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Quantum variational optimization has been posed as an alternative to solve optimization problems
faster and at a larger scale than what classical methods allow. In this paper we study systematically
the role of entanglement, the structure of the variational quantum circuit, and the structure of
the optimization problem, in the success and efficiency of these algorithms. For this purpose, our
study focuses on the variational quantum eigensolver (VQE) algorithm, as applied to quadratic
unconstrained binary optimization (QUBO) problems on random graphs with tunable density. Our
numerical results indicate an advantage in adapting the distribution of entangling gates to the
problem’s topology, specially for problems defined on low-dimensional graphs. Furthermore, we
find evidence that applying conditional value at risk type cost functions improves the optimization,
increasing the probability of overlap with the optimal solutions. However, these techniques also
improve the performance of Ansätze based on product states (no entanglement), suggesting that
a new classical optimization method based on these could outperform existing NISQ architectures
in certain regimes. Finally, our study also reveals a correlation between the hardness of a problem
and the Hamming distance between the ground- and first-excited state, an idea that can be used to
engineer benchmarks and understand the performance bottlenecks of optimization methods.

I. INTRODUCTION

In the last years, quantum variational optimization [1,
2] has emerged as a framework that exploits the compu-
tational power of near-term intermediate scale quantum
circuits [3]. In this framework, a parametrized quan-
tum circuit is sequentially tuned to maximize or min-
imize a given cost function, which is computed as a
function of measured single- or multiqubit observables.
While it is clear that the variational approach has broad
applications in the study of complex quantum systems
[4, 5], such as in quantum chemistry, there is also ongo-
ing research on its application to NP-complete and NP-
hard combinatorial optimization problems [6–18], such
as those represented by quadratic unconstrained binary
optimization (QUBO) formulas.

In this work, we address several open questions that
are open in the context of quantum discrete optimiza-
tion problems. One key question is the choice of the
quantum variational Ansatz : this is the circuit that we
tune to find the optimal classical solution. This circuit
should efficiently sample the Hilbert space, but it also
should be as simple as possible, with the minimal num-
ber of entangling operations and quantum gates, to allow
their use in NISQ architectures [19, 20]. Here, it is crucial
to understand the role of entanglement and correlations,
and the relation of the entanglement structure and the
problem to optimize [21]. These questions also tie in-
timately to other aspects, such as the definition of the
cost function [22, 23], and the hybrid quantum-classical
algorithms which we use to optimize the variational state
[24–31].

In our research we address these questions with a focus
on the variational quantum eigensolver (VQE) method
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[32]. We explore the performance of the VQE for a fam-
ily of QUBO problems defined on random graphs with
tunable density. We explore these problems by using
variational Ansätze with an entanglement structure that
either mimics the original graph, or uses a random or
predefined architecture. Finally, we consider both a triv-
ial cost function, formed by the average of the QUBO
Hamiltonian, or we use the average over a fixed percent-
age of the lowest sampled configurations, in the spirit
of the conditional Value at risk (CVaR) method [23].
All these problems are analyzed with a broad variety of
classical optimization strategies (gradient descent, con-
strained optimization by linear approximation, simulta-
neous perturbation stochastic approximation, etc.).

Our first result is to confirm the importance of stochas-
tic optimizers when working with an estimation of the
cost function from measurements. Moreover, we con-
clude that in this realistic scenario, it is best to use the
CVaR cost function [23], rather than the average energy.
The former leads to wave functions that have a greater
overlap probability with the actual ground state, while
the latter produces binomial distributions that can fail
unconditionally, where repetition does not help. Our
study also shows that for problems with a structure—i.e.,
graphs with low or intermediate densities—it is compu-
tationally advantageous to imitate the structure of the
problem with the entanglement structure. This type of
advantage vanishes when facing dense problems, such as
those that are found in quantum finance scenarios. Inter-
estingly, we find that the depth of the variational circuits
is only moderately relevant. The success probability sat-
urates for relatively shallow circuits, while the evaluation
cost increases with size. This means that, for some prob-
lems, repeating the same optimization with product or
weakly entangled states, can be more efficient than using
more entanglement. In fact, we find that a product-state
Ansatz combined with the CVaR cost function yields
good results that point to new quantum-inspired classi-
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cal optimization methods. Finally, we characterized the
hardness of our problems, correlating the success proba-
bility to the Hamming distance between the ground state
and the first-excited state. Intuitively, this confirms the
idea that for large distances, the optimizer gets trapped
in low-energy solutions that are macroscopically different
from the true ground state. We expect that this will be
a useful indication or technique to engineer hard prob-
lems, as well as a hint that we need to engineer quantum
algorithms that enhance the probability of macroscopic
tunneling between solutions.

This paper is structured as follows: In Sec. II we de-
scribe the combinatorial optimization problems that we
focus on in this work, QUBO problems, and its straight-
forward mapping as a Hamiltonian in order to be solved
by a variational hybrid method. In Sec. III we introduce
the details of the resolution methods. Later, in Sec. IV
we present our numerical results obtained from ideal sim-
ulations with exact state calculation and finite sampling.
These results highlight the improvement introduced by a
CVaR style cost function (Sec. IV A), they show the im-
pact of the structure of the variational form (Sec. IV B),
they give us intuition into how the problem character-
istics can affect the performance of the algorithm (Sec.
IV C), and they compare the efficiency of Ansätze based
on entangled states with that based on product states
(Sec. IV D). Finally, we conclude by summarizing the
main ideas of the paper in Sec. V.

