and suppressed abnormal SR Ca2+ leak associated with contractile 

failure following transverse aortic constriction (TAC) in mice.84 BesidesMoreover, a 

significant reduction in  the expression of the  scaffold protein BIN-1 has been reported in 

failing human hearts 85 and in experimental  models of HF induced by overload or ischemia.86,87 

Decreased BIN1 levels promote T-tubules losst86 and T-tubules folding reduction,24 impairing 

dyad formation, calcium transient regulation, and cardiac contractility.86,88

Recent studies have shown that cardiac BIN1 replacement therapy can improve myocardial 

function and Ca2+ handling  in mice with pre-existing HF  (Li et al. 2020; Liu et al. 2020).89,90 

Also, BIN1 can be detected in plasma:  and several studies have proposed BIN1 use of the 

protein as a potential biomarker for pathological cardiomyocyte remodeling in patients with 

HFpEF.85,91

3.2 Reduced Sarcoplasmic reticulum Ca2+ load in heart failure

HF is usually associated with depressed SR Ca2+ load, mostly due to an impairment in of the 

SR Ca2+ re-uptake by SERCA2a;  and in some cases, HF is associated with increased diastolic 

RyR2 leak. Classically, the majority of studies have demonstrated decreased SERCA2a activity 

in patients with HF. In many cases, SR-Ca2+ load in HF is reduced, in part, due to the down-

expression of SERCA2a, which  compromisesing SR Ca2+ reuptake, as observed in ischemic 

HF patients and in post-myocardial infarction animal models.92–94 As Because SERCA2a is 

unable to resequesteruptake all the sufficient Ca2+ for to enable relaxation to occur, NCX 

expression levels are increased as a compensatory mechanism to extrude the excess 

intracellular Ca2+ necessary excess to maintain [Ca2+]i.95,96 Both diminished SERCA2a 

function and augmented NCX activity tend to reduce SR Ca2+ content, limiting SR Ca2+ release 

through RyR2s and decreasing both systolic Ca2+ release and cardiomyocyte contractility, as 

described in a HF rabbit model induced by aortic insufficiency.10

SERCA2a gene therapy has been under evaluation in clinical trials for new HF treatments.97–

101 Some authors have described observed  that the introduction of SERCA2a into isolated 

cardiomyocytes from HFrEF patients and in experimental models results in the improvement 

of myocardial contractility.102,103 However, discrepancies regarding the beneficial benefits role 
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of targeting SERCA2a in the clinical practice arosehave arisen.101,104,105 Gene therapy targeting 

SERCA2a was tested in the Calcium Upregulation by Percutaneous Administration of Gene 

Therapy in Cardiac Disease (CUPID) trials. In the CUPID1 trial, intracoronary adeno-

associated virus type 1 (AAV1)/SERCA2 or placebo was administrated to 39 patients with 

advanced HF:  and a reduction in clinical events and hospitalization duration were was 

observed.104 However, these results were not confirmed in the CUPID2 trial.101 CUPID2 was 

a phase 2b multinational, double-blind, placebo-controlled trial that included 250 patients with 

HFrEF: the trial failed to  that did not showdetect any evidence of improved outcomes at the 

evaluated dose of AAV1/SERCA2.101 The failure effect can might be explained by a possible 

low efficiency of gene transduction or, maybe perhaps, by post-translational regulatory factors 

of SERCA2 in human HF. In fact,C regarding ompounding the discouraging results of the 

CUPID2 trial, other clinical trials stopped recruiting patients as when the SERCA-LVAD trial, 

which assessed the feasibility and security of AVV1/SERCA2a delivery in human hearts, 

finally foundconcluded that after patients follow- up that the total transgene DNA levels were 

very low with and produced no functional benefit.106 Post-translational modifications of 

SERCA2 result in alteration of its activity and stability, as observed in patients with non-

ischemic cardiomyopathy.107 SERCA2a undergoes redox modifications that often promoteing 

SERCA2a inhibition and SR-Ca2+ depletion, as seen with SERCA sulfonylation at cysteine-

674 (Cys-674) and nitration at tyrosine- 294/295 (Tyr294/295), which blocking ATPase function 

and participatingelicit in changes in SR-Ca2+ uptake,  and inducing cardiac dysfunction in 

senescent mice and rat hearts .108,109 More recently, in a study investigating a mouse model of 

propionic acidemia that with harbour systolic impairment observed that , oxidized methionine-

361 (Met361) dethiomethylation of 207, 220, 239, 452 and 622 have described, these changes 

werewas closely associated with a depressed SR Ca2+ uptake by SERCA2a, thus compromising 

SR-Ca2+ load and cell contractility in this these mice.110 Importantly, the small ubiquitin-related 

modification 1 (SUMO1) of SERCA2 (SUMOylation) has been shown to decrease 

significantly in human HF; conversely, , while SUMO1 restitution by adeno-associated-virus-

mediated gene delivery maintained SERCA2a protein levels and significantly improved 

cardiac function in mice with HF induced by TAC.95 SoThus, increasinged pieces of 

informationevidence relatinged to posttranslational changes in SERCA2a appear is coalescing 

intoas an emerging field of research into the healthy and failing heart and will hopefully help 

to uncover new targets to for improvinge cardiac contractility in HF. 

As previously mentioned, PLN is the main regulator of SERCA activity. During HF, 

phosphorylation levels of PLN are decreased either at Ser16,111,112 Thr17,113 or both,114,115 
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resulting in SERCA2a inhibition and depletion of SR Ca2+ content. This decrease in PLN 

phosphorrylation can result from an increase in phosphatase PP1 activity, as observed in 

patients with HF due to idiopathic dilated cardiomyopathy,111 or a diminution of Thr17 

phosphorylation due to elevated PP2B (calcineurin) activity.116 Interestingly, cardiac-specific 

overexpression of PLN impairs Ca2+  handling by through the inhibition of SR Ca2+  uptake, 

leading to reduced SR Ca2+  load and contractile dysfunction.117 In contrast, PLN down-

expression results in enhanced SR Ca2+  uptake and contractile function due to a higher affinity 

of SERCA2a for Ca2+.118  Identification of several mutations in the human PLN gene of HF 

patients with arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, 

hypertrophic cardiomyopathy and peripartum cardiomyopathy has highlighted a prominent 

role of PLN in EC coupling.119 Notably, a heterozygous deletion of Arg14 (R14del) of the PLN 

protein has been identified mostly in the Netherlands: , where carriers presented awere at high 

risk of for developing ventricular arrhythmias and HF, and were diagnosed with 

arrhythmogenic cardiomyopathy.120 Arginine 14 is involved in the PKA phosphorylation site 

at the Ser 16;, therefore thus, a mutation in Arg14 in of PLN could be related to partial 

disruption of the stability of the PLN pentamer, leading to augmented PLN monomer 

concentration and, consequently, to SERCA2a inhibition.121

To elucidate the molecular mechanism underlying the pathogenesis of the R14del-PLN 

mutation, patient-specific iPSC-derived cardiomyocytes (iPSC-CMs) from a patient carrying 

the mutation were generated., proving The iPSC-CMs exhibited progressive impairment of 

Ca2+ handling impairment and with an arrhythmic profile, along with  and abnormal 

cytoplasmic distribution of PLN protein, which correlates with the fatal arrhythmias and 

abnormal PLN cellular aggregation observed in R14del patients.122 In addition, heterozygous 

PLN-R14del mice developed cardiac dysfunction, increased myocardial fibrosis and PLN 

protein aggregation after 18 months old. Moreover, standard HF therapy with beta-blockers 

could not reverse the disease progression in heterozygous PLN-R14 del mice.123 All these 

results pointed to provide a better understadingkey insights into of the role of PLN in HF as , 

since it is a key regulator of SERCA2a activity, thus controlling SR Ca2+ load and the cardiac 

contraction-relaxation cycle.

