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Figure 1: We present a multi-person reconstruction approach that solves the inherent body size and depth ambiguity problem. The figure
shows the results of a state-of-the-art approach [18] (center), and the results of our approach (right). Note that while the frontal view of both
approaces is very similar, the side view in[18] depicts a large error. Our main contribution consist in proposing an optimization scheme
that enforces the people to have their feet on the ground, which allows disambiguating body size from depth and producing accurate spatial
arrangements.

Abstract

We address the problem of multi-person 3D body pose
and shape estimation from a single image. While this
problem can be addressed by applying single-person ap-
proaches multiple times for the same scene, recent works
have shown the advantages of building upon deep archi-
tectures that simultaneously reason about all people in the
scene in a holistic manner by enforcing, e.g., depth or-
der constraints or minimizing interpenetration among re-
constructed bodies. However, existing approaches are still
unable to capture the size variability of people caused by
the inherent body scale and depth ambiguity. In this work,
we tackle this challenge by devising a novel optimization
scheme that learns the appropriate body scale and relative
camera pose, by enforcing the feet of all people to remain
on the ground floor. A thorough evaluation on MuPoTS-
3D and 3DPW datasets demonstrates that our approach is
able to robustly estimate the body translation and shape of
multiple people while retrieving their spatial arrangement,
consistently improving current state-of-the-art, especially
in scenes with people of very different heights. Code can be
found at: https://github.com/nicolasugrinovic/
size_depth_disambiguation

1. Introduction

While recent works on single-person 3D reconstruction
have shown impressive results [6, 13, 21, 25, 26, 28, 38, 41,
20, 3, 4, 49, 40, 8, 57], the problem of simultaneously recon-
structing multiple humans is still in its infancy. The straight-
forward solution consists in regarding different people as
independent instances and estimating the body shapes and
poses one by one using a single-person approach. This strat-
egy, however, may result in inconsistent spatial arrange-
ments and erroneous poses of the reconstructed people. A
few works have improved the coherence of the reconstruc-
tions by simultaneously reasoning about all people in the
image, either for estimating their body poses [14, 35, 54],
poses and shape [59, 60, 18, 62, 10], or poses and mo-
tion [2, 1]. For instance, Jiang et al. [18], have considered
global constraints accounting for inter-person occlusions,
interpenetration between meshes and depth ordering.

Nevertheless, while showing very promising results, pre-
vious approaches are still prone to fail in situations where
people in the images have different heights. This is because
the constraints considered so far are not able to handle the
inherent body size / depth ambiguity, and result in consis-
tent body 2D reprojections, but wrong relative scales and
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Figure 2: Two examples of the Ponzo illusion [44] on the
perception of the human height. In both cases, the contex-
tual information of the ground floor helps to perceive the
height and depth of each person.

depths (see Fig. 1-center).
In this paper we present a novel approach for multi-

person reconstruction that handles the depth/body size am-
biguity. For this purpose, we will consider a novel con-
straint that estimates body scale and relative camera-body
translation while enforcing the feet of all people to remain
on the ground. This observation, does indeed have psycho-
logical groundings on the geometrical-optical Ponzo illu-
sion [44], that suggests that the human mind judges an ob-
ject’s size based on its background, in our case the ground
floor, and the preconceived prior that humans have their feet
on the ground (see Fig. 2).

In order to implement this constraint we present a sim-
ple but effective coarse-to-fine strategy where we first
use [18, 20] to extract an initial estimation of the shape and
pose of all people in the image. This estimate may contain
gross errors, like people floating in the air or with large dis-
crepancies in their true size (see again Fig. 1-center). We
then extract the ground plane from the image using an off-
the-shelf depth [46] and semantic segmentation estimation
network [55], and compute the 3D normal direction of that
plane. Finally, we devise a learning scheme, in which trans-
lation and scale parameters per person are optimized so as
to minimize the feet-to-plane 3D distance and the 2D repro-
jection error. We observed that with only these two terms,
more computationally demanding losses preventing inter-
penetrability of the 3D meshes were not necessary.