II. QUADRATIC UNCONSTRAINED BINARY
OPTIMIZATION PROBLEMS ON RANDOM

GRAPHS

Combinatorial optimization is one of the most common
areas studied in NISQ quantum computing and quantum
annealing. A broad spectrum of combinatorial optimiza-
tion problems can be represented as QUBO problems,
with a cost function E that involves products of two
Boolean variables:

E(~x) =
∑
i,j

xiQijxj ; xi ∈ {0, 1}. (1)

Here ~x is an N -vector of binary variables, and Q is an
N -by-N square symmetric matrix of coefficients. QUBO
problems have been extensively studied in the literature
[33, 34]; for instance, solving optimization problems on
graphs, resources allocation problems, clustering prob-
lems, satisfiability, sequencing and ordering problems, fa-
cility locations problems, and various forms of assignment
problems.

Thanks to the matrix structure, QUBO problems can
be regarded as the representation of an undirected graph
with N vertices, connected by undirected edges i ↔ j
that have associated weights Qij = Qji. A classical solu-
tion to the QUBO problem corresponds to labeling each
vertex with 0 or 1, so as to maximize or minimize the
cost function E [see Fig. 1(b)]. In this work we classify

QUBO problems according to the size of the correspond-
ing graph, given by the number of vertices N , and the
density of the graph, defined as the ratio

D =
2E

N(N − 1)
, (2)

between the number of edges E and the maximum num-
ber of potential connections N(N − 1)/2.

A QUBO problem can always be mapped to an Ising
spin model. Thereby the optimization of the cost func-
tion E, Eq. (1), becomes a search of the minimum-
energy state of an Ising Hamiltonian for an N -qubit
system where each qubit represents one vertex of the
graph.The transformation from a QUBO to an Ising for-
mulation is implemented through the change of variables
xi → 1

2 (1 + σzi ), where σzi is the Pauli Z matrix acting
on the i-th qubit. We can express the previous function
as

f(σzi ) = −1

2
H +

1

4

∑
i,j

Qij ,

with H =
∑
i<j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i ,

(3)

using the coupling matrix Jij = −Qij and the magnetic
fields hi = −

∑
j Qij . In this paper we only consider

frustrated systems, where the matrices J and Q combine
both positive and negative coefficients, and the optimiza-
tion is potentially harder.

III. METHODOLOGY

A. Hybrid quantum-classical algorithms

Hybrid quantum-classical algorithms are those that
combine the use of quantum and classical computers to
solve a computational problem. In quantum variational
algorithms [2, 35], the quantum computer is used to pre-
pare and characterize a complex wave function, defined
in terms of parametrized quantum operations

|Ψ(~θ)〉 = UL(θL)...U1(θ1) |Ψ0〉 . (4)

The real values θi determine how this state is to be con-
structed in a quantum computer by composing unitary
operations Ui(θi). The parameters of this wave function
are tuned according to some classical algorithms, until
the wave function maximizes or minimizes a measure of
“fitness” or cost function. In this work the fitness func-
tion will be a QUBO problem, and we will consider two
hybrid algorithms: the original VQE and its modification
based on CVaR measures.

1. Variational quantum eigensolver algorithm.

The variational quantum eigensolver, or VQE [32], is a
hybrid quantum-classical algorithm that seeks the min-
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imal eigenvalue λmin and corresponding eigenstate of a
problem Hamiltonian H, such as the QUBO models de-
scribed above (3). The algorithm relies on a parametrized
family of wave functions (4). The variational principle
states that the average energy of this state is strictly
larger or equal to the energy of the ground state we seek:

λmin ≤ E(~θ) = 〈Ψ(~θ)|H|Ψ(~θ)〉 . (5)

Thus, if our parametrization (4) is dense in the Hilbert
space, we can obtain a very good approximation to the
ground state by solving the problem

~θopt = argmin~θE(~θ). (6)

VQE solves this problem by iteratively preparing the

wave function |Ψ(~θ(k))〉 and measuring its energy E(~θ(k))
in the quantum computer. The VQE relies on a clas-
sical optimization algorithm—gradient descent, SPSA,
Adam, etc—to build a progressively optimized sequence

of parameters {~θ(k)} that classically aims to minimize our

black-box functional E(~θ).
VQE is particularly well suited to address QUBO prob-

lems, where the energy functional (3) is written as a se-
quence of mutually commuting observables. In this case,
to solve a QUBO problem with N variables, the algo-
rithm relies on a quantum computer with N qubits that

are prepared in some trial state |Ψ(~θ)〉 . The energy of
this state is approximated by simultaneously measuring
all qubits in the Pauli z basis. This produces a string
of N values {si ∈ {−1, 1}}, which can be translated to
a bit string {xi} and a QUBO cost function (1) that we
label En. By averaging these values over K repetitions,
we obtain a stochastic approximation

ĒK(~θ) :=
1

K

K∑
k=1

Ek → E(~θ), K →∞ (7)

that is iteratively optimized using the classical methods
mentioned before.

