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Abstract— This brief proposes a novel form of continuous-
time evolutionary game dynamics for generalized Nash equilib-
rium seeking in equality-constrained population games. Using
Lyapunov stability theory and duality theory, we provide
sufficient conditions to guarantee the asymptotic stability, non-
emptiness, compactness, and optimality of the equilibria set of
the proposed dynamics for certain population games. Moreover,
we illustrate our theoretical developments through a numerical
simulation of an equality-constrained congestion game.

I. INTRODUCTION

Population games provide an evolutionary game theoreti-
cal framework to describe the strategic interaction of a large
population of players [1], [2]. Under this framework, the
players are regarded as non-cooperative decision-makers that
often in time are allowed to select which strategy to play. As
such, the ideas of population games have received significant
attention from the control community [3]. For instance, the
authors in [4] exploit the theory of population games for the
dynamic resource allocation of a water distribution system;
the authors in [5] apply the framework of population games
to design a real-time demand response controller for a smart
grid; and the authors in [6] extend the conventional frame-
work of population games of [2] to consider dynamic payoff
mechanisms, also referred to as payoff dynamics models [6],
[7], which allow the consideration of a wider spectrum of
strategic interaction scenarios. In this paper, we explore this
latter idea of payoff dynamics models [6] to design some
continuous-time evolutionary game dynamics for generalized
Nash equilibrium seeking in population games.

In the field of game theory, generalized Nash equilibrium
seeking usually refers to the problem of achieving Nash
equilibria that satisfy a set of constraints. More precisely,
the decision-making process of the players is not only
influenced by the payoffs of the game, but also by certain
constraints that must be satisfied at any equilibrium of the
game. Although several recent works have addressed such
a problem from different perspectives [8], [9], [10], [11], to
the best of our knowledge, limited attention has been given
to such a problem from the aforementioned perspective of
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population games [2]. Some exceptions are the works in [12],
[13], [14], [15]. Namely, the authors in [12], [13] propose
a set of decision-making protocols to include some affine
inequality constraints in the players’ decisions; the authors
in [14] propose some evolutionary game dynamics to include
affine equality constraints within the game; and, finally, the
authors in [15] propose a form of payoff dynamics models
[6] for generalized Nash equilibrium seeking in population
games under convex inequality constraints.

Motivated by the approach in [15], in this paper we pro-
pose a novel form of payoff dynamics models for generalized
Nash equilibrium seeking in population games under affine
equality constraints. Notice that such constraints are relevant
for several practical engineering and control applications.
Some examples include frequency regulation in power sys-
tems [16], automatic generation control in power networks
[17], and dynamic resource allocation in water distribution
systems [14], among others. Compared against the previous
works on generalized Nash equilibrium seeking in population
games, our proposed approach has the following novelties.
In contrast with [12], [13], and [15], our method considers
equality constraints instead of inequality constraints. Note
that, although it is possible to eliminate explicit affine equal-
ity constraints through a change of variables [18, Section
4.2.4], the direct treatment of equality constraints might have
practical advantages due to the preservation of structural
properties of the problem. Moreover, such affine trans-
formations would typically imply higher rationality levels
on the players, which is undesirable under the considered
population games framework of [2]. In contrast with [14],
on the other hand, our method preserves the property of
Nash stationarity. More precisely, the equilibria set of our
dynamics coincides exactly with the set of generalized Nash
equilibria of the underlying game. Such a property does not
hold under the approach of [14].

Consequently, the main contribution of this paper is the
formulation and analysis of a novel form of payoff dynamics
model, which allows the consideration of affine equality
constraints in population games. In particular, we provide
sufficient conditions to guarantee the asymptotic stability
and optimality of the equilibria set of the dynamics for
certain classes of population games. Additionally, we provide
sufficient conditions to guarantee the non-emptiness and
compactness of the equilibria set of the proposed dynamics.
Furthermore, our theoretical developments are illustrated
through a numerical simulation of a classical congestion
game that has been extended to include equality constraints.
Such a game resembles several relevant engineering applica-



tions in the context of dynamic resource allocation [3].