We exhaustively evaluate the proposed approach on the
MuPoTS-3D [32] and 3DPW [53] datasets, and show a con-
sistent improvement over a depth ordering metric in com-
parison to recent state-of-the-art. To further stress the sig-
nificance of our results, we propose two additional metrics
that assess the accuracy of the retrieved body sizes and the
inter-person distances. In both these metrics we also obtain
remarkably better results than previous methods. Fig. 1-
right, shows an example output of our approach where we

are able to estimate correct body shape and position of two
people with very different sizes.

2. Related work

3D Human Pose Estimation. Estimating the 3D pose of
human joints has received growing interest mostly for its
importance in real-world applications and by the release of
large-scale public MoCap and multi-camera datasets [17,
33, 19, 45]. A lot of important studies have been done on
this topic for single-person [29, 52, 7, 34, 66, 37, 42, 50,
58, 65] and multi-person [47, 48, 36, 27, 32]. 3D pose esti-
mation for single-person is done directly from the image or
lifting 2D joints to 3D joints and for multi-person either by
using top-down or bottom-up approaches. To face the short-
comings of loss of information due to reprojection in 3D
pose estimation, parametric models of the human body have
been extensively used. Examples of these are SMPL [30],
Frank [20] or GHUM [56]. Although it is very difficult to
annotate large-scale datasets with these models, there are
optimization-based methods such as [7, 41, 9] that allow
to fit the parameters very well using only 2D and 3D joint
annotations. Due to its simplicity and robustness several
works [21, 24, 43, 39, 41, 26, 5, 25, 59, 12, 64, 61] build
upon the SMPL model to reconstruct human bodies from
single images. The SMPL model can be used to recover the
full body shape (as a 3D mesh) and joints.

Multi-person 3D Pose and Shape Estimation. Recently
there have been some works that extend 3D pose/shape es-
timation to a multi-person setting. The most relevant works
in this area are [59, 60, 18, 62, 9, 51].

Zanfir et al. [60] are the first ones to use a bottom-up
model to estimate the pose and shape of multiple-people. In
a concurrent but radically different work, Zanfir et. al [59]
propose a top-down multi-staged approach. They first es-
timate initial pose for each person and then jointly opti-
mize to absolute poses for multiple people in the image.
They also include a ground plane constraint. However, they
estimate it using initial 3D joint predictions and require a
video sequence to do so. In contrast to them, we cannot
assume that our initial 3D joints estimations are correct and
we work with a single image. So we take a very different ap-
proach for estimating the ground plane normal. While these
two works have been one of the firsts to address this multi-
person problem, subsequent methods such as [18] show im-
proved results over them.

Very recent approaches [62, 51] propose a novel mesh
representation to account for cases of occlusions and also
reason about the most probable depth location for each
person in the scene while presenting bottom-up architec-
tures. Jiang et al. [18] leverage the architecture proposed by
HMR [21] to get multi-person shape/pose estimates. They



Figure 3: Overview of our approach. Given an input image (a), we first estimate the 2D keypoints and SMPL parameters as the
initialization (b). Then we estimate the ground plane normal and minimize the reprojection error along with the ground plane constraint
for reconstruction (c). We are able to correct the spatial arrangement in the reconstructed 3D scene by forcing all body meshes to touch the
ground with their feet (d). Notice the difference with respect to the results from the initial estimation where people are floating in the air
(b).

include two novel losses: one that penalizes collisions be-
tween people and another depth ordering aware loss that
uses segmentation masks to enforce a correct depth order.
Due to the nature of this loss, the depth order can be mis-
estimated when no people overlap with each other. As we
will see, our method is capable of facing this limitation.

Human-Scene Interaction. Recently, increasing atten-
tion has been given to the context of the scene when es-
timating the body pose and shape along with the spatial
arrangement of humans in the scene. So far very few
works [63, 10, 15, 16] have been done in this area. For ex-
ample, PHOSA [63], which is closer to our approach, seeks
to model several people in a scene and their interactions
with object on images on-the-wild. They propose a two
stage approach where they first estimate each person and
object in the scene and then globally optimize for spatial
arrangement. Instead of objects, we use the ground plane
which unifies all people in the scene.