2. Conditional value at risk-variational quantum
eigensolver

A problem with the VQE is that it regards all outcomes
of the measurement process with equal importance, even
outlier states that may have an energy far away from our

goal. If we call P (E; ~θ) the distribution of energies asso-
ciated with the states we build, the VQE cost function
is

ĒK(~θ) ' E[E(~θ)] = 〈Ψ(~θ)|H|Ψ(~θ)〉 =

∫ ∞
−∞

P (E; ~θ)EdE.

(8)
Recently, Barkoutsos et al. [23] proposed a variation of
VQE that replaces the cost function with a new estima-
tor that is inspired by the CVaR or the expected shortfall

definition applied in finance [36]. This new estimator
only works with a fraction ρ ∈ (0, 1) of the bit-strings
that the quantum computer produces, selecting them to
be those that have the lowest energy. If we sort all sam-
pled energies {E1 ≤ E2 ≤ . . . ≤ EK}, and we take the
fraction ρ of lowest energy outcomes,

CVaRρ(E(~θ)) ≈ 1

bρKc

bρKc∑
k=1

Ek. (9)

In the limit of many measurements, the CVaR-VQE es-
timator approximates the cost function

CVaRρ(E(~θ)) = E[E(~θ)|E ≤ F−1E (ρ)] =

=
1

ρ

∫ Eρ(~θ)

−∞
P (E; ~θ)EdE ,

(10)

where FE represents the cumulative density function of

E and Eρ(~θ) is computed as∫ Eρ(~θ)

−∞
P (E; ~θ)dE = ρ . (11)

The intuition behind the idea is that improving the prop-
erties of the best measurement outcomes may be more
efficient than improving the average of all outcomes, by
concentrating the probability of the wave function in the
lowest-energy states.

B. Quantum variational wave functions

A crucial ingredient in all variational algorithms is the
choice of parametrized wave function or Ansatz (4). Typ-
ically, these Ansätze are physically motivated and com-
bine local gates with entangling operations that correlate
the qubits in a hardware efficient manner. More gener-
ally, the choice of gates and the topology of the entan-
gling operations can affect the efficiency of the outcome.
In this study we focus on four types of variational states:
three types wave functions that are created by the action
of control Z gates, and also a family of cheap product
states where no correlation is required.

1. Entangled states

We start by considering a set of entangled varia-
tional wave functions as originally proposed for the VQE
method [2],

|Ψ(~θ)〉 = U(~θ) |0〉 , (12)

with U(~θ) =
∏L
l=1

[∏N
n=1 e

iθnlσ
y
nUent

]∏N
n=1 e

iθn0σ
y
n .

This wave function combines L layers of entangling
gates Uent with real-valued rotations generated by the
qubits’ Pauli y matrices σyn. The N × (L + 1) angles of
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FIG. 1. (a) Variational form based on single-qubit σy rota-
tions for five qubits with two layers and fifteen variational pa-
rameters. (b) Example of a particular optimized graph. (c)
Entangling layer compatible with the graph structure. (d)
Entangling layer with a linear entanglement. (e) Entangling
layer with a random entanglement.

these rotations θnl are the variational parameters of the
wave function (cf. Fig. 1). The entangling unitary, Uent,
determines the correlation structure of the wave function.
We will test three such structures, built from two-qubit
control Z gates:

(i) Linear entanglement: The entangling gates are in-
dependent of the structure of the QUBO problem.
Every entangling layer is made up of two-qubit con-
trol Z gates between each qubit with its nearest-
neighbor qubit in a linear quantum processor topol-
ogy [see Fig. 1(d)].

Uent =
∏
i

ei
π
4 (I−σzi )(I−σ

z
i+1) , (13)

where σz is the Pauli Z matrix acting on the ith
qubit.

(ii) Compatible entanglement: Entangling gates are
chosen to reflect the structure of the QUBO prob-
lem. Every entangling layer is made up of two-qubit
control Z gates between each qubit with nearest
neighbors in the QUBO graph [see Fig. 1(c)].

Uent =
∏
〈i,j〉

ei
π
4 (I−σzi )(I−σ

z
j ) , (14)

where 〈i, j〉 denote that i and j are nearest neigh-
bors, i.e., Qij 6= 0 with Q being the QUBO matrix.

(iii) Random entanglement: Every entangling layer is
made up of two-qubit control Z gates between ran-
dom qubits. The number of entangled qubits is
given by the number of nonzero weights in the
QUBO graph, i.e., it is not a fully random entan-
glement but it is dependent on the density of the
problem [see Fig. 1(e)].

Uent =
∏
i,j

ei
π
4 (I−σzi )(I−σ

z
j ) , (15)

where i 6= j are E random pairs.

In our variational algorithms we typically initialize the
VQE to a uniform superposition of all states in the com-
putational basis, using Hadamard-like rotations θn0 =
π/4, and making all remaining layers weak perturbations
over this state, θnl ≈ 10−2 for l ≥ 1.

2. Product state method

In this work we also explore fully separable variational
states, built from σy rotations of the N qubits

|Ψ(~θ)〉 =

N⊗
j=1

|ψ(θj)〉 , (16)

with |ψ(θj)〉 = cos θj |0〉+ sin θj |1〉.
The state (16) can be understood as a borderline case

of the variational form (12) exposed in the previous sec-
tion in which the number of layers L is 0. The elimi-
nation of the entangling gates makes the state hardware
efficient and more accurate, but it also makes the whole
variational procedure efficiently simulable in a classical
way. We can regard this family of states as a new type of
classical algorithms, much like the spin-vector quantum
Monte Carlo methods that have been used to benchmark
quantum annealers [37, 38].