3.3 Increased diastolic Ca2+ leak as a pro-arrhythmogenic mechanism associated with 
HF

Diastolic RyR2 activity increases significantly During in HF, the activity of RyR2s increases 

significantly during diastole resulting in increased diastolic SR Ca2+ leak., This leak, in turn, 
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corresponding totriggers spontaneous RyR2s openings in during the refractory period, 

diminishing the SR-Ca2+ load (Panel II, Figure 1). 

Several studies have reported increased diastolic Ca2+ leak, measured as Ca2+ sparks or Ca2+ 

waves in animal models experimental and human failing hearts.47,50,124–126 Diastolic Ca2+ leak 

can be related to several factors, such asincluding the higherincreased activity of modulatory 

proteins activity or elevated posttranslational modifications: for instance, phosphorylation or 

oxidation. Also, the higher elevated SR Ca2+ leak in HF may increase the likelihood of triggered 

arrhythmogenic events propagating as Ca2+ waves, which activate a transient inward current 

via NCX,  that givinges rise to arrhythmogenic delayed after-depolarizations (DADs), as 

described in overload or and ischemia HF animal models.126–129 HF can also be linked to 

enhanced or “hyper”  phosphorylation  and redox modification of RyR2s: that in the majority 

of cases, these modifications induced increased diastolic Ca2+ leak.130–134

As previously mentioned, NCX is a key regulator of intracellular Ca2+ content.135 NCX 

upregulation is a common feature of both human and animal HF.136,137 As such, changes often 

occur simultaneously with SERCA2a downregulation, so that a marked increase in 

NCX/SERCA2a ratio is commonly reported:, and it this altered ratio has been implicated in 

both cardiac dysfunction and arrhythmogenesis.138 Chronic up-regulation of NCX results in 

maladaptive cardiac remodeling since due to the fact that NCX extrudes [Ca2+]i rather than 

does not restoringe SR Ca2+ stores.139 As Further, because NCX is an electrogenic ion 

exchanger, the more Ca2+ is extruded from the cardiomyocyte means that, the more Na+ enters. 

Under In pathological conditions, this added Na+ influx can depolarize the cardiomyocyte 

membrane, generating new action potentials that lead to pro-arrhythmogenic events, as 

described in a rabbit model of HF induced by combined aortic insufficiency and stenosis.128,140 

Increased diastolic SR Ca2+ release is related to augmented NCX activity in HF, leading to a 

greater larger Na+ inward transient current, which will produce larger depolarizations and 

promoteing DADs.

Among the actors involved in the generation of diastolic HF-associated Ca2+ leak, the hyper-

phosphorylation of RyR2 have gained much interest. 

3.3.1 Post-translational modifications of RyR2 in heart failure 

RyR2 hyper-phosphorylation has generated significant interest as a putative key actor Among 

the actors involved in the generation of diastolic HF-associated Ca2+ leak, the hyper-

phosphorylation of RyR2 have gained much interest. 
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    RyR2 phosphorylation. During the progression of HF, biochemical defects arise in the 

beta-adrenergic receptor (β-AR) signalling pathway. Maladaptive cChronic β-AR activation 

during HF is maladaptive and results in Ca2+ handling dysregulation, mainly primarly by 

inducing posttranslational changes in RyR2, that which, together with cellular effects, 

promotes the progression to myocardial failure,141–144 disruption of cardiac contractility, 

promote arrhythmogenic events, and cardiac dysfunction (Panel II, Figure 1).145

According to Marks’´s hypothesis, in HF, RyR2 hyper-phosphorylation in HF causes 

FKPB12.6 dissociation and RyR2 channel “leakiness,” , as reported in RyR2-S2808A post-MI 

mice that underwent myocardial infarction and in calstabin2-deficient mice.146–148 Specific 

RyR2 sites are hyper-phosphorylated by PKA (Ser2808 and Ser2830, in mice) and by CaMKII 

(Ser2808 and Ser2814, in mice) during HF. A The general agreement consensus is that CaMKII 

phosphorylation of RyR2 opens the channel, favouring Ca2+ leak and DADs,127,149,158,159,150–157 

although some authors describe PKA phosphorylation of RyR2s as the main mechanism of 

abnormal diastolic Ca2+ leak.160–165 Nevertheless, several studies have also shown that PKA-

mediated RyR2 phosphorylation has little or no functional relevance for RyR2-mediated Ca2+ 

leak when SR Ca2+ levels remain constant;166 while other research groups have reported arrived 

at different conclusions.167,168 Still, whether Ser2808, Ser2814 , or Ser2830 are hyper-

phosphorylated in HF remains controversial. Several studies have attempted to elucidate the 

mechanism responsible for diastolic Ca2+  leak, showing that Ser2808 only, Ser2814 only, neither 

residue, or both Ser2808 and Ser2814 are hyper-phosphorylated in failing heart tissue from 

patients with ischemic cardiomyopathy and HF mice models.130,134,148 In addition, Ser2808 

hyper-phosphorylation has been shown to enhance both the open state of the channel and 

diastolic Ca2+  leak in animal models of HF, depleting SR Ca2+  load and impairing EC 

coupling.132,151,169 Indeed, high-resolution  RyR2  cryo-EM  structures showed that Ser2808,2814 

phosphorylations lead to a conformation that promotesfacilitates its the channel’s open state, 

enhancing diastolic Ca2+ leak.170 A recent and very elegant work from Van Petegem´s group 

has shown that prior phosphorylation of Ser2814, a target site of CaMKII, induces an alpha helix 

formation in the phosphorylation domain, facilitating PKA-RyR2 interaction. Hence, the RyR2 

phosphorylation sites are not independent;171 and more evidence favors a synergistic activity 

between both kinases (CaMKII and PKA) as an underlying mechanism in the diastolic Ca2+ 

leak and arrhythmogenic activity in associated with HF.

On the other hand, one study has reported that Ser2030  phosphorylation  remains unaltered in a 

HF rat model with congestive myocardial infarction.172 These Clearly, these conflicting results 
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differences needmust to be clarified with new approaches given the importance of the roles 

played by that PKA and CaMKII play important roles in the regulation of cardiac EC coupling 

in the heart.

During HF , there is also associated with an increase in the phosphatase expression levels;, but 

however, less activity of cellular phosphatase is associated with RyR2s.173 Indeed, reduced PP1 

and PP2A activity in the RyR2 macromolecular complex have been shown to modify RyR2 

phosphorylation levels in rabbits with HF induced by aortic insufficiency followed by aortic 

constriction.151 Pharmacological inhibition of PP2A results in hyper-phosphorylation of the 

RyR2 at site Ser2814, promoting diastolic Ca2+  leak.174 In contrast, unchanged levels of PP1A 

catalytic subunits have also been reported in a canine HF model induced by right ventricular 

tachypacing.175 Other studies have described reduced protein levels of PP1 inhibitor I-1 in 

human failing cardiomyocytes from patients with dilated and ischemic cardiomyopathy,176 

with restored contractility achieved rescued by through genetic overexpression of this 

inhibitorI-1. 