3. Method

We next describe our approach (see Figure 3 for an
overview). First, we define the mesh representation adopted
(Sec. 3.1). Then our problem formulation and objective
function are presented in Sec. 3.2. Finally, we explain
our feet-to-ground constraint (Sec. 3.3) and optimization
scheme (Sec. 3.4).

3.1. SMPL and Pose/Shape Estimation

We adopt SMPL [31] to represent the 3D body geometry.
This model is specially appealing in our context given its
ability to represent a large number of shape and pose varia-
tions with a few number of parameters. In particular, SMPL
encodes the body geometry in two vectors: β ∈ R10, con-
taining the parameters modelling the shape, and θ ∈ R72,
which encode the information regarding the person pose.
Using previous definitions, SMPL also implements a func-
tion:

M(β,θ) : θ × β 7→ V ∈ R3B , (1)

which estimates a set of B vertices V of the body mesh
from the pose and shape parameters. Additionally, the
model also provides a linear mapping J so that J = J (V)
which allows to estimate the position of K body joints
J ∈ R3K from the mesh vertices V. In the following sec-
tions, we will refer to the i-th joint of a body mesh with
parameters θ and β as J(β,θ)i.

Along with the body mesh, a weak-perspective camera
Π = [σ, tx, ty] ∈ R3 is parametrized to project the mesh
into image coordinates. To position the humans in the 3D
space, the weak-perspective camera can be converted to the
perspective camera projection by assuming a fixed focal
length f for all images, where the depth of the person is
determined by the relation d = f/σ and the absolute trans-
lation is given by:

t = [tx, ty, d]. (2)

Given a set of 2D body joints J̃ ∈ R2K in pixel coordi-
nates and a confidence value ci associated to each of them,



Figure 4: An illustration of the difference in body sizes. The
reconstructed 3D bodies are placed at the same depth and on the
same plane. Our method scales body sizes accordingly. In con-
trast, other state-of-the-art methods struggle capturing the varia-
tion of body sizes.

the pose and shape parameters defining the body geome-
try can be estimated by solving the following optimization
problem:

min
β,θ,R,t,s

∑
i

ci||J̃i −Π(RJ(β,θ)i + t)||+ Lp (3)

where R is a global rotation matrix and Lp a regularizer.
Intuitively, the defined problem attempts to find the pose
and shape parameters which minimize the distance between
the estimated 2D joints and the projection of the 3D mesh
in image coordinates.

3.2. Problem Formulation

Consider an input RGB image I ∈ RH×W×3 with N
persons and (θ1:N ,β1:N ) to be the set of SMPL parame-
ters obtained by solving Eq. (??) for each individual. Our
goal is to obtain the set of translation and scale parameters
(t1:N , s1:N ) for each person, which best explain the scene
and produces feasible results with correct depths and sizes.

In order to obtain a set of translation and scale parame-
ters leading to realistic results, we propose to solve a similar
minimization problem to the one introduced in Eq. (??). In
our case, however, we introduce two important modifica-
tions. Firstly, we jointly optimize the individual parameters
for each person by defining the loss as:

L(t1:N , s1:N ) =
∑
i,n

cni ||J̃n
i −Π(snRnJ(βn,θn)i + tn)||,

(4)
where Rn is the estimated rotation matrix for the person n
and (J̃n

i , c
n
i ) is the i-th 2D joint in image coordinates and

its associated confidence, respectively. Note that here, we
introduce an additional scale parameter s that modifies the
overall size of the body (including height) without the need
to change β.

Secondly, we introduce a regularizer conditioned on the
scale and translation parameters that aims to minimize the
feet-to-ground distance and avoid body configurations fly-
ing on the air. We will detail this loss in the following sub-
section.

Finally, we jointly find the optimal translation and scale
for each person by minimizing:

min
t1:N ,s1:N

L(t1:N , s1:N ) + λLp(t
1:N , s1:N ), (5)

where λ is a hyper-parameter controlling the trade-off be-
tween the minimized projection error and the regularization
term.