C. Efficiency indicators

To study the efficiency of the algorithms we use the
algorithm’s runtime and the success as indicators. The
algorithm’s speed is quantified by the number of the cost
function evaluations needed to converge to an optimal
solution (global or local). Note that this is also the num-
ber of queries made to the quantum processor, the most
time-consuming step in the whole process.

The algorithm’s success is quantified by the probabil-
ity that the final wave function |Ψout〉 has a significant
overlap with the target state |Ψsolution〉. This target state
is previously computed by a classical method. We deem
the algorithm successful S = 1 whenever this probability
exceeds a fixed cut-off β:

S ≡
{

0 if |〈Ψout|Ψsolution〉|2 < β ,
1 if |〈Ψout|Ψsolution〉|2 ≥ β .

(17)



5

FIG. 2. Comparison of VQE performance with a variety of
classical optimization methods to optimize the variational pa-
rameters using exact quantum states resulting from simula-
tion. From left to right we increase the number of layers L
of the Ansatz. On the x axis we plot the size of the prob-
lem: (a),(b) success rate, (c),(d) objective function evalua-
tions needed to converge. The results show the average of
1600 instances and a 95% confidence interval.

Let us point out that the algorithm could converge to a
local minimum of the cost function quite different from
|Ψsolution〉, since the classical optimizers use standards
convergence criteria based on the change of the cost func-
tion value in each optimization step. Therefore the con-
vergence of the algorithm does not guarantee S = 1.
Given a set of problems, we call the success rate the av-
erage of S over all such instances. The value of β is
somewhat arbitrary, but once fixed it lower bounds the
probability of obtaining the right solution by measuring
over the final state k times

P (Ψsolution|S = 1) ≥ 1− (1− β)k. (18)

In our simulation we set β = 0.1 so that the success
of the algorithm implies we obtain the right state with
99.997% probability after k = 100 measurements of the
variational state.

D. Classical benchmark of the algorithms

Actual variational quantum algorithms are expected
to run on real quantum hardware. However, the goal of
this work is to perform a neutral benchmark focused on
the influence of variational states and cost functions in
the algorithm, leaving aside experimental imperfections,
such as noise or disconnected qubits. For this reason, we
conduct our benchmarks by using a classical simulator
of an ideal quantum computer. All simulations as well
as the optimization of the variational parameters were
performed on nodes with two Intel Sandybridge E5-2670

FIG. 3. Comparison of VQE performance with a variety of
classical optimization methods to optimize the variational pa-
rameters using approximate quantum states computed by a
finite set of measurements on the qubits resulting from sim-
ulation. From left to right we increase the number of lay-
ers L of the Ansatz. On the x axis we plot the size of the
problem. (a),(b) success rate, (c),(d) objective function eval-
uations needed to converge. The results show the average of
1600 instances and a 95% confidence interval.

processors, each one with eight cores operating at 2.6
GHz and a cache of 20MB and 64 GB of RAM memory
(i.e., 4 GB/core) running Centos 7.4.

Another important ingredient in these simulations is
whether we consider a finite number of measurements—
i.e., K is finite in Eqs. (7) and (9)—, or whether we study
the limit of infinite measurements, where the quantum
uncertainty is eliminated. In this work we begin with
the second set of results, which are obtained by simulat-
ing the complete wave function and evaluating the exact

expectation values E(~θ) or CVaRρ(E). These results are
later on complemented by stochastic simulations that em-
ulate a finite number of measurements and the random-
ness of a quantum computer.

E. Choice of classical optimizer

In our study of the variational method we have tested
seven different optimizers: modified Powell’s conjugate
direction method [39], sequential least squares program-
ming (SLSQP) [40], Broyden–Fletcher–Goldfarb–Shanno
(BFGS) [41–44] and its limited-memory version (L-
BFGS-B) [45], the simultaneous perturbation stochastic
approximation (SPSA) [46], the constrained optimization
by linear approximation [47] and the Nelder-Mead algo-
rithm [48]. We use the optimization methods straight-
forwardly provided by Scipy 1.3.2 [49], except for SPSA,
which is a homemade implementation.

Before our full study of the variational algorithms, we
benchmarked these optimizers in a limited set of QUBO
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problems. Figure 2 shows the success rates and number
of evaluations of these methods vs the number of qubits.
The results have been averaged over 1600 randomly gen-
erated problems, optimized in the limit of infinite num-
ber of measurements—i.e., wave function simulations—.
Figure 3 shows similar results, but emulating 9000 mea-
surements of a quantum computer per evaluation.

These figures show a stark contrast in the actual per-
formance of the optimizer. Gradient-free optimizers such
as SPSA, COBYLA, Powell, and Nelder-Mead perform
well even when the information of the objective func-
tion is not complete and its computation presents some
stochasticity. Gradient-based optimizers such as SLSQP,
BFGS, and L-BFGS-B perform very well in wave func-
tion simulations, even outperforming the other methods.
However, these algorithms fail when the cost function
is evaluated with some uncertainty, becoming trapped in
local minima due to an imperfect estimate of the optimal
descent direction. Consequently, in the remainder of this
work we use L-BFGS-B when working with wave func-
tion simulations, while we use SPSA in scenarios with a
finite number of measurements.