PDEs have also been identified in the RyR2 complex as the main route to lower cAMP and 

cGMP levels inside the cells. Modification of both PDE expression and activity has been 

observed in a canine HF model induced by rapid cardiac pacing.132 There are eleven PDE 

families with different primary structures, catalytic properties, and regulatory mechanisms. On 

one hand, PDEs 2/3/4 regulate the activity of PKA through cAMP hydrolysis,177 modulating 

β-adrenergic response, PKA-dependent RyR2 phosphorylation, and cardiomyocyte 

contractility.178 Specifically, PDE4 deficiency has been shown to induce arrhythmogenesis in 

animal models of HF by PKA  hyper-phosphorylation  of  RyR2.179 On the other hand, 

PDE1/2/5/9 regulate cGMP levels and are overexpressed in HF,  leading to maladaptive 

effects.180 Therefore, the principal role of phosphatases and PDEs in HF remains controversial, 

although emerging evidence suggests a disturbed balance between kinases, phosphatase,s and 

phosphodiesterases activity. A deeper understanding of the functional effects of RyR2 

phosphorylation is mandatory critical to developing new therapeutic tools to for improvinge 

the cardiac dysfunction and associated arrhythmias linked to HF. 

   RyR2 oxidation. Redox signalling also contributes to posttranslational modulation of 

RyR2.181  During HF, cellular damage increases synthesis of reactive oxygen especies (ROS) 

and reactive nitrogen especies,  synthesis leading to chronic oxidative stress with augmented 

cardiac demand.182 Oxidative stress has been associated with elevated SR Ca2+  release183 that 
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leads to abnormally elevated [Ca2+]i  in the myocardium during diastole.184 Sulfhydryl groups 

of cysteine residues on RyR2 can be oxidized by ROS, producing sulfenic, sulfinic, and 

sulfonic acids via disulfide bond formation,  S-nitrosylation, and  S-glutathionylation.185

There is a general consensus that oxidation increases RyR2’s activity,186,187 while reduced 

oxidation leads to a less active channel;188 however, several studies have indicated that the 

effects of oxidative agents towards RyR2 rely on experimental conditions,189 pointing out that 

low concentrations of oxidizing agents activate RyR2, whereas prolonged exposure or elevated 

concentrations of oxidants leads to irreversible RyR2 inhibition.190 

RyR2 oxidation has been shown to induce SR Ca2+  mishandling, arrhythmias, and contractile 

dysfunction in infarcted and failing hearts.125,175,186,188,191–194 It has also been described in the 

pacing-induced HF canine model that carvedilol, a non-selective β-blocker with antioxidant 

properties, preserved the cardiac function by stabilizing the RyR2 structure and preventing its 

oxidation.191 In the a canine model of chronic HF, the increased SR Ca2+ leak has been related 

to RyR2 oxidation.195 Oxidation can also affect RyR2 intersubunit interaction, modifying 

RyR2 function and SR Ca2+  release.196 A recent study pointed out that the redox-mediated 

RyR2 cross-linking has a significant impact on the channel activity and SR Ca2+  release, 

increasing the open probability of the channel and RyR2-mediated Ca2+  leak in ventricular 

myocytes isolated from a rabbit HF model.196

A growing body of evidence demonstrates a direct link between oxidative stress, RyR2 

oxidation, and increased SR Ca2+ leak during in HF. In addition, both phosphorylation and 

redox modifications seem to have an additive effect on RyR2 function. In the non-ischemic 

canine HF model, RyR2 phosphorylation and thiol oxidation occursred during HF: RyR2 

phosphorylation by CaMKII takes place in the early stages of HF followed by RyR2 oxidation 

at later stages.175 In failing heart tissue from patients with ischemic cardiomyopathy, the 

elevated SR Ca2+ leak was associated with RyR2 hyper-phosphorylation on at both PKA and 

CaMKII sites together with thiol oxidation.197 Therefore, any therapeutic strategy for 

preventing HF-associated cardiac dysfunction and arrhythmogenesis will also require further 

insights into the molecular mechanisms that participate inunderlying RyR2 redox regulation 

are essential for the development of specific and effective therapeutic strategies to prevent the 

cardiac dysfunction and arrhythmogenesis associated with HF.

   3.4 Role of TRPs in HF 
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There is a general consensus that TRPs are expressed at very low levels in normal adult cardiac 

myocytes, but their expression and activity change significantly in pathological processes, such 

as HF (for review see 59). Independent reports have established a clear link between the 

alteration of TRP isoforms activation and/or expression with cardiac hypertrophy and fibrosis 

as hallmarks of HF, as summarized in the  Table .56,198,199 For instance, a study using cardiac 

heart samples of patients at thewith end-stage of HF demonstrated that TRP isoforms exhibit 

distinct expression profiles of expression in the left and right ventricles. Indeed, a significant 

increase of in the mRNA levels of TRPC1, C3, C4, and C6 is observed in the failing left and 

right ventricles;, and TRPV2 levels are similarly enhanced. In contrast, levels of TRPM2, M3, 

and M8 are reduced in the failing ventricles, as compared to non-failing control left and right 

ventricles.200 Recently, Dragún and colleagues also showed significant increases in the 

expression of TRPC5, TRPM4 and M7 at the mRNA levels, but with downregulation of 

TRPC4 and TRPV2 in the myocardium samples of end-stage HF patients with who were end-

stage HF candidates to for heart transplantation, as compared to those from healthy donors.201 

The authors also determined in rodents that of the TRP isoforms, only the expression of TRPC1 

is strongly correlateds with the expression of the myocyte-enhancer factor 2c (MEF2c), a 

transcription factor implicated in cardiac hypertrophy and development .202,203  

To unveil the critical role of TRP isoforms in cardiac hypertrophy and HF, several in vivo 

studies were performed in animal models, using knockout (KO) or transgenic mice, with or 

without specific procedures to stimulate elicit cardiac hypertrophy, includingas pressure 

overload induced by TAC, constriction of the pulmonary artery;, or in cardiac myocytes 

chronically treated with angiotensin-II, phenylephrine, endothelin-1, or aldosterone.56,204–208. 

However, the subunit composition of TRP channels in HF is still unknown; and TRPC, TRPV, 

or TRPM may participate in the formation of functional TRP channels underlying pathological 

cardiac remodeling. Future Additional studies are will be eagerly necessarycritical to determine 

the functional significance of these channels and its their transcriptional regulation in HF.