3.3. Scale and Translation aware Feet-to-Ground
Constraint

The inclusion of the scale and translation aware regular-
izer in Eq. (5) is one of the key contributions of our pa-
per. This is motivated by the observation that in most real
scenes, the depicted individuals are typically standing on a
common ground. While this observation has already been
exploited in [59], the ground-to-plane distance in this work
is conditioned uniquely on the 3D joints of the feet. In con-
trast, we condition this distance using also the body size
scale and translation vector. By doing this we make it pos-
sible to address the depth-size ambiguity problem. To illus-
trate this, consider Figure 3 (b). Given an estimated normal
vector of a plane representing the scene ground, the estima-
tion of the translation and scale parameters obtained with
Eq. (??) produces unrealistic results where one of the per-
sons is ”flying”. However, this ambiguity can be addressed
by our optimization scheme, in which we translate each of
the individuals and change the size of their bodies so as to
get close to the ground plane, while still minimizing the 2D
reprojection error.
Regularizer definition: Assume that, for a given image,
we have access to the vector n defining the normal of the
ground plane. To enforce all people in the scene to touch
the ground, we use:

Lp =
∑
n

|(xn
l (t

n, sn)− p) · n|+ |(xn
r (t

n, sn)− p) · n|

(6)

where xn
l and xn

r are the left and right ankle 3D joints of the
n-th person obtained after translating and scaling its mesh
using the estimated parameters tn and sn. Being k the index
of these joints in J(βn,θn), they are computed as:

xk = snRJ(βn,θn)k + tn. (7)

Additionally, p is a reference point fixed in the plane which
is chosen as the ankle of a reference person, see Figure 3(c).
Notice that we purposefully translate the plane to p. We se-
lect the reference person as the one with lower initial repro-
jection error.
Ground Normal Estimation: Restricting and determining
a person’s movement in the 3D space can be possible with
a correct ground plane normal n. If, on top of this, we



force the reprojected body joints to match a set of refer-
ence 2D keypoints, we can easily estimate correct transla-
tion and scale parameters. Unfortunately, we typically do
not know the direction of n in real scenarios and thus, it
must be estimated. For this purpose, we first obtain a depth
map d̂ ∈ RH×W by applying an off-the-shelf depth esti-
mator to the input image [46]. Then, we use panoptic seg-
mentation [23] to identify the pixels corresponding to the
ground regions in the image. Finally, we take the depth val-
ues from these ground regions and, using their correspond-
ing x, y pixel coordinates, obtain a set of 3D points. With
these points we fit a plane, acquiring its normal n. To han-
dle outliers we use the RANSAC [11].

To enforce the condition for Eq. (6) that p must be a fixed
point in the plane, we assume that p is a reference point
with known depth. So we take p as a point in the 3D space
and translate the entire plane to this point. All subsequent
translation estimations are, therefore, relative to this point.

3.4. Optimization

The loss and regularization terms minimized in Eq. (5)
are fully-differentiable w.r.t the optimized variables. There-
fore, to solve our optimization problem we use a gradient
descent approach. In particular, we initialize t1:N with the
estimations obtained using Eq. (??) and set all s1:N to one
(mean scale). We iteratively minimize the objective by com-
puting the gradients of the translation and scale parameters.

4. Experiments
4.1. Datasets

In our experiments, we validate our method conducting
exhaustive experiments over two standard benchmarks for
human pose/shape estimation.

MuPoTS-3D [32]: It is a multi-person dataset providing 3D
ground truth for people in the scene. We use the same test
sequences as in [18].

3DPW [53]: It is a multi-person in-the-wild dataset, which
features diverse motions and scenes. It contains 60 video se-
quences with 3D joints and translations annotations. We use
this dataset to especially test our models capability of gen-
erality of applicability to challenging in-the-wild scenarios.
We use only the test sequences that present the ground truth
for more than one person as we focus on multi-person re-
construction.

4.2. Metrics

In order to evaluate the quality of the multi-person 3D
pose and shape estimations, we use three different metrics:
(i) pairwise person’s depth order (dord), (ii) pairwise nor-
malized distances between persons in the scene (dnorm) and
(iii) pairwise person’s height discrete comparison (hord).