IV. RESULTS AND DISCUSSION

Let us now show the main results we obtained by
benchmarking the VQE and CVaR-VQE algorithms on
random instances of QUBO problems. These problems
were generated by creating regular and unstructured ran-
dom graphs with the Python package networkx [50], and
assigning to the edges of the graph a uniformly sampled
random integer weight on the [−10, 10] interval. We per-
formed the experiments for various numbers of qubits N
and graph densities D, generating Nins = 1600 instances
of each configuration. A different set of 1600 instances
was used in each experiment. The final results are shown
in Figs. 2-10 with 95% confidence intervals, which are ob-
tained by resampling the output data with the bootstrap
method [51, 52].

A. CVaR-VQE vs. standard VQE performance

First, we present a comparison between the perfor-
mance of standard VQE and CVaR-VQE (with ρ = 10%),
using an Ansatz with three entangling layers (L = 3) and
a product state wave function.

Final state wave function: CVaR-VQE en-
hances success probability.- Figure 4 shows the over-
lap between the exact optimized wave function and the
actual solution of QUBO problems with N = 12 qubits.
This plot illustrates a qualitatively different behavior in
both algorithms. On the one hand, the standard VQE
algorithm converges almost always to a classical state,
which either coincides with the global minimum or is
completely orthogonal to it. The only exception occurs
for the product state Ansatz in problems with small con-

a) b)

c) d)

e) f)

FIG. 4. Distribution of the overlap of the final state |Ψout〉 re-
sulting from the convergence of the algorithm with the exact
ground state |Ψsolution〉 computed classically. We plot the per-
centages obtained from Nins = 1600 instances for an Ansatz
with L = 0 and L = 3 entangling layers, N = 12 qubits, and
using L-BFGS-B as classical optimizer. We show on the left
the results from VQE standard algorithm, and on the right
the results from CVaR-VQE with ρ = 10%. From top to bot-
tom, the density is (a), (b) 0.045; (c), (d) 0.258; and (e), (f)
0.894. In this paper we consider successful trials those whose
final overlap is at least 0.1.

nectivity D � 1. The CVaR-VQE method, on the other
hand, converges to quantum superpositions of classical
configurations. This makes the CVaR-VQE wave func-
tion have a smaller overlap with the global minimum on
average, but it greatly increases the probability of re-
covering the optimal solution by repeated measurements.
In contrast, when the VQE algorithm fails, we have to
restart the optimization process again from a different
initial condition. The intuition behind this result is that
any local minimum of the VQE cost function (7) is likely
to be a classical state, while any state with an overlap x
with the ground state of (7) such that ρ < x is a global
minimum of the CVaR-VQE cost function (9).

Success rate and speed: CVaR-VQE is more ef-
ficient than standard VQE.- In Fig. 5 we compare
the performance of standard and CVaR-VQE by looking
at the success rate, defined by the criterion of Sec. III C,
and the number of evaluations. We investigate QUBO
problems with different sizes and densities. In Figs. 5(a)
and 5(b), we show results with a product state Ansatz
(L = 0), whereas Figs. 5(c) and 5(d) presents results
with L = 3 and a linear entanglement pattern. In both
figures we observe that CVaR-VQE clearly outperforms
standard VQE, both in terms of success rate and speed,
for any choice of problem size, density, and entangle-
ment structure. Based on these results, from now on the
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FIG. 5. Idealized performance of standard VQE (blue circles)
and CVaR-VQE with ρ = 10% (orange X symbols), as a func-
tion of graph density D for a classical simulation with the full
wave function (Nshots →∞). We compare (a), (b) a product
state with (c), (d) an entangled state with L = 3 layers for
problems with different N = 6, 9 and 12 qubits. We plot (a),
(c) the success rate and (b), (d) the number of function evalu-
ations vs the density of the underlying graph. The lines show
the average over Nins = 1600 problem instances, surrounded
by a colored 95% confidence interval.

whole study will be carried out considering exclusively
the CVaR-VQE algorithm.

B. Entangling layer structure

Let us now study the influence of correlations in the
variational algorithm. Our goal is to understand whether
an entanglement structure that imitates the topology of
the QUBO problem produces significant advantages. In
this section we also introduce the use of a finite number
of measurements, exploring how stochasticity affects the
different entanglement patterns.

Shallow entanglement patterns.- Figure 6 illus-
trates the performance of CVaR-VQE using one or no
entanglement layers of the three types mentioned in Sec.
III B. We computed the success rate and function eval-
uations over 1600 instances of QUBO problems with
N = 12 qubits, for different values of the associated
graph density D. We observe that, for small graph den-

sities, a compatible entanglement has a marginal advan-
tage in the success rate and convergence speed. However,
as the density of the QUBO graph increases this advan-
tage disappears, and the success rate is matched or out-
performed by the classical product state and the linear
entanglement wave functions, at slightly lower numbers
of function evaluations.