TRPCs. HF are associated withcan be induced by an o verexpression of various TRPC 

isoformsStrategies aiming to induce HF promote the overexpression of different TRPC 

isoforms, which resultsing in higher Ca2+ influx. Independent studies demonstrated that TRPC-

induced Ca2+ influx activates such pro-hypertrophic pathways, as calcineurin/NFAT signaling, 

which initiates the expression of maladaptive hypertrophic genes, leading to HF.56,69 For 

instance, TRPC1 KO mice showed werea prevention protected against of TAC-induced NFAT 
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activation and overexpression of ANP, BNP, and β-Myosin heavy chain (β-MHC), suggesting 

that TRPC1 plays a crucial role of TRPC1 in cardiac hypertrophy induced by pressure 

overload.209 Similarly, cardiac- specific overexpression of dominant-negative (dn) TRPC3, C4, 

and C6 reduces SOCE, NFAT activation, and heart cardiac hypertrophy in the TAC mouse 

model.69 Furthermore, TRPC1/C4 double KO mice showed exhibited similar beneficial 

protective effects on  against pressure overload–induced hypertrophy and interstitial fibrosis.205 

Recently, the role of TRPC1 in cardiac myocytes’ hypertrophy, associated with abnormal 

activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), was 

confirmed in TRPC1-KO human pluripotent stem cell lines generated by CRISPR/Cas9.210 

Moreover, it has been demonstrated that Pyr3, a specific inhibitor of TRPC3, reduces NFAT 

activation, ANP expression, and cardiac hypertrophy evoked by TAC.211 Of note, gain-of-

function transgenic models overexpressing TRPC3 acquire progressive cardiac hypertrophy,212 

or develop cardiomegaly and congestive HF in the case of TRPC6.213 Interestingly, the 

overexpression of TRPC1, C3, and C6 observed in cardiac hypertrophy seems to promote their 

own expression, potentiating Ca2+ influx, NFAT activation, and the expression of hypertrophic 

genes (for review see 198). 

TRPMs. The role of TRPM isoforms in cardiac hypertrophy and HF has been also investigated. 

Morine et al. TRPM4 used TAC and constriction of pulmonary artery animal models, which 

promote left and right ventricle overload, to demonstrate significant upregulation of TRPM3 

and M7, although their mechanism of action was not addressed. Generally, TRPMs are 

generally supposed believed to play a protective role against HF. Indeed, TRPM4-KO mice 

show mild cardiac hypertrophy at 6 months,214 and increased hyperplasia in as neonatesal, 

resulting in eccentric cardiac hypertrophy.215 This concept has been also supported by data 

observed in cardiomyocyte-specific TRPM4-KO mice, challenged by with chronic angiotensin 

II stimulation, in which cardiac hypertrophy parameters and the expression of pro-hypertrophic 

genes are increased compared to control.216 In this waySimilarly, right ventricular pressure load 

evoked by monocrotaline treatment in rats also leads to a prominent downregulation of TRPM4 

protein expression.217 By contrast, a recent study demonstrated that TRPM4 inhibition by 

adeno-associated virus serotype 9 (AAV9)-mediated gene transfer improves cardiac 

contractility, suggesting that TRPM4 knockdown increases inotropic responses. However, this 

model has not yet been tested in an experimental model of HF.218 Similar beneficial effects of 

TRPMs in HF have beenwere observed in a study in whichwith TRPM7 kinase-deficient mice, 

that which developed increased cardiac hypertrophy, fibrosis, and cardiac dysfunction after 
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chronic angiotensin II treatment, indicating that TRPM7 might play a protective role against 

angiotensin II effects.219 On the other hand, angiotensin II stimulation of rat cardiac fibroblasts 

increases TRPM7 expression, increasing Ca2+ influx, NFAT activation, and α-SMA 

expression.220 Therefore, TRPM4 and M7 could be promising targets to for improvinge cardiac 

responses in patients with HF, although their mechanism of action is still unclear.

TRPVs. TRPV1 and 2 are significantly upregulated in mice subjected to TAC.221,222 TRPV3 

is also overexpressed in angiotensin-II-induced cardiac hypertrophy, and is involved in 

calcineurin/NFATc3 signaling activation.223 However, the molecular mechanism underlying 

the role of TRPVs in pathological cardiac hypertrophy remains unclear. Some studies 

determined reporteda reduced increase in heart weight and extracellular matrix remodeling in 

TRPV1-KO mice, compared to wild-type,207 or in the absence of functional TRPV2,222 under 

pressure-overload or physical exercise-induced cardiac hypertrophy, respectively. In contrast, 

others have suggested that Trpv1 gene deletion promotes excessive inflammation and 

exacerbates cardiac hypertrophy after TAC, suggesting a protective role of TRPV1.224 This 

benificial role of TRPV1 has been supported by studies using capsaicin, a specific TRPV1 

agonist. In fact, dietary capsaicin attenuates the effects of pressure overload–induced cardiac 

hypertrophy and the increased cardiac fibrosis in wild type mice; however,, meanwhile, the 

benefits of capsaicin actions are not observed in TRPV1-KO mice.225 Another study showed 

that capsaicin avoids circumvents high-salt diet-mediated cardiac hypertrophy by improving 

the mitochondrial complex I oxidative phosphorylation.226 In contrast, oral delivery of TRPV1 

antagonists reverses the loss-of- function in TAC-induced mice cardiac hypertrophy.227 All In 

aggregate, these data pointed point to TRPs as new targets that with a significant role inly 

modulatinge the progression of HF. 

4. NEW TARGETS FOCUSED OIN Ca2+ MISHANDLING LINKED TO HEART 

FAILURE

Increasing HF -research has been focused on the identification of new targets with a role in the 

management of Ca2+ handling and with a significance in for the progression of the disease. In 

this regard, postranslationals modifications in of key regulators of Ca2+ handling such as O-

GlcNAcylation have increased garnered the attention of a number of researchers. Furthermore, 

a research linea series of studies haves pointed to mediators of inflammationory and mineral 

metabolism mediators as potential new targets. with These mediators have a clear role in the 
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progression on HF, not only by virtue of its their immunological or mineral modulatory effects, 

but also by regulating intracellular Ca2+ dynamics and cardiac function.

4.1 O-GlcNAcylation. 

In HF, cardiac cells undergo a metabolic shift in which they useing a predominantly glycolytic 

substrate rather than fatty acids (as compared to healthy cardiomyocytes). As such, a more 

important fractionhigher precentage of glucose goes through the accessory metabolic pathways 

such as the hexosamine biosynthesis pathway (HBP), leading to O-GlcNAcylation. O-

GlcNAcylation is regulated by a rate-limiting enzyme, the glutamine-fructose-6-phosphate 

amidotransferase (GFAT). Similarly to phosphorylation, O-GlcNAcylation is a fastrapid,  and 

reversible addition of a UDP-O-GlcNAc group to Ser and Thr residues. Contrarily Unlike to 

phosphorylation, which involves a plethora of kinases, O-GlcNAcylation is regulated by by 

only two enzymes: two enzymes only, not a plethora of kinases, which are the O-GlcNac 

transferase (OGT), that which adds the O-GlcNAc group, and the O-GNAcase (OGA), which  

that removes it. Recently, the post-translational modification O-GlcNAcylation has emerged 

as a key player in HF, including in with protein targets controlling Ca2+ handling. Studies have 

shown that cardiac O-GlcNAcylated protein levels increases in common etiologies of HF such 

as diabetes, hypertension, aortic stenosis, and myocardial infarction in both human and animal 

models.228–232 

Most of our knowledge on about the adverse effects of O-GlcNAcylation adverse effects on 

heart cardiac and cardiomyocytes function has been deciphered garnered in from HF models 

with diabetic aetiology or in cells treated with high glucose and glucosamine, a precursor of 

the HBP.228,233 In the diabetic rodent model, Eexpression of key markers of O-GlcNAcylation, 

such as OGT and GFAT, is increased over time in the diabetic rodent model.234 Moreover, Ca2+ 

handling is altered, with a prolonged Ca2+ transient decay time associated with SERCA2 down-

regulation (mRNA and protein) and a decrease of PLB phosphorylation. Interestingly, 

adenoviral overexpression of the OGA, prevents or significantly reduces Ca2+ mishandling and 

improves the contractile cardiac function.233 In an HF mouse model induced by TAC, while 