II. CONSIDERED FRAMEWORK AND PROPOSED MODEL

Consider a (large) population of players that are engaged
in a game with a set of strategies given by S = {1, 2, . . . , n},
where n ∈ Z≥2. At any time, the portion of players playing
the strategy i ∈ S is denoted as xi ∈ R≥0, and the state
of the population is given by the vector x = [xi] ∈ Rn

≥0.
Consequently, the set of all possible population states is ∆ ={
x ∈ Rn

≥0 : 1>x = m
}

, where 1 is the vector of ones with
appropriate dimension; and m ∈ R>0 is the total population
mass (which is assumed constant). Moreover, each strategy
i ∈ S has an associated fitness function, fi : Rn → R,
which provides the (baseline) payoff for the strategy i ∈ S
at a given population state. Hence, the population game is
completely characterized by the vector f(·) = [fi(·)] ∈ Rn,
i.e., f : Rn → Rn. Throughout, we refer to f(·) as the
baseline population game. Notice that depending on the form
of f(·), a different class of game might be considered. Below,
we present two classes of games that are relevant for our
theoretical developments.

Definition 1 ([2]): The game f : ∆ → Rn is a stable
game if (z− x)> (f(z)− f(x)) ≤ 0, for all x, z ∈ ∆.

Definition 2 ([2]): The game f : Rn
≥0 → Rn is a full-

potential game if there exists a continuously differentiable
(potential) function ϕ : Rn

≥0 → R such that ∇xϕ(x) = f(x),
for all x ∈ Rn

≥0, i.e., ∂ϕ(·)/∂xi = fi(·), for all i ∈ S.
Remark 1: Notice that every full-potential game with con-

cave potential function ϕ(·) is also a stable game.
In the context of population games [1], [2], it is often

assumed that, as strategic decision makers, the population
players seek to play the strategies that lead to the highest pay-
off of the baseline game f(·). Nevertheless, similar to [15], in
this paper we assume that there is also a set of constraints that
the players must satisfy while playing the baseline game f(·).
In contrast with [15], however, here we consider equality
constraints instead of inequality constraints. More precisely,
a population state x ∈ ∆ is said to be feasible if and
only if x ∈ ∆ ∩ Q, where Q = {x ∈ Rn : Ax = b}.
Here, A ∈ Rq×n; b ∈ Rq; and q ∈ Z≥1. To ease the
forthcoming discussions, we let C = {1, 2, . . . , q} be the
set of indices of the equality constraints, and, for all k ∈ C,
we let a>k = [ak1, ak2, . . . , akn] ∈ R1×n and bk ∈ R denote
the k-th row and the k-th element of A and b, respectively.
Namely, A = [a1,a2, · · · ,aq]>, and b = [b1, b2, · · · , bq]>.
Besides, we impose the following assumption on the equality
constraints.

Standing Assumption 1: The set ∆∩Q is non-empty, and
the matrix Â = [1,a1, · · · ,aq]

> ∈ R(q+1)×n is full row
rank (hence, q ≤ n− 1).

Motivated by the ideas in [6], we consider that there is
a higher level entity that provides the payoff signals to the
population players (in engineering applications such an entity
could be, for instance, an aggregator node). The goal of such
an entity is to augment the baseline game f(·) to include
the constraints of Q. For this reason, we propose the payoff

dynamics model given by

ẏk = a>k x− bk, ∀k ∈ C (1a)

pi(x,y) = fi(x)−
∑
k∈C

ykaki, ∀i ∈ S, (1b)

and we refer to p(·, ·) = [pi(·, ·)] ∈ Rn as the augmented
game, i.e., p : Rn × Rq → Rn. By augmented we mean
that the game p(·, ·) considers both the baseline game f(·)
as well as the constraints of Q.