Efficiency as a function of circuit depth.- We
have repeated the previous study with increasing number
of layers. Figure 7 illustrates the success rate and num-
ber of evaluations, for graphs with intermediate density
(D = 0.258, left column) and dense graphs (D = 0.894,
right column). We observe that in both cases the con-
vergence of the algorithm slows down with the number
of layers, proportionally to the growth in the number of
parameters. Despite this cost, the success rate reaches
a plateau with a few layers, an effect that is especially
prominent at smaller densities. In some cases, such as
the use of compatible or linear entanglement, the success
rate saturates at one layer [cf. Fig. 7(a)]. These are shal-
low enough circuits which have been simulated exactly
in a classical computer. Hence, we cannot attribute the
effect to vanishing gradients or barren plateaus [53, 54],
but to an intrinsic limitation of the algorithm.

Influence of the number of experimental shots.-
Until now, our study has focused on exact simulations
of the variational wave function, computing the exact
expectation values. We will now consider a realistic sce-
nario with a finite number of experimental shots for each
observable. In this case, we no longer compute the exact
CVaR-VQE cost function, but the random estimator. As
explained above, this also requires us to use the SPSA
classical optimizer. The results are summarized in Fig.

FIG. 6. Performance of CVaR-VQE (ρ = 10%) for different
entanglement structures and product states, as a function of
the QUBO problem’s graph density. We simulated problems
with N = 12 qubits, using exact wave functions with L = 0 or
1 entanglement layer, and the L-BFGS-B classical optimizer.
We plot the average (a) success rate and (b) number of eval-
uations computed over Nins = 1600 instances, surrounded by
the 95% confidence interval.
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8, for simulations with L = 1 layers. Note how Figs. 8
(a) and 8(b) imitate earlier plots, for different numbers of
measurements, while Figs. 8 (c) and 8(d) focus on a fixed
density and study the variation with increasing number
of shots.

We can extract several conclusions. First, we see
that the compatible entanglement is the most success-
ful Ansatz when a sufficient number of shots is avail-
able. The contrast with Fig. 6 must be attributed to the
change in the optimizer, which also affects the number
of evaluations. Second, this advantage is clearly wiped
out when we consider a scenario with a finite number of
measurements, where the cost function is randomly esti-
mated. Third, we see that the slowdown in convergence
produced by the increased graph density is aggravated
when the algorithm has incomplete information of the
wave function. Third, the previous remark does not ap-
ply to the product state Ansatz, as discussed in more
detail in Sec. IV D.

Effect of adapting the entanglement to the
problem.- Although briefly mentioned in the preced-
ing paragraphs, let us summarize under what circum-
stances matching the entanglement to the problem struc-
ture offers an advantage over other Ansätze. With exact
wave functions simulations (see Fig. 6) and when the
information of the cost function is quite incomplete (see
3000 shots case in Fig. 8), compatible entanglement is
marginally better than other approaches only when the
problem density is low. However, the adaptation of en-
tanglement to the network connections loses its advan-
tageous effect when the density increases since the spe-
cific network structure becomes less noticeable. We also
observe a sharper deterioration in the speed of the algo-
rithm when compatible entanglement is applied to high-

FIG. 7. Success rate and average number of cost function
evaluations needed for convergence, as a function of the num-
ber of layers of the variational form. The results show the
average of Nins = 1600 instances and a 95% confidence inter-
val. Plots (a), (c) and (b), (d) correspond to problems with
graph density equal to 0.258 and 0.894, respectively.

FIG. 8. Performance of CVaR-VQE (ρ = 10%) in a realistic
simulation with a finite number of measurements, using the
SPSA classical optimizer. Calculations have been done using
N = 12 qubits and L = 0, 1 entanglement layers. We plot
both the average and a 95% confidence interval. Plots (a),
(b) show the success rate and the speed of convergence re-
spectively as a function of the connectivity of the problem for
3000 and 9000 measurements of the variational wave function.
Plots (c), (d) illustrate the success rate and speed of conver-
gence as we change the number of measurements, with the
ideal wave function simulations (Nshots →∞) in dotted lines.

density problems. If we reduce the uncertainty in the
estimation of the objective function raising the number
of measurements to 9000 (see Fig. 8), we can see that a
graph-adapted entanglement is able to slightly improve
the success rate of the algorithm for problems of any den-
sity without a significant delay in the convergence.

C. Hardness analysis

At this point we have discussed the efficiency of opti-
mizing QUBO problems according to the characteristics
of the variational algorithm such as the cost function or
the Ansatz. In this section we analyze the problem from
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FIG. 9. Performance of CVaR-VQE (ρ = 10%) as a func-
tion of the QUBO’s problem Hamming distance between the
optimal and the first-excited subspace. We used N = 12
qubits with L = 0 or 1 layers, computing the exact energy
with the full wave function (Nshots →∞). The plots show (a)
the average success rate and (b) the number of cost function
evaluations, with a 95% confidence interval.

a different point of view. We now try to get some insight
into how the specific properties of each QUBO problem
affect the hardness of the optimization in terms of suc-
cess rate and speed of convergence. We define as a hard
problem one for which the variational algorithm requires
a high number of evaluations to converge, while still ob-
taining a low success rate.