The first metric was introduced in previous works [18, 62]
and quantifies the percentage of correctly estimated ordinal
depth relations between all pairs of people in the image. The
other two metrics are proposed by us and allow to conduct
a more thorough evaluation.
Pairwise normalized distances dnorm: This metric com-
plements the depth order by measuring how accurate the
distance relations are between pairs of people in the image.
Thus, measuring the quality of the estimated translations.
This metric is motivated by the observation that an estima-
tion can have correct depth order for all people but have un-
realistic or disproportional distances between them. If dord
is correct but each person is very far from each other, in
comparison to what is perceived in the image, then the es-
timation cannot be considered accurate. The opposite also
holds true, if dnorm has a low score, it does not necessarily
mean that the depth order is correct. Formally, this metric
is defined as follows:

d =
∑
i

∑
j

∥(ti − tj)∥ (8)

dnorm =

∑m
f=0(df/d

max
f − d̂f/ ˆdmax

f )

m
, (9)

where m is the number of frames and i and j are indices
for the i-th and j-th persons in the frame f . Also, df corre-
sponds to the pairwise distances of the ground truth values
and d̂f , to estimated ones, which are both calculated with
Eq. 8. Here, t is the estimated translation of each person in
the image. For each frame we normalize all distances by the
maximum pairwise distance (dmax

f ).
Discrete height comparison hord: To determine the qual-
ity of the estimated body scales, we use people’s height as
a proxy measure. One can reason that if a model is able
to correctly estimate the height of each person, providing
a good reprojection, then a correct spatial arrangement is
more likely to occur. This metric is the percentage of cor-
rectly estimated ordinal height relations between all pairs
of people in the image, i.e., smaller to bigger or vices-versa.
This is very similar to dord but applied to heights. This met-
ric helps us determine that the scale has correctly increased
or decreased a person’s size in order to provide a better esti-
mation. The heights are calculated by the euclidean distance
across the limbs connecting the head and feet joints.

Overall, these three metrics attempt to measure the as-
pects of multi-person reconstruction that our method fo-
cuses on improving: translation and scale.

4.3. Implementation details

We jointly optimize for both translation and scale using
the ADAM optimizer [22] with learning rate 1e-2 for a total
of 600 iterations. As reference 2D keypoints, we use the
3D reprojected joints obtained from the initial SMPL esti-
mations from either CRMH [18] or FrankMocap[20]. We



MuPoTS-3D 3DPW

Method dord ↑ dnorm ↓ hord ↑ dord ↑ dnorm ↓ hord ↑
FrankMocap [20] 85.56 0.492 52.79 81.61 0.463 50.53

Ours (w/ FrankMocap) 88.03 0.367 49.65 82.69 0.557 51.60
CRMH [18] 92.20 0.351 52.43 76.13 0.737 51.32

Ours (w/ CRMH) 95.58 0.243 57.75 85.00 0.516 55.80
BMP* [62] 94.50 - - - - -

Table 1: Results on representative datasets. We present the results on three state-of-the-art methods and use two of them as
initialization for our approach. Evaluation is done on MuPoTS-3D and 3DPW datasets with the metrics described in Sec. 4.2.
*The values were copied directly from the paper as there is no publicly code nor data available.

MuPoTS-3D

Method dord ↑ dnorm ↓ hord ↑
Only Reprojection 92.51 0.415 55.48

Only Plane 95.10 0.293 51.14
Ours w/ GT-J2D 94.62 0.318 59.28

Ours 95.58 0.243 57.75

Table 2: Ablative study for proposed losses. We present
the effect of each individual loss (reprojection, plane) and
the effect of using ground truth 2D keypoints as inputs to the
model instead of detected ones by and off-the-shelf detector.

present experiments with these two initializations in Sec. 4,
however, given the nature of our method, any other initial-
ization can be used. We use semantic segmentation from
Detectron2 [55] for our baseline and use MiDasv3. [46] as
depth estimator. For all cases we use a fixed focal length of
f = 1000.