On the other hand, following the ideas in [2], we assume
that the players are equipped with a revision protocol to
revise their strategies. Such a revision protocol determines
the incentives to switch from one strategy to another. In this
paper, we assume that, for a player playing the strategy i ∈ S,
the incentive to switch to the strategy j ∈ S is given by
[pj − pi]+, where [·]+ , max(·, 0); and pi , pi(x,y), for
all i ∈ S. Consequently, the evolutionary dynamics model
that describes the trajectory of the population state is

ẋi =
∑
j∈S

(
xj [pi − pj ]+ − xi [pj − pi]+

)
, ∀i ∈ S. (2)

The evolutionary dynamics in (2) are well-known in the
literature as the Smith dynamics [19], and a thorough de-
duction of these dynamics can be found in [2]. In this paper,
we focus on the Smith dynamics to ease the exposition
of our developments. Nevertheless, it is worth to highlight
that all of the theoretical results of this paper are readily
applicable to the broader family of dynamics that results
from any impartial pairwise comparison revision protocol
[6]. The reader might verify this claim by applying some
mild modifications to our provided proofs.

As shown in Fig. 1, observe that the payoff dynamics
model in (1) and the evolutionary dynamics model in (2) are
interconnected in a positive feedback loop structure forming
an (n+ q)-dimensional system with state vector [x>,y>]>.
Namely, the players receive the (augmented) payoff signal
p, determined by the payoff dynamics model in (1) (higher
level entity), and the population state evolves according to
the dynamics in (2). Moreover, as illustrated in Fig. 1, for the
remainder of this paper we impose the following assumption
on the initial conditions of the entire system.

Standing Assumption 2: x(0) ∈ ∆ and y(0) ∈ Rq .

III. ANALYSIS OF THE PROPOSED DYNAMICS

In this section, we analyze the dynamics in (1)-(2). First,
we show some invariance properties of the dynamics. Sec-
ond, we characterize the equilibria set of the dynamics.
Third, we provide sufficient conditions to guarantee the
asymptotic stability of the equilibria set of the dynamics.
Finally, we provide some additional results for the case
when the baseline game f(·) is a full-potential game [c.f.,
Definition 2].

To start the discussion, we first show that the set ∆ is
positively invariant under the dynamics in (2). Although this
is a well-known result in the field of population games and
evolutionary dynamics, we prove it here for completeness.



Evolutionary dynamics model
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Fig. 1. Interconnection between the payoff dynamics model in (1) and the
evolutionary dynamics model in (2). Here, p , p(x,y).

Proposition 1: Consider the dynamics in (2). It follows
that x(0) ∈ ∆⇒ x(t) ∈ ∆, ∀t ≥ 0.

Proof: From (2), notice that if xi = 0, then ẋi ≥ 0.
Hence, x(0) ∈ Rn

≥0 ⇒ x(t) ∈ Rn
≥0, ∀t ≥ 0. Also, note that∑

i∈S ẋi = 0. Thus, 1>x(0) = m ⇒ 1>x(t) = m, ∀t ≥ 0.
Combining these observations leads to the desired result.

Proposition 1 and Standing Assumption 2 allow us to
assert, without any additional loss of generality, that the
state of the dynamics in (2) belongs to ∆ for all times.
Consequently, (x,y) ∈ ∆×Rq for all times. It is important
that the reader keeps this fact in mind throughout this section.

We now proceed to characterize the equilibria set of the
(n + q)-dimensional system given by (1)-(2). In order to
do so, we first introduce the concept of a Nash equilibrium
for the augmented game p(·, ·). Namely, the set of Nash
equilibria of the augmented game p(·, ·) is given by

NE(p,y) = {x ∈ ∆ : xi > 0⇒ pi = p∗, ∀i ∈ S} , (3)

where pi , pi(x,y), and p∗ , maxj∈S pj(x,y). Hence, at
a Nash equilibrium no player has incentives to change her
strategy. Moreover, note that NE(p,y) depends on the state
of the payoff dynamics model, i.e., y. Having defined the set
of Nash equilibria of the augmented game p(·, ·), we now
provide the following result that characterizes the equilibria
set of the considered (n+ q)-dimensional system.

Proposition 2: Consider the dynamics in (1)-(2), and let

E = {(x,y) ∈ ∆× Rq : x ∈ NE(p,y) ∩Q} . (4)

A point (x∗,y∗) ∈ ∆ × Rq is an equilibrium state of the
considered dynamics if and only if (x∗,y∗) ∈ E .