Success rate and speed as a function of graph
density.- We have already concluded from Figs- 4-6 that
the density of the graph severely impacts the performance
of the variational algorithm. These studies lead to some
general remarks. (a) On average we found that graphs
with many connected vertices—i.e., QUBO with dense
matrices—are harder problems than sparse problems. (b)
When the entanglement structure imitates the graph, we
saw that the number of successful instances decreases
with the graph connectivity (see Fig. 6). (c) However,
for variational forms whose design is independent of the
problem, we observed that there is a critical density in
which the trend steadies around a minimum success rate,
despite increasing the number of edges in the graph (see
Figs. 5 and 6). Such critical density might be related
to the percolation point of the network. (d) We observe
equivalent trends when we consider the number of func-
tion evaluations.

Impact of low-energy state structure: a mea-
sure of hardness.- Optimization algorithms typically
fail because the Ansatz gets trapped in a local minimum
that is different from the global minimum we seek. We
expect that this phenomenon will be more likely when
there are states that have a value of the cost function
close to the optimum, but are far from the optimal state
in Hilbert space. To test this hypothesis, we have cor-
related the performance of the variational quantum op-

FIG. 10. Performance of CVaR-VQE (ρ = 10%) as a func-
tion of the QUBO problems’ Hamming distance between the
ground state and lowest-excited manifold, when we consider a
limited number of measurements in the estimation of the cost
function. Simulations used N = 12 qubits and L = 0 and
1 entanglement layers. We plot the (a) average success rate
and (b) average number of evaluations, with a 95% confidence
interval.

timizer to the minimum Hamming distance between the
ground state space of the QUBO problem and the (pos-
sibly degenerate) manifold of its first excitations. Let
us recall that the Hamming distance between two bit
strings |ψ1〉 = |s1, . . . , sN 〉 and |ψ2〉 = |t1, . . . , tN 〉, is

given by dH(|ψ1〉, |ψ2〉) = 1
N

∑N
j |sj − tj |. We have com-

puted the minimum such distance between the ground
state and first-excited manifolds of randomly generated
QUBO problem, exploring 29 values of the density and
averaging over 1600 random regular graphs for each den-
sity.

The variational algorithm was simulated using the full
wave function and also a finite number of measurements,
as shown in Figs. 9 and 10, respectively. These re-
sults show a strong correlation between the Hamming
distance from the fundamental state to the first-excited
state and the difficulty of the algorithm to solve the opti-
mization problem, both in terms of success rate and speed
of convergence. This conclusion holds for all variational
Ansätze.

It must be remarked that the correlation of the diffi-
culty to the Hamming distance is much clearer than to
the density (cf. Figs. 6 and 7). While the increase of
the graph connectivity led to a maximum loss of suc-
cess rate of approximately 3%, in this case the difference
can be of up to 40% for full simulations, and 30% when
using 9000-shot measurements. Moreover, the number
of objective function evaluations also grows significantly
with the Hamming distance. We thus conclude that the
Hamming distance is a clearer indicator than the plain
graph density to predict the hardness of an optimization
problem [55, 56].
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D. Product state vs. entangled Ansätze

So far we have been considering on equal footing the
Ansätze with L ≥ 1 entangling layers, and the special
case in which we eliminate all entanglers and work with
product states. It is important to do a careful compar-
ison between both situations, because only the former
case argues for an advantage of using the quantum com-
puter. Indeed, using product states, with CVaR or pure
VQE, can be regarded as a new classical optimization
algorithm, similar to other methods proposed in the last
decade [37, 38].

At a glance in Figs. 2-10, we observe a slight improve-
ment in the success rate of VQE when using some entan-
gling operations, as compared with the L = 0 product
state method. This success comes with two costs. First,
we need to use a quantum computer, which in itself in-
volves a non-negligible overhead. Second, the increased
number of parameters in the variational Ansatz also leads
to a larger number of function evaluations and slower
optimization. Let us analyze these metrics with greater
care.

Product state-based Ansatz seems better for
few shots.- The advantage of entangled states decreases
and even disappears when we consider the statistical er-
rors induced by a finite number of quantum measure-
ments. This was seen in Figs. 8(a) and 10(a), and more
clearly in Fig. 8(b). A decrease in the number of samples
reduces the success gap, to a point where at 3000 shots
the product state can outperform other methods. More-
over, as seen in Figs. 8(c) and 10(b), and especially in
Fig. 8(d), as we decrease the number of measurements,
the product state also saturates in the number of function
evaluations, while all other Ansätze grow. We therefore
conclude that the use of a product state variational form
(and its fully classical simulation) is advantageous when
we are limited in the precision with which we can esti-
mate the cost function.

The role of entanglement as a function of graph
density.- One may also wonder whether entanglement
can provide an advantage in highly- or weakly-connected
problems. Inspecting Figs. 6 and 8, this does not seem
to be the case. At large densities with no statistical un-
certainty, the success rate is only marginally better in the
entangled Ansatz case, by 2-3%. However, in this region
there is a significant performance hit due to the larger
number of function evaluations as compared with the
product states (see Fig. 6). If we consider the stochastic-
ity of quantum measurements, the situation is reversed:
entangled Ansätze achieve greater success rates, by 20%
or higher, with faster convergence, regardless of the den-
sity of the optimized graph.