4.4. Comparison with simple baseline

In this first experiment, we evaluate the effectiveness of
the proposed ground-plane regularization. For this purpose,
we compare our method with a baseline that incorporates
depth information but does not explicitly model the scene
ground. Concretely, our baseline estimates the depth of
each person in the scene. This is done by averaging the
depth values of all the pixels belonging to a person’s mask
(obtained with from semantic segmentation). Then, we op-
timize for s and t only over the x and y axis while maintain-
ing z equal to the estimated depth using Eq. 4 as objective
function.

Comparing ourselves to a method that directly uses peo-
ple’s depth information is important as one part of our goal
is to improve depth order. We can see in Table 3 that our
method outperforms this baseline by a significant margin.
This justifies the choice of using the ground plain as a con-
straint. It is more reliable to estimate the ground plane’s

MuPoTS-3D

Method dord ↑ dnorm ↓ hord ↑
Baseline 87.34 0.635 55.09

Ours 95.58 0.243 57.75

3DPW

Method dord ↑ dnorm ↓ hord ↑
Baseline 82.24 0.508 54.27

Ours 85.00 0.516 55.80

Table 3: Comparison with our baseline. As a sanity
check we compare our method with the baseline described
in Sec. 4.4.

normal and use it as a constraint than to recover individ-
ual person’s depth from an estimated depth map. The base-
line relies on segmentation masks for computing a person’s
depth. In many cases these segmentation masks are not
able to be recovered, especially under the presence of occlu-
sions. This results in incorrect depth estimations. Thus, the
poor performance of the baseline. In contrast, segmenting
the ground is easier which facilitates the depth estimation
of the ground plane and consequently the normal n. For
this reason, our method is able to make a better use of depth
information from a given depth map to improve 3D human
pose-shape recovery.

4.5. Comparison with the state-of-the-art

We compare our method to other multi-person ap-
proaches with regards to spatial arrangement, specially for
correct depth order and body size and leave out any human
pose comparison as we do not change the pose from the
initial estimations. We measure the quality of the transla-
tion and scale estimations as they are crucial for facing the
depth-size ambiguity.

We compare ourselves with two state-of-the-art meth-
ods: CRMH [18] and BMP [62], and an additional baseline



Input image CRMH [18] Ours

Figure 5: Qualitative results. We visualize the results of our method from different viewpoints: front (green background), top (blue
background), and side (red background) views. We compare the results with CRMH [18] and improve depth order and overall scene
coherence. Note that CRMH does not estimate a plane. We add the same plane estimated by our method for the visualization purposes.

for which we apply FrankMocap [20] to the multi-person
setting. The results in both datasets (MuPoTS-3D, 3DPW)
are presented in Table 1.

Improving depth order. We first evaluate our proposed
method for depth order and correct translation of body
meshes in the 3D space, as they are both related. The re-
sults are shown in the first two columns of each dataset in
Table 1. It can be seen that our approach is able to improve
the spatial arrangement of the initial methods used ([20] and
[18]). Concretely, it can be seen that our method improves
CRMH by 3.38% (95.58% vs. 92.20%) and FrankMocap
by 2.47% (88.03% vs. 85.56%) in the dord metric for

the MuPoTS-3D dataset and CRMH by 8.87% (85.00% vs.
76.13%) and FrankMocap by 1.08% (82.69% vs. 81.61%)
in 3DPW dataset, which contains images in-the-wild. We
also improve dnorm score by a good margin. For example,
in MuPoTS-3D we improve CRMH’s score by 0.108 (0.243
vs. 0.351) and FrankMocap by 0.125 (0.367 vs. 0.492). A
similar improvement is presented in 3DPW dataset when
using CRMH as initial estimation. Our method also out-
performs the current state-of-the-art [62] by 1.08% in the
depth order metric. Please note that BMP [62] results are
taken from the original paper and not recomputed by us as
we do for the other methods as their code and data is not yet



publicly available.