Proof: First, from the Nash stationarity property of the
Smith dynamics [2, Theorem 5.6.2], we conclude that ẋi =
0,∀i ∈ S ⇔ x ∈ NE(p,y). On the other hand, from (1a) it
follows that ẏk = 0,∀k ∈ C ⇔ Ax = b. In consequence, a
point (x∗,y∗) ∈ ∆ × Rq comprises an equilibrium state of
the dynamics if and only if x∗ ∈ NE (p,y∗) ∩Q.

With the aid of Proposition 2, it is now possible to provide
sufficient conditions to guarantee the asymptotic stability of
the equilibria set E under the dynamics in (1)-(2). Theorem
1 provides our results on such a matter.

Theorem 1: Consider the dynamics in (1)-(2), and the set
E in (4). Moreover, let f(·) be a continuously differentiable
stable game. If E is non-empty and compact, then E is
asymptotically stable under the considered dynamics.

Proof: Let E be non-empty and compact. Hence, using
an appropriate Lyapunov function, it is possible to verify the
stability of such a set [20, Corollary 4.7].

Consider the Lyapunov function candidate given by

V (x,y) =
∑
j∈S

∑
i∈S

xiP
j
i (x,y)︸ ︷︷ ︸

V1(x,y)

+
∑
k∈C

1

2

(
a>k x− bk

)2
︸ ︷︷ ︸

V2(x)

, (5)

with Pj
i (x,y) =

∫ pj(x,y)−pi(x,y)

0
[τ ]+ dτ , for all i, j ∈ S.

It is evident that V (x,y) ≥ 0, for all (x,y) ∈ ∆ × Rq

(recall Proposition 1), and that V2(x) = 0 ⇔ x ∈ Q.
Moreover, following a similar analysis as in [2, Theorem
7.2.9] or [15, Lemma 3.6], it is straightforward to verify that
V1(x,y) = 0 ⇔ x ∈ NE(p,y). Therefore, V (·, ·) provides
a valid Lyapunov function candidate with respect to E .

We now proceed to analyze the derivatives of V (·, ·). For
such, let Pj

i , Pj
i (x,y) and note that

∂V (x,y)

∂xs
=
∑
j∈S

Pj
s +

∑
j∈S

∑
i∈S

xi
∂Pj

i

∂xs
+
∑
k∈C

(
a>k x− bk

)
aks

∂V (x,y)

∂yc
=
∑
j∈S

∑
i∈S

xi
∂Pj

i

∂yc
,

for all s ∈ S and all c ∈ C. Here, let pi , pi(x,y), fi ,
fi(x), and observe that∑
j,i∈S

xi
∂Pj

i

∂xs
=
∑
j,i∈S

xi [pj − pi]+

(
∂pj
∂xs
− ∂pi
∂xs

)
=
∑
j,i∈S

(
xi [pj − pi]+ − xj [pi − pj ]+

) ∂pj
∂xs

=
∑
j∈S

ẋj
∂fj
∂xs

[using (2) and (1b)].

Additionally,
∑

k∈C
(
a>k x− bk

)
aks =

∑
k∈C ẏkaks [using

(1a)], and∑
j,i∈S

xi
∂Pj

i

∂yc
=
∑
j,i∈S

xi [pj − pi]+

(
∂pj
∂yc
− ∂pi
∂yc

)
= −

∑
j∈S

ẋjacj [using (2) and (1b)].

By defining ΓP ,
[∑

j∈S Pj
s

]
∈ Rn

≥0, it follows that

∇xV (x,y) = ΓP + (Df(x))
>

ẋ + A>ẏ

∇yV (x,y) = −Aẋ,

where Df(x) ∈ Rn×n is the Jacobian matrix of f(·) at
x. Therefore, by setting ∇xV , ∇xV (x,y) and ∇yV ,
∇yV (x,y), it follows that[