The role of entanglement in different hardness
regimes.- We have seen that the graph density is not a
good quantifier for hardness. It is therefore interesting
to look at the correlation between the Hamming distance
and the performance of both types of methods, as shown
in Table I. From inspecting this table and Figs. 9 and

3000 shots 9000 shots Full wave function
(A) (B) (C) (A) (B) (C) (A) (B) (C)

Success
Product 31% 22% 16% 46% 34% 26% 98% 69% 55%
Entangled 31% 25% 20% 57% 40% 30% 99% 83% 61%

Speed
Product 335 274 327 316 262 298 73 206 288
Entangled 496 538 625 463 372 461 129 390 560

TABLE I. Performance of the product-state and entangled-
state Ansätze, for varying hardness and number of shots. The
columns (A), (B), and (C) correspond to problems with Ham-
ming distances dH ≤ 0.3, dH ∈ [0.4, 0.7], and dH ≥ 0.8, respec-
tively. The table displays the success rate and the average
number of evaluations of the cost function.

10, we conclude that entanglement provides a moder-
ate advantage in the success rate, ranging from 10% at
easy problems, up to 4 − 5% for hard problems, always
in the realistic case with a limited number of measure-
ments. However, the product-state Ansatz can be effi-
ciently simulated in the limit of infinite measurements
(full wave function). Therefore, in practical terms, we
would achieve 25% to 41% higher success rates, with up
to an order of magnitude reduction in the number of eval-
uations, simulating the product-state Ansatz.

Let us sum up the comparison between product-state
and entangled Ansätze. We have found that entangle-
ment yields a slight improvement only in the case of neg-
ligible measurement error. On the contrary, the product-
state Ansatz is advantageous, if there is a significant un-
certainty in the cost function evaluation (see Figs. 8 and
10, and Table I). Our analysis implies that product-state
outperforms entangled Ansätze in practical terms, since
they require fewer resources and can even be classically
simulated.

V. CONCLUSIONS

In this work we have studied the optimization of
QUBO problems using the original and CVaR formula-
tions of the VQE algorithm. We have compared the per-
formance of this type of solvers for different variational
Ansätze and for different types of problems, analyzing the
success rates, convergence speeds, types of states that are
created, and the behavior of the algorithm both in ideal-
ized scenarios (unlimited number of measurements) and
limited resources.

Our work corroborates the advantage of using a CVaR
cost function over conventional averages. We have also
verified that adapting the structure entangling operations
to the topology of the problem is marginally advanta-
geous, in line with recent experimental results [21]. We
also found that in a scenario with limited numbers of
measurements, entanglement also provides a quantitative
advantage over other approaches when enough shots can
be performed, but this advantage quickly saturates with
the depth of the Ansatz. Our study also finds a corre-
lation between the practical hardness of a problem and
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a metric that characterizes the structure of low-energy
excitations.

One important takeaway is that CVaR metrics with
product state Ansatze provide a classical optimization
capable of outperforming the variational quantum eigen-
solver. This method can afford very large numbers of
effective measurements, reaching success rates and per-
formance metrics that exceed those that we see for con-
ventional hybrid quantum-classical methods. This result
highlights the need to investigate further the existing al-
gorithms for quantum optimization, including other al-
ternatives such as QAOA [1]. It also illustrates the pos-
sibilities that quantum inspired alternatives can bring to

the field of classical optimization in the near term.
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İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and S. . . Contributors, Nature
Methods 17, 261 (2020).

[50] A. Hagberg, P. Swart, and D. S Chult, Exploring network
structure, dynamics, and function using NetworkX, Tech.
Rep. (Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008).

[51] B. Efron, The Annals of Statistic 7, 1 (1979).
[52] B. Efron and R. J.Tibshirani, An Introduction to the

Bootstrap (Chapman & Hall, Inc., 1993).
[53] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Bab-

bush, and H. Neven, Nature Communications 9,
10.1038/s41467-018-07090-4 (2018).

[54] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone,
L. Cincio, and P. J. Coles, Nature Communications 12,
10.1038/s41467-021-27045-6 (2021).

[55] E. Farhi, J. Goldstone, S. Gutmann, and D. Nagaj, In-
ternational Journal of Quantum Information 06 (2008).

[56] A. Callison, N. Chancellor, F. Mintert, and V. Kendon,
New Journal of Physics 21, 123022 (2019).

https://arxiv.org/abs/2102.02875
https://arxiv.org/abs/2102.02875
https://doi.org/10.3389/fphy.2014.00052
https://arxiv.org/abs/1401.7087v2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1142/S021974990800358X
https://doi.org/10.1142/S021974990800358X
https://doi.org/10.1088/1367-2630/ab5ca2

	Quantum variational optimization: The role of entanglement and problem hardness
	Abstract
	I INTRODUCTION
	II Quadratic unconstrained binary optimization problems on random graphs
	III Methodology
	A Hybrid quantum-classical algorithms
	1 Variational quantum eigensolver algorithm.
	2 Conditional value at risk-variational quantum eigensolver

	B Quantum variational wave functions
	1 Entangled states
	2 Product state method

	C Efficiency indicators
	D Classical benchmark of the algorithms
	E Choice of classical optimizer

	IV Results and discussion
	A CVaR-VQE vs. standard VQE performance
	B Entangling layer structure
	C Hardness analysis
	D Product state vs. entangled Ansätze

	V Conclusions
	 Acknowledgments

	 References