OGT deletion exacerbateds cardiac dysfunction and fibrosis,235 although SERCA2 expression 

levels were unchanged and both PLB and troponin phosphorylation decreased.235 Contractile 

dysfunction in  an experimental model with high O-GlcNAcylation levels has also been 

attributed to a decreased Ca2+ sensitivity in Ca2+ myofilaments. Indeed, in a type 1 diabetic rat 

model with, similarityly to humans, both OGT and OGA undergo delocalization and changes 

in activity. Interestingly, removal of myofilament O-GlcNAcylation,— using a bacterial analog 
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of OGA,— restores Ca2+ sensitivity in the streptozotocin-induced diabetic rat.236 Furthermore, 

O-GlcNAcylation of cardiomyocytes seems to be involved in ventricular arrhythmogenic 

mechanisms as seenobserved in the progression of HF. The link between O-GlcNAcylation 

and arrhythmia susceptibility arises was established in a with the study of by Erickson et al., 

where in which hyperglycemic conditions activated CaMKII, a key protein involved in HF and 

cardiac arrhythmia. Indeed, they the authors found that in cardiomyocytes treated with high 

glucose, CaMKII undergoes O-GlcNacylation at Ser279. The direct activation of CaMKII 

results in an increased  of diastolic Ca2+ release and exacerbation of arrhythmic events in 

diabetic rats under -adrenergic stress.237 The O-GlcNAc activation of CaMKII activates 

NOX2 and cytosolic production of reactive oxygen species, which could participate intrigger 

ventricular cardiac arrhythmia.238 Finally, in high glucose conditions or in diabetic rat models, 

O-GlcNAcylation leads to a redistribution of Nav1.5 to the cytosol and a decrease in its 

expression at the surface membrane, reducing the Na+ current and increasing late Na+ current. 

This alteration of Na+ channel function is associated with a prolongation of the AP and 

susceptibility to cardiac arrhythmias.239 One of the weakness of most studies resides onlies 

with the diabetic etiology, which could by itself altered EC coupling on its own. Indeed, it is 

commonly admitted acknowledged that obesity, insulin-resistance, or and inflammation 

state—, all found of which are associated with in diabetes—, participatecontribute to in the 

alteration of EC coupling.240–242 With our current knowledge, it has not been conclusively 

solved established whether O-GlcNAcylation is plays a causal role in pathology or whether it 

is a consequence of pathological stress. In this linevein, a recent study aimed sought to solve 

this issue by generating transgenic mice mouse models with myocardial overexpression of 

OGT to control O-GlcNAcylation independently of any pathological stress.243 Interestingly, 

the solely the increased of O-GlcNAcylation lead to severe dilated cardiomyopathy with 

reduced left ventricular ejection fraction, and increased left ventricular diameter at 6 weeks, 

ventricular arrhythmias, and premature death through impairment of mitochondrial complex I 

activity.  However, besides aside froma low diastolic Ca2+, the other components of Ca2+ 

signalling, such as Ca2+ transients and SR load, was were not affected by the OGT 

overexpression. In pathological conditions such as ischemic HF, the decrease of troponin T 

phosphorylation at Ser208 is associated with an increased troponin T of O-GlcNAcylation of 

troponin T at Ser190, showing an interplay between phosphorylation and O-GlcNAcylation of 

sarcomeric proteins in HF.244,245 Although increasing evidence highlights a key participation 

role of for O-GlcNAcylation in the pathology of HF and its progression to ventricular cardiac 
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arrhythmia, our understanding of the underlying mechanisms and its regulation in HF 

independently of diabetes is rather limited and, thus, further studies are still needed.

4.2 The innate immune system, inflammation and Ca2+ handling 

The innate immune system is the first mechanism for host defense against exogenous and 

endogenous dangersthreats. It has the ability to develop an adaptive response, but also to 

perform specific mechanisms that lead to inflammatory responses in order to fight and resolve 

the dangerthreat. Classically, the innate immune system was thought to recognise pathogens 

but, in the lastrecent decades, evidence studies haves revealed that the innate immune receptors 

are also able to recognise endogenous danger signals. These receptors,, known as damage-

associated molecular patterns (DAMPs), that activate the innate immune response by recruiting 

immune cells and initiating the production of pro-inflammatory cytokines. The machinery 

responsible for detecting these DAMPs and triggering the immune response are the pattern 

recognition receptors (PRRs), which include  among others toll-like receptors (TLRs) and 

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), among others. 

Within the NLRs, the NODs and NLRs with a pyrin domain (NLRPs) subfamilies are of great 

importance in HF. 

Several studies have documented the important role of both TLRs and NLRs in patients with 

coronavirus disease 2019 (COVID-19) patients.246–248 It has been shown that a disruption in 

immune system regulation increases the risk of adverse outcomes in patients with COVID-19-

related cardiovascular disease.249,250 Thus, given the key role of innate immunity in 

cardiovascular diseases and its implication in COVID-19, a deeper understanding of the 

interplay between both the cardiovascular and innate immune system during severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, might provide novel therapeutic 

opportunities for the treatment of this pathology and particularly for the associated 

cardiovascular complications. 

Largely studied, TLRs are widely studied and represent, the most wellbest-known PRRs;, are 

they are primarily expressed mainly in immune cells, but also in other cell types such as 

cardiomyocytes. The expression of NLRPs and NODs is ubiquitous in adult tissues;, for 

example, NOD1 is expressed both in innate immune cells as well asand in cardiomyocytes and 

fibroblasts. In healthy tissue, PRRs are involved in the maintenance of tissue homeostasis. In 

Over the last decade, the innate immune system has emerged as a major player in the setting 

and development progression of cardiovascular diseases.251–258 Interestingly, HF is frequently 

developed after myocardial infarction or chronic metabolic stress, leading to a progressive 
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damage of cardiac tissue and provoking the release of proinflammatory cytokines and DAMPs, 

which activate the innate immune response through PRRs.259–261 AThe activation of PRRs 

induces the release of several proinflamatory mediators, such as IL-1β , that can exert harmful 

cardiac effects. In this linevein, a recent study of by Liu et al. in used a high-fat diet diabetes 

type 2 mouse model to demonstrated a link between increased IL-1β expression in the heart, 

increased mitochondrial oxidation, and augmented spontaneous Ca2+ leak from the SR, leading 

to early after depolarizations and arrhythmias.262 Among cytokines, IL-1β is upstream in the 

inflammation pathway and directly implicates innate immune system in the 

deletereusdeleterious cardiac remodelling. Indeed, Monnerat et al. demonstrated that, in a 

mouse model of diabetes type 1, the depletion of TLR2 and NLRP3 in heart macrophages is 

able to reduced IL-1β expression and prevented deleterious cardiac electrical remodelling.263 

It has been reported that HF patients have elevated circulatory levels of TNF-α, IL1-β, and 

other inflammatory cytokines, which are directly related to the severity of HF progression.264–