∇xV
>,∇yV

>] [ ẋ
ẏ

]
= Γ>P ẋ + ẋ>Df(x)ẋ,



where we have used the fact that ẏ>Aẋ − ẋ>A>ẏ = 0

(since, as a scalar, ẏ>Aẋ =
(
ẏ>Aẋ

)>
= ẋ>A>ẏ). Now,

given that f(·) is a continuously differentiable stable game,
we conclude from [2, Theorem 3.3.1] that ẋ>Df(x)ẋ ≤ 0,
for all x ∈ ∆. On the other hand, notice that

Γ>P ẋ =
∑
s∈S

ẋs
∑
j∈S

Pj
s

=
∑
s∈S

∑
i∈S

(
xi [ps − pi]+ − xs [pi − ps]+

)∑
j∈S

Pj
s

=
∑
s∈S

∑
i∈S

xi [ps − pi]+
∑
j∈S

(
Pj
s − Pj

i

)
. (6a)

If ps ≤ pi, then [ps − pi]+ = 0. Thus, it suffices to analyze
only the cases where ps > pi. In particular, observe that

pj ≥ ps > pi ⇒
(

Pj
s − Pj

i

)
< 0

ps > pj > pi ⇒
(

Pj
s − Pj

i

)
=
(

0− Pj
i

)
< 0

ps > pi ≥ pj ⇒
(

Pj
s − Pj

i

)
= (0− 0) = 0.

In consequence, Γ>P ẋ ≤ 0 for all (x,y) ∈ ∆ × Rq , which
implies that E is stable in the sense of Lyapunov. That is,
if (x(0),y(0)) is sufficiently close to E , then (x(t),y(t)) is
bounded for all t ≥ 0 [20, Definition 4.10].

Now, from the Nash stationarity of (2) [2, Theorem 5.6.2],
x ∈ NE(p,y) ⇒ ẋ = 0 ⇒ ẋ>Df(x)ẋ = 0 (here, 0 is
the vector of zeros with appropriate dimension). Moreover,
following the same analysis as in [2, Theorem 7.2.9], it
can be shown that Γ>P ẋ = 0 ⇔ x ∈ NE(p,y). Thus,
Γ>P ẋ + ẋ>Df(x)ẋ = 0 ⇔ x ∈ NE (p,y). That is, the
derivatives of the Lyaunov function V (x,y) are zero if and
only if x ∈ NE(p,y). Therefore, given that E is Lyapunov
stable, it follows from LaSalle’s Theorem [20, Theorem
3.3] that if E is the largest invariant set of the dynamics
within R = {(x,y) ∈ ∆× Rq : x ∈ NE(p,y)}, then E is
asymptotically stable (i.e., Lyapunov stable and attractive).
We now proceed to prove such a property by contradiction.

Let I ⊆ R be the largest invariant set of the dynamics
within R. Clearly, E ⊆ I and (x(τ),y(τ)) ∈ I ⇒
(x(t),y(t)) ∈ I, for all t ≥ τ . Moreover, given that
I ⊆ R, from the Nash stationarity of (2) [2, Theorem 5.6.2],
(x(τ),y(τ)) ∈ I ⇒ x(t) = x(τ), for all t ≥ τ . Now,
suppose that E ⊂ I. Note that E ⊂ I ⇔ I\E 6= ∅. Therefore,
let T = I \ E . Given that T ∩ E = ∅ and T ⊂ I ⊆ R, from
(4) it follows that (x,y) ∈ T ⇒ x /∈ Q. Consequently,
if (x(τ),y(τ)) ∈ T , then: i) x(t) = x(τ) for all t ≥ τ
(since T ⊂ I); and ii) ẏ(t) = ẏ(τ) 6= 0 for all t ≥ τ
(since ẏ(t) = Ax(t) − b and x(t) = x(τ) /∈ Q is fixed).
Moreover, ii) implies that ‖y(t)‖ → ∞ as t → ∞, where
‖ ·‖ is any p-norm. Clearly, this contradicts the boundedness
of (x(t),y(t)) provided by the Lyapunov stability of E .
Therefore, we conclude that there cannot exist a non-empty
set T such that T = I \ E . Consequently, I = E .