Relative body sizes. After stabilising that we can esti-
mate more accurate translation parameters, we now focus
on the people’s body sizes, which also play an important
role when trying to correctly perceive the 3D information
of the scene. In the same fashion as before, we measure
the correct height order (hord), meaning the scale relations
(bigger/smaller) between people in a scene. Here we find
that our method improves CRMH by 5.32% (57.75% vs.
52.43%) in MuPoTS-3D, CRMH by 4.48% (55.80% vs.
51.32%) in 3DPW and FrankMocap by 1.07% (51.60% vs.
50.53%)in 3DPW. A lower score on this metric shows that
there are estimations where people that should be bigger in
comparison to others in the scene, are actually estimated as
smaller and vice-versa.

4.6. Ablation studies

In Table 2 we analyse the effect of using only one of the
terms of our objective function. First, we use only the re-
projection term for the optimization and, later, we use only
the feet-ground constraint. We do this to validate that both
of the terms contribute to the overall performance of the
model. Additionally, we use ”perfect” 2D keypoints as in-
put, taken from the ground truth, to see if there is an upper-
bound limit to our method’s performace and how this af-
fects the results. Note that a discussion on the effects and
limitations of our feet-ground constraint is presented in the
Supplementary Material.

It can be seen that using only reprojection helps signifi-
cantly to estimate better height results as hord is relatively
high in comparison to using only the ground plane con-
straint. However, this term has no contribution with the
depth order nor correct proportional distance between peo-
ple, having the worst scores on dord and dnorm, just as ex-
pected. It can be seen that using only the feet-ground con-
straint alone leads to better depth ordering and better dnorm
score than when using only reprojection. This is expected
as we first move the people towards the plane in the camera
direction during optimization, meaning that reprojection is
partially conserved even without the reprojection term. As
we can see in the results, heights estimations here are the
worst as hord scores lower, which is also expected.

We also perform an ablation study that uses ground truth
2D keypoints annotations used by the reprojection loss. As
it turns out, our method surprisingly yields to better results
in the dord and dnorm metrics than by using ground truth
2D keypoint annotations. However, this setting yields to
the best results in height order (hord) showing that better
reference keypoints results in better height estimates but not
necessarily into better depth ordering.

4.7. Robustness to initialization

To show that our framework can work along with any
other initial method, we present results in both datasets us-
ing FrankMocap [20] estimations as initial point. Note that
this method is originally trained for single-person estima-
tion. The results presented in Table 1 show a good improve-
ment over [20] used directly as a multi-person approach.
Our method is also robust to 2D keypoint initialization as it
has been established in the previous section.

4.8. Qualitative Results

We present our qualitative results in Figure 5. As ex-
pected, our method produces results with more realistic spa-
tial arrangement while capturing the diversity of body sizes.
This yields improved depth ordering and better proportional
distances among people in the scene when compared to
method [18]. In all cases shown, we use CMRH for initial
estimations. The image in the last row of Figure 5 presents
a failure case. Here, one person is jumping and the ground
constraint is not completely met. Although, in this case, the
depth order is still improved by our method, the distance
between each person may not be accurate. More qualitative
results, including failure cases, and discussion of the effect
of the ground plane constraint can be found in the Supple-
mentary Material.

5. Conclusions
In this paper, we have presented a novel optimization

scheme in order to address the inherent depth/size ambi-
guity in multi-person 3D body pose estimation. In partic-
ular, our method jointly computes the optimal translation
and scale parameters of all the individuals in the scene by
imposing a constraint forcing them to stand into a shared
ground-plane. In order to estimate this information, we use
off-the-shelf depth-map and semantic segmentation meth-
ods to automatically extract the ground-plane normal from
the image. Comparing our approach to state-of-the-art
methods over benchmark datasets, we show that the pro-
posed pipeline provides more coherent solutions in terms of
the relative scale and translation of the estimated persons.
More concretely, we are able to consistently improve the
performance by a considerable margin in multiple metrics
evaluating the accuracy of the pose parameters. Finally, it
is worth mentioning that our method is model agnostic and
only requires a set of initial estimations for the 3D joints.
Therefore, it can be combined with any previous or future
method for human mesh reconstruction from still images.
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