267 RSome recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis 

Outcomes Study (CANTOS) and the Colchicine Cardiovascular Outcomes Trial (COLCOT), 

support that the notion that specific anti-inflammatory treatments improve the condition and 

prevent mortality in patients with cardiovascular diseases.268,269 

Indeed, novel studies are have recently elucidateding the role of PRRs in cardiac EC coupling 

and HF progression.92,270–274 Classically, TLRs activation has been largely related to 

deleterious alterations in cardiac function after myocardial infarction;,275 and  elevated TLRs 

expression was found in patients who suffered fromfollowing myocardial infarction.276,277 

Studies have revealed that TLR2 or TLR4 deficiency attenuates myocardial inflammation, 

reducing the infarct size, and preventing ventricular dysfunction after ischemia/reperfusion 

injury in mice.278–283 Moreover, the deleterious cardiac deleterious remodellremodeling 

observed in these models was associated with Ca2+ handling impairment. For instance, several 

studies have reported that, upon lypopolysaccharide (LPS) stimulation in rat ventricular 

cardiomyocytes, TLR4 activation triggers action potential prolongation and increases Ca2+ 

efflux through NCX channels, promoting pro-arrhythmogenic events.284–286 Likewise, TLR4 

can also be activated by the inflammatory cytokine high-mobility group  box 1 (HMGB1) 

subsequently leading to ROS overproduction and oxidative stress.287,288  In this sense, the 

blockage of TLR4/ROS signaling appears to prevent the enhanced SR Ca2+  leak caused by 

HMGB1, restoring the depleted SR Ca2+  load, amplitude of systolic Ca2+  transients, and 

contractility in adult rat ventricular myocytes.289 However, the restored cardiac function after 
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TLR4 inhibition seems to be partial, indicating that, not only TLRs, but also other mechanisms 

are implicated in the cardiac Ca2+ remodeling induced by HMBG1. 

The family of NLRPs is associated with inflammasomes, which are macroprotein complexes 

that activate caspase-1, leading to production of pro-inflammatory cytokiness production such 

as IL-1β, IL-18, and HMGB1.290,291 The activation of the NLRP3 inflammasome is caused by 

cellular damage indicators including Ca2+ mobilization and mitochondrial dysfunction.292 

Furthermore, Ca2+  signaling has been suggested as a key regulator of NLRP3 

inflammasome.293 In this regard, Ca2+-sensing receptor (CaSR) has been reported to activate 

phospholipase C (PLC), which generates inositol triphospate IP3. IP3, in turn,  that links to the 

IP3R channel,, in turn, inducing SR Ca2+ leak and activating NLRP3, which contributesing to 

cardiac dysfucntion.294,295 Interestingly, NLRP3 inflammasome activation has been also related 

to RyR2 over-expression in mouse NLRP3-overexpressed cardiomyocytes, increasing SR-Ca2+ 

leak, altering Ca2+ handling and triggering pro-arrhythmogenic events.296 In contrast, the 

genetic deletion of Nlrp3 has been shown to reduce the incidence of atrial fibrillation 

(AF).274,297  Moreover, Byrne et al., have demonstrated that empagliflozin, a SGLT2 inhibitor 

prevents cardiac inflammation by attenuating the activation of the NLRP3 inflammasome in a 

Ca2+-dependent manner, exerting beneficial effects in a rodent model of HFrEF.298

Finally, the NODs constitute another subfamily of NLRs that starts to rise asgaining notoriety 

as key playerss in aberrant Ca2+ handling in associated with cardiovascular diseases. 

Specifically, NOD1 has been associated with several diseases that have with a detrimental 

cardiovascular outcome.92,299–303 In this regard, NOD1 activation aggravates cardiac damage 

after ischemia/reperfusion injury, increasing infarct size, cardiomyocyte apoptosis, and 

inflammation in murine HF models.304 Specifically, upon NOD1 activation with the specific 

agonist iE-DAP, diminished ICaL density, depressed Ca2+ transients, and slower time decay of 

Ca2+ transient decay s were found in cardiomyocytes, all of which promote ing depressed 

cardiac outcome in mice.271 In addition, Nod1 genetic deletion prevented cardiac dysfunction 

in a murine HF model with permanent coronary artery ligation, improving systolic Ca2+-

release, restoring SR Ca2+ load, and consequently reducing the occurrence of pro-

arrhythmogenic events, all these— all effects that contribute to improved the cardiac function 

in failing mice.92 Importantly, these Ca2+ alterations were also reversed and pro-

arrhythmogenic events were diminished when HF mice were treated with a pharmacological 

inhibitor of NOD1.92 Moreover, Nod1 deletion also prevented Ca2+ mishandling, maintaining 

the amplitude of the Ca2+ transients amplitude, SR Ca2+ load, and reducing the incidence of 
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spontaneous Ca2+ release during diastole under β-adrenergic stimulation in failing cardiac 

murine cardiomyocytes.273 Remarkably, supporting the observed results in experimental 

models, high expression of NOD1 was also found in cardiac tissue from severe ischemic HF 

patients.92

In light of these recent studies, the PRRs of the innate immune system are emerginge as crucial 

factors in the regulation of intracellular Ca2+ handling in cardiac EC coupling (Panel I, Figure 

2). The innate immune system and cellular Ca2+ dynamics create a vicious cycle between Ca2+ 

sensing-Ca2+ mishandling and pro-inflammatory signaling that leads to cardiac dysfunction and 

finally to HF development. HereinTherefore, innate immune receptors stand offeras a new a 

promising avenue hub for new therapeutic targets for to treat Ca2+ mishandling and cardiac 

function impairment in HF.

4.3 Mineral bone metabolism factors as a new axis involved in HF-Ca2+ mishandling 

Classically, profound disturbances in mineral and bone disorders have been almost exclusively 

linked to chronic kidney disease (CKD). However, over the last decade, clinical and 

experimental evidence from the last decade revealshas revealed that alterations in mineral bone 

homoeostasis have also have a strong impact on the heart. This could be due to the direct and 

indirect heart-kidney bidirectional interactions, encompassing a spectrum of disorders with a 

complex etiologyntity classified as cardiorenal syndrome (CRS). CRS is defined as an acute or 

chronic dysnfunction in the heart or kidneys which that may induce acute or chronic 

dysfunction in the other organ.305 Between the candidate factors proposed to play a relevant 

role in this cardiorenal connection are those involved in the mineral bone metabolism, such as 

the axis fibroblast growth factor (FGF)-23 and Klotho.306 FGF-23 is considered an endocrine 

phosphaturic hormone; it  which is synthesized in osteocytes and osteoblasts as with declining 

renal function declines to increase renal phosphorus excretion and reduce systemic phosphate 

accumulation.307,308 It is well known that FGF-23 systemic levels increase as renal function 

declines;, and high levels of FGF-23 are also associated with increased risk of cardiovascular 

disease, adverse cardiovascular outcomes, and death in patients with or without CKD;,309,310 

being indeed, FGF-23 nowadays is now considered as a relevant cardiorenal mediator. In this 

sensevein, several authors have shown a clinical relationship between high levels of FGF-23 

and HF.311–314 Despite these relevant clinical data, little is known regarding about the 

involvement of FGF-23 in the regulation of the cellular cardiac function. Several authors have 
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shown that in vitro exposure of ventricular adult cardiomyocytes to FGF-23 induces important 

changes in Ca2+
 handling.315,316 In this senseIn support of this finding, FGF-23 significantly 

increases [Ca2+]i in primary ventricular cardiomyocytes,315, which could trigger pro-

hypertrophic pathways in the long-term, thus explaining its specific clinical association with 

the presence of left ventricular hypertrophy in patients with CKD.317 Moreover, the increase in 