Theorem 1 provides sufficient conditions to guarantee the
asymptotic stability of the equilibria set E . In particular,

notice that it is required for E to be non-empty and com-
pact. Regarding such a matter, Theorem 2 and Proposition
3 demonstrate that these properties hold for certain full-
potential games [c.f., Definition 2]. It is worth to highlight
that results similar to Proposition 3 are available in the
convex optimization literature [21, Proposition 5.3.1]. Never-
theless, we provide a self-contained proof for completeness.

Theorem 2: Consider the dynamics in (1)-(2), and the
equilibria set E in (4). Moreover, let f(·) be a full-potential
game with concave potential function ϕ(·). It holds that
(x∗,y∗) ∈ E if and only if x∗ ∈ arg maxx∈∆∩Q ϕ(x).
Additionally, E is non-empty.

Proof: To prove this result, let us consider an opti-
mization perspective. In particular, note that the optimization
problem maxx∈∆∩Q ϕ(x) is equivalent to

max
x∈Rn

ϕ(x) s.t. x � 0, 1>x = m, Ax = b. (7)

Since ϕ(·) is differentiable, concave, all the constraints are
affine, and the set ∆ ∩ Q is non-empty [c.f., Standing
Assumption 1], it follows that the (refined) Slater’s condi-
tion holds [18, Section 5.2.3]. In consequence, the Karush-
Kuhn-Tucker (KKT) optimality conditions are necessary and
sufficient for the problem in (7). Now, observe that the
Lagrangian dual function of the problem in (7) is given by

L(x,λ, ν,y) = ϕ(x)+λ>x−ν
(
1>x−m

)
−y> (Ax− b) ,

(8)
where λ ∈ Rn

≥0 and ν ∈ R. Hence, the KKT conditions for
the problem in (7) are

pi (x∗,y∗) = ν∗ − λ∗i , ∀i ∈ S (9a)

1>x∗ = m (9b)
x∗i ≥ 0, ∀i ∈ S (9c)

a>k x∗ − bk = 0, ∀k ∈ C (9d)
λ∗i x

∗
i = 0, ∀i ∈ S (9e)
λ∗i ≥ 0, ∀i ∈ S. (9f)

Here, we have used pi (x∗,y∗) = fi (x∗) −
∑

k∈C y
∗
kaki,

which follows from (1b). Therefore, let

K =

{
(x,y) ∈ Rn × Rq :

(x,λ, ν,y) satisfies (9)
for some λ ∈ Rn, ν ∈ R

}
.

To show that (x∗,y∗) ∈ E ⇔ x∗ ∈ arg maxx∈∆∩Q ϕ(x),
we must show that (x∗,y∗) ∈ E ⇔ (x∗,y∗) ∈ K.

(⇒) Let (x∗,y∗) ∈ E . Since x∗ ∈ ∆∩Q, conditions (9b)-
(9d) hold immediately. Moreover, since x∗ ∈ NE (p,y∗),
conditions (9a), (9e), and (9f) are satisfied by taking ν∗ =
maxj∈S pj (x∗,y∗), and λ∗i = ν∗−pi (x∗,y∗), for all i ∈ S.

(⇐) Let (x∗,y∗) ∈ K. Conditions (9b)-(9d) imply that
x∗ ∈ ∆ ∩ Q. Furthermore, conditions (9a) and (9e) imply
that pi (x∗,y∗) = ν∗ for all i ∈ supp (x∗), and conditions
(9a) and (9f) imply that pj (x∗,y∗) = ν∗ − λ∗j ≤ ν∗ for
all j ∈ S . Therefore, for all i ∈ supp (x∗) it holds that
pi (x∗,y∗) = maxj∈S pj (x∗,y∗), and so x∗ ∈ NE (p,y∗).
In consequence, (x∗,y∗) ∈ E .

Finally, the non-emptiness of E follows from the previous
discussion in conjunction with the fact that the optimization



problem in (7) has at least one solution. The latter claim
follows from Standing Assumption 1 (i.e., ∆ ∩ Q 6= ∅), the
continuity of ϕ(·), and the compactness of ∆ ∩Q.

Proposition 3: Consider the dynamics in (1)-(2), and the
equilibria set E in (4). Moreover, let f(·) be a full-potential
game with concave potential function ϕ(·). If in addition
Rn

>0 ∩∆ ∩Q is non-empty, then E is compact.
Proof: First, note that E is closed because it is the

preimage of the closed set {0} under the continuous map
V (·, ·) provided in (5) [c.f., proof of Theorem 1].

To show that E is bounded, on the other hand, consider the
optimization perspective described in the proof of Theorem
2. We have that strong duality holds for the problem in
(7), and that ϕ∗ = maxx∈∆∩Q ϕ(x) exists and is finite.
Consequently, letting x̂ ∈ Rn

>0 ∩∆ ∩Q, it follows that

ϕ∗ = max
x∈Rn

L (x,λ∗, ν∗,y∗) [using (8)]

≥ ϕ (x̂) +
∑
j∈S

λ∗j x̂j [since x̂ ∈ ∆ ∩Q]

≥ ϕ (x̂) +

(
min
s∈S

x̂s

)∑
j∈S

λ∗j ,

where λ∗ ∈ Rn
≥0, ν∗ ∈ R, and y∗ ∈ Rq , are the optimal

Lagrange multipliers. Hence, since mins∈S x̂s > 0,∑
j∈S

λ∗j ≤
ϕ∗ − ϕ (x̂)

mins∈S x̂s
∈ [0,∞).

More precisely, the set of optimal Lagrange multipliers
associated to the inequality constraints in (7) is bounded.
Now, condition (9a) is equivalent to f (x∗)− Â>ŷ∗ = −λ∗,
where Â ∈ R(q+1)×n is as in Standing Assumption 1;
and ŷ∗ =

[
ν∗, y∗1 , y

∗
2 , · · · , y∗q

]> ∈ Rq+1. Since, Â is full

row rank, it follows that ŷ∗ =
(
ÂÂ>

)−1

Â (λ∗ + f (x∗)).
Hence, ŷ∗ is the image of an uniformly continuous map
(in this case, a linear map) applied to λ∗ + f (x∗). Since
λ∗ + f (x∗) is bounded (λ∗ is bounded from the previous
discussion, and f (x∗) is bounded because f(·) is continuous
and x∗ belongs to the compact set ∆ ∩ Q), it follows that
ŷ∗ is bounded. In consequence, y∗ is bounded and so is E .
This completes the proof.

Theorem 2 and Proposition 3 provide sufficient condi-
tions to guarantee the non-emptiness and compactness of
E for full-potential games. Therefore, for continuously dif-
ferentiable full-potential games satisfying the conditions of
Proposition 3, the result of Theorem 1 follows immediately.
Furthermore, Theorem 2 shows that, for full-potential games,
the equilibria set of the dynamics in (1)-(2) is aligned with
the maximizers of the underlying (constrained) potential-
maximization problem. This property is especially appealing
for optimization-based game theoretical applications. In the
following section, we provide an illustration of such a result.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate our theoretical developments
on a classical congestion game that has been extended to
consider equality constraints. Note that congestion games,

A

C

B

D

Fig. 2. Considered topology for the congestion game.

as relevant engineering problems [22], have been also con-
sidered in some of the previous works on payoff dynamics
models [6], [7], and, for that reason, we consider such an
example game in this paper as well.