[Ca2+]i after FGF-23 exposure is explained by the specific FGF-23 actions on RyR2s in adult 

ventricular cardiomyocytes.316 Acute in vitro exposure to FGF-23 induces a significant increase 

in spontaneous diastolic Ca2+ leak from SR in the form of Ca2+ sparks and waves, along with 

and a decreased in systolic Ca2+ transients and SR-Ca2+ load, thus compromising 

cardiomyocyte contraction. Moreover, acute FGF-23 exposure triggers in vitro pro-

arrhythmogenic activity such as spontaneusautomatic systolic  Ca2+ transients and extra-

contractions in isolated cardiomyocytes and rhythm alterations recorded in vivo by 

electrocardiogram as premature ventricular contractions in mice.316 Few studies are have 

focusing examined on the underlying functional mechanisms downstream FGF-23 in adult 

ventricular cardiomyocytes. Among the mechanisms underlying FGF-23 effects in adult 

ventricular cardiomyocytes are the calmoduline quinase kinase type II (CaMKII)- and 

phosphodiesterase 4B (PDE4B)-dependent pathways, both of which are involved in HF.316,318 

FGF-23 promotes phosphorylation of RyR2s at the CaMKII site Ser2814 , supporting exerting 

its actions effects on Ca2+ leak from SR through RyR2s via the CaMKII-dependent pathway in 

isolated ventricular adult cardiomyocytes.316 More recently, other authors have also shown that 

FGF-23 is able to increase the frequency of Ca2+ waves, as a marker of cellular 

arrhythmogenicity, in adult cardiomyocytes by through acute beta-adrenergic stimulation 

secondary to a decrease in PDE4B levels.318 The involvement of both pathways has been 

recently corroborated in 5/6 nephrectomized mice,318,319 an established experimental model of 

uremic cardiomyopathy that curses withexhibits systemic, maintained elevation of FGF-23 

levels and profound intra-cardiomyocyte Ca2+ mishandling.319,320 TAll these experimental data 

support the close relationship between high FGF-23 levels and the predisposition to 

arrhythmias, proposing highlighting FGF-23 as a new potential therapeutic target. Therefore, 

blocking the deleterious actions of FGF-23 on the heart might reduce the adverse cardiac 

outcomes observed in these pathologies, especially in those that also curse with mineral bone 

disturbances and renal failure co-morbidities.    

On the other hand, Klotho is one of the most important factors involved in the control of mineral 

bone metabolism.321 Klotho is mainly synthesized in the kidneys, where it binds to FGF 
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receptors, enhancing their its affinity for the circulating FGF-23 and promoting renal phosphate 

excretion. It is well established that renal failure curses coincides with a progressive reduction 

in Klotho expression, compromising phosphate excretion. In addition to the main physiological 

action of membrane-bound Klotho at in the renal tissue, Klotho is also shedded by secretases 

into circulation as a soluble form which that can exert other off-taget actions; for example, it 

reportedly has cardioprotective effects in as on the heart where cardioprotection actions have 

been described.306 The first evidence showing identifying Klotho as a regulator of Ca2+ 

handling was describedfocused on TRPC6. Klotho-deficient mice showed exaggerated cardiac 

hypertrophy and deleterious remodelling in response to stress mediated by the specific cardiac 

downregulation of the TRPC6, reducing Ca2+ entry through this these Ca2+-permeable cation 

channels.322 Moreover, soluble Klotho also blocked TRPC6 current via- the phosphoinositide-

3-kinase-dependent (PI3K) pathway in cardiomyocytes.322 More recently, several authors have 

also shown the cardioprotectiveon actions effects of Klotho through the regulation of other 

proteins that participate in Ca2+ handling. In addition, in vitro experimental approaches have 

described demonstrated that soluble Klotho inhibits the deleterious FGF-23 actions on RyR2s, 

preventing the pro-arrhythmogenic Ca2+ leak, impeding the CaMKII-dependent 

phosphorylation at Ser2814 a, and preventing FGF-23-induced PDE4B decreased or PDE3A and 

3B increased expression in the absence of FGF-23 in adult ventricular cardiomyocytes.316,318 

Interestingly, enhancing Klotho availability,—either  by through supplementation with 

exogenous recombinant Klotho supplementation or by using transgenic mice with Klotho 

overexpression—, improves cardiac function via regulation of Ca2+ handling in HF conditions 

linked to uraemic cardiomyopathy.319 Similarly, adult cardiomyocytes from hypomorphic 

Klotho mice, which present a highly extremely strong elevation of systemic FGF-23 levels, 

showed a decrease in intracellular Ca2+ transients and cellular shortening together with an 

increase in pro-arrhythmic Ca2+ events.319 These experimental results could explain why 

elevated levels of circulating Klotho are associated with a lower risk of developing 

cardiovascular disease after adjusting for traditional cardiovascular risk factors, as observed in 

elderly individuals.323 

Taken together, All this relevant and recentthis evidence supports the role of the FGF-23 and 

Klotho axis as a novel bone-heart-kidney regulator of cardiac Ca2+ handling (Panel II, Figure 

2). However, further experimental studies are still needed to fully decode elucidate the 

underlying mechanisms by which these mineral bone factors impair Ca2+ handling and cardiac 

function, going beyond the confines of nephrology and cardiology. In this sense, it has also 
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been shown that FGF-23 levels can be slightly increased under other circumstances such as 

variations in phosphate intake or diet, and Klotho levels have been found to be associated with 

aging. 

5. REMARKS AND CONCLUSIONS 

Besides the large enormous body of literature available information regardingconcerning the 

role of Ca2+ handling in the pathogenesis of different forms and stages of HF, many questions 

remain openedunanswered. Basic scientistss and clinician’s researchers are still looking in 

search of for new therapeutic tools to improve the poor prognosis of patients with HFcardiac 

failing patients. In this scenarioscientific milieu, a deeper knowledge understanding of post-

translational changes in key proteins of involved in Ca2+ regulation, including phosphorylation, 

oxidation, or O-GlcNAcylation, is today currently the main primary focus of many researchs 

studies that try to understandseeking to unravel the intrinsic mechanisms involved in this 

complex disease. On the other hand, new mediators related to mineral bone metabolism 

regulation, such as FGF-23 or Klotho, have emerged as new modulators of the EC coupling, 

with an interesting role in the Ca2+ mishandling linked to HF. Finally, mediators of the innate 

immune system, which with have a clear role in the inflammatory response, have increased 

theirgained interest in the field of cardiovascular diseases, including HF. In this regard, NLRs 

such as NLRP3 or NOD1 are emerging as promising new targets for cardiac complications, 

enabling thein the development of more specific HF -therapies.  