Consider the transportation network shown in Fig. 2, and
assume that there is a large number of players that must travel
from point A to the terminals B, C, and D. Since the number
of players is large, we represent the 100% of the players as
a mass m = 1. According to Fig. 2, observe that there are
7 possible strategies that the players might take, i.e., S =
{1, 2, . . . , 7}. Namely, identifying i→ si, for all i ∈ S , the
possible strategies are s1 = {r1, r3}, s2 = {r2, r5, r7, r3},
s3 = {r1, r4}, s4 = {r2, r5, r7, r4}, s5 = {r2, r5, r8},
s6 = {r2, r5, r9, r10}, and s7 = {r2, r6, r10}. Clearly, to
go from A to B players might choose s1 or s2; to go from
A to C they might choose s3, s4, or s5; and to go from
A to D the might choose s6 or s7. Besides, suppose that
terminal B requires exactly a portion mB ∈ (0, 1) of the
total players, and that terminal C requires exactly a portion
mC ∈ (0, 1) of the total players, with mB +mC < 1. Hence,
the underlying equality constraints are x1 + x2 = mB and
x3+x4+x5 = mC, i.e., C = {1, 2} and Standing Assumption
1 holds. Without loss of generality, for our experiments
we set mB = 0.2 and mC = 0.6, i.e., terminals B and
C require 20% and 60% of the total players, respectively.
Furthermore, we assume that each of the roads rz , for all
z ∈ {1, 2, . . . , 10}, has a linear congestion cost given by
czuz , where cz ∈ R>0 and uz ∈ R≥0 are the weight of
congestion and usage level of the z-th road, respectively.
For simplicity, yet without loss of generality, we (randomly)
set c = [10, 15, 16, 14, 11, 5, 14, 7, 9, 12]>. The goal of the
players is thus to travel from point A to the end terminals,
while minimizing the congestion of the roads (and while
seeking to satisfy the requirement constraints of terminals
B and C as well). As such, the potential function for the
described congestion game is given by

ϕ(x) = −c1
2

(x1 + x3)
2 − c2

2
(x2 + x4 + x5 + x6 + x7)

2

−c3
2

(x1 + x2)
2 − c4

2
(x3 + x4)

2

−c5
2

(x2 + x4 + x5 + x6)
2 − c6

2
x2

7 −
c7
2

(x2 + x4)
2

−c8
2
x2

5 −
c9
2
x2

6 −
c10

2
(x6 + x7)

2
.
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Fig. 3. Evolution of the (7 + 2)-dimensional system for the considered
congestion game. The dotted lines depict the optimal values for the primal-
dual variables (i.e., x∗ and y∗) of the underlying constrained potential-
maximization problem [c.f., (7)]. Such values are obtained using [23] and
are x∗ ≈ [0.2, 0, 0.365, 0, 0.235, 0, 0.2]>, and y∗ ≈ [1.08, −0.832]>.

Thus, with fi(x) = ∂ϕ(x)/∂xi, for all i ∈ S, it follows
that pi(x,y) = fi(x) − y1, for all i ∈ {1, 2}; pi(x,y) =
fi(x)−y2, for all i ∈ {3, 4, 5}; and pi(x,y) = fi(x), for all
i ∈ {6, 7}. Under the considered framework, it can be veri-
fied that ϕ(·) is a concave twice continuously differentiable
potential function. Hence, the underlying baseline game f(·)
is both a full-potential game and a continuously differentiable
stable game [c.f., Remark 1]. Therefore, from Theorem 2 we
conclude that the corresponding equilibria set E is non-empty
and is aligned with the maximizers of the potential function
ϕ(·) within ∆ ∩Q. Furthermore, observe that

x̂ = [0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1]
> ∈ R7

>0 ∩∆ ∩Q.

Thus, the set Rn
>0 ∩∆ ∩Q is non-empty, and, from Propo-

sition 3, we conclude that E is compact. Consequently, it
follows from Theorem 1 that E is asymptotically stable.

In Fig. 3, we present some illustrative numerical sim-
ulation of the dynamics in (1)-(2) under the considered
congestion game. As initial conditions we set xi(0) = 1/7,
for all i ∈ S, and yk = 0, for all k ∈ C (so that Standing
Assumption 2 is satisfied). As shown in Fig. 3, the dynamics
indeed asymptotically converge to E .

V. CONCLUDING REMARKS AND FUTURE WORK

This paper has proposed a novel form of payoff dynamics
models for equality-constrained population games. In par-
ticular, we have provided sufficient conditions to guarantee
the asymptotic stability of the equilibria set of the proposed
dynamics. Moreover, we have provided sufficient conditions
to guarantee the non-emptiness, compactness, and optimality
of such an equilibria set for certain full-potential population
games. Future work should extend our results on the non-
emptiness and compactness properties of the equilibria set
to the more general family of stable games.
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