Legends to fFigures legends

Figure 1. Excitation-contraction coupling in the heart. Panel I) Ca2+ handling in healthy 

hearts. After membrane ventricular cardiomyocyte depolarization, 1) Ca2+ enters the 

cardiomyocyte through LTCCs, 2) the small Ca2+ influx triggers RyR2 opening, releasing 

enough sufficient Ca2+ from the SR to the cytoplasm, and to 3) triggering cell contraction. 4) 

During relaxation, Ca2+ is removed from the cytoplasm mainly primarily by the SERCA2a 

pump, which introduces resequesters Ca2+ back into the SR lumen; also, Ca2+ is also extruded 

from the cell by the NCX, which  that introduces Na+ at the same time; while finally, a small 

amount of Ca2+ is taken up by the mitochondria. 5) SERCA2a activity is regulated by PLN, 

which, in its unphosphorylated state, is bound to SERCA2a, inhibiting its activity. When PLN 
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is phosphorylated by PKA or CaMKII, it detaches from SERCA2a, augmenting its activity. 6) 

Additionally, β-adrenergic stimulation activates kinases such as PKA and CaMKII that 

phosphorylate different key EC coupling proteins including RyR2, LTCC,; and PLN, 

modifying their activity. Finally, 7) other types of Ca2+  channels participate in EC coupling 

such as the TRPCs, which, in combination with Orai1 and STIM1, introduce Ca2+ to the cell 

when STIM1 senses that SR Ca2+ levels are low. Panel II) Ca2+ handling in heart failure. In 

failing ventricular cells, 1) T-tubule structural alterations disturb the dyadic space and 

dysregulate disrupt the Ca2+-induced Ca2+ release (CICR) mechanism; 2) β-adrenergic 

receptors initiate G-protein signaling that activates adenylyl cyclase (AC), transforming ATP 

into cAMP, which activates PKA and CaMKII. These, in turn, phosphorylateing key Ca2+ 

channels such as LTCCs and RyR2 (at S2008, S2814, and S2030). RyR2 phosphorylation increases 

its the channel’s open probability, leading to enhanced SR Ca2+ release and increased cytosolic 

intracellular Ca2+ concentration ([Ca2+]i). 3) Increased [Ca2+]i promotes mitochondrial Ca2+ 

dysregulation, that which leads to mitochondrial-ROS overproduction and oxidative stress 

conditions. This oxidative environment can also favor post-transcriptional modifications of 

RyR2, altering its conformation;, all of them these contributeing to Ca2+ mishandling. 4) HF is 

characterized by low expression of SERCA2a, leading to reduced SR Ca2+ load, and, 5) it this 

is accentuated by reduction in the phosphorylation levels of PLN, which, in its 

unphosphorylated state, inhibits SERCA2a and reduces the amplitude of Ca2+ transients during 

systole. 6) As the cardiomyocyte tries to restore the physiological Ca2+ homeostasis, the NCX 

augments its expression and extrudes more Ca2+ in exchange for Na+ , favoring a depolarizing 

Na+ current, which can lead to pro-arrhythmogenic events. 7) Moreover, TRPC channels are 

overexpressed in HF, increasing the Ca2+ current that enters the cardiomyocyte.

Figure 2. New targets in Ca2+ mishandling linked to heart failure. Panel I) Innate immune 

system factors in HF-Ca2+ mishandling. 1) TLR4 activation triggers AP prolongation and 

promotes enhanced SR Ca2+ leak and, 2) increases Ca2+ efflux through NCX channels leading 

to pro-arrhythmogenic events., 3) TLR4 can also produced increased ROS production and, 

subsequentlyconsequently, increased oxidative stress. 4) NLRP3 is associated with 

inflammasomes that leads to production of pro-inflammatory cytokines production such as IL-

1β, IL-18 and HMGB1. TLR4 can also be activated by HMGB1, subsequently leading to ROS 

overproduction and oxidative stress., 5) NLRP3 inflammasomes causes mitochondrial 

dysfunction., 6) NLRP3 leads to SR Ca2+ leak and RyR2 overexpression, altering Ca2+ handling 

and leading to pro-arrhythmogenic events., 7) NOD1 activation diminishes ICaL density and 

Page 29 of 53 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

30

reducesd systolic Ca transients,, 8) reducesd SR Ca2+ load, and increasesd pro-arrhythmogenic 

events. Panel II) Mineral bone metabolism factors in HF-Ca2+ mishandling. 1) FGF23 

increases the intracellular Ca2+ concentration, which could can trigger pro-hypertrophic 

pathways., 2) The FGF23  signaling pathway is CaMKII-dependent, promoting phosphorylated 

CaMKII, PLB in at Thr17, and RyR2 in at Ser2814, 3) significantly increasing diastolic 

spontaneous Ca2+ leak from the SR, and decreasing Ca2+ transients and, SR Ca2+ load, 4) 

contributing to increased pro-arrhythmogenic events and leading to reduced contractility. 5) 

Soluble Kklotho (sKlotho) blocks TRPC6 channels, and 6) inhibits the deleterious effects of 

FGF23’s  actions on RyR2, preventing the pro-arrhythmogenic Ca2+ release and CaMKII 

phosphorylation.

TRP Channel Expression Main mechanism
Human end-stage 
Heart Failure

 Upregulation of TRPC1, C3, C4, C6 
and TRPV2. Downregulation TRPM2, 
M3, and M8.200

 Upregulation of TRPC1, C5, TRPM4, 
and M7. Downregulation of TRPC4, 
and TRPV2.201

 Samples from left and right human ventricles. 
SourceUnveiled mechanism.200

 Samples from left human ventricles. TRPC1 
overexpression correlates with MEF2c.201

Study model of Heart 
Failure

TRPC channels 
Left and right ventricle overload animal 
model presented significant upregulation 
of TRPC1, C4, C3, and C6 (reviewed 
56,69,198,199,204).

 Exacerbated Ca2+ influx, activation of 
calcineurin/NFAT signaling pathway, expression 
of hypertrophic genes (reviewed 56,69,198,199,204).

 KO of TRPC1, and double KO of TRPC1/C4 
attenuate TAC-induced hypertrophy and 
fibrosis.205,210

 Inhibition of TRPC3, C4, and C6 reduces 
hypertrophy.69,211

 Overexpression of TRPC3 and TRPC6 promotes 
hypertrophy and HF, respectively.212,213

TRPM channels 
 Left and right ventricle overload 

promote the overexpression of 
TRPM3 and M7.200

 Monocrotaline-induced right ventricle 
overload induced TRPM4 
downregulation.217

 TRPM4 KO develop cardiac hypertrophy.214–217

 TRPM7 deletion stimulates HF after 
angiotensin-II treatment.219

TRPV channels 
 Left and right ventricle overload 

promote the upregulation of TRPV2 
and V4.200,221,222

 TRPV1 KO exacerbates TAC’s deleterious 
effects.224

 TRPV1 KO207 and V2 inhibition222 prevent 
cardiac hypertrophy.
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 TRPV3 overexpression in angiotensin 
II induced hypertrophy.223

 Capsaicin activation of TRPV1 attenuates TAC 
effects.225

 TRPV3 stimulates calcinuerin/NFATC3 
signaling.223

Table 1. Summary information related to the expression of TRP channels and their related 
effects in patients with end stage heart failure (HF) and in animal models of left and right 
induced HF. KO, knock out; MEF2c, myocyte enhancer factor 2c; TAC, transverse aortic 
constriction. 
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