
 International Journal of 

Molecular Sciences

Article

Transcriptomic Profiles of CD47 in Breast Tumors Predict
Outcome and Are Associated with Immune Activation

María del Mar Noblejas-López 1,2,† , Mariona Baliu-Piqué 3,†, Cristina Nieto-Jiménez 3, Francisco J. Cimas 1,2,
Esther C. Morafraile 3 , Atanasio Pandiella 4,5,6,7, Ángel L. Corbi 8 , Balázs Győrffy 9,10,11
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Abstract: Targeting the innate immune system has attracted attention with the development of anti-
CD47 antibodies. Anti-CD47 antibodies block the inhibition of the phagocytic activity of macrophages
caused by the up-regulation of CD47 on tumor cells. In this study, public genomic data was used
to identify genes highly expressed in breast tumors with elevated CD47 expression and analyzed
the association between the presence of tumor immune infiltrates and the expression of the selected
genes. We found that 142 genes positively correlated with CD47, of which 83 predicted favorable and
32 detrimental relapse-free survival (RFS). From those associated with favorable RFS, we selected
the genes with immunologic biological functions and defined a CD47-immune signature composed
of PTPRC, HLA-E, TGFBR2, PTGER4, ETS1, and OPTN. In the basal-like and HER2+ breast cancer
subtypes, the expression of the CD47-immune signature predicted favorable outcome, correlated with
the presence of tumor immune infiltrates, and with gene expression signatures of T cell activation.
Moreover, CD47 up-regulated genes associated with favorable survival correlated with pro-tumoral
macrophages. In summary, we described a CD47-immune gene signature composed of 6 genes
associated with favorable prognosis, T cell activation, and pro-tumoral macrophages in breast cancer
tumors expressing high levels of CD47.

Keywords: CD47; immune activation; pro-tumoral macrophages; immunotherapy; breast cancer

1. Introduction

Administration of inhibitors of immunosuppressive signals has become an effective
therapeutic strategy for the treatment of different types of cancer [1,2]. This approach has
clearly modified the concept of cancer therapeutics, opening the door for the exploitation of
the immune system to treat oncogenic processes [3]. In contrast to classical chemotherapy
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or targeted agents, immunotherapy aims to stimulate the patient’s own immune system to
attack tumor cells, therefore inducing long-lasting responses [3].

Programmed cell death 1 (PD1) and its ligand, PD-L1, are negative regulators of T cell
activation that act as ‘checkpoint molecules’ [4]. Targeting PD1 and PD-L1 for the treat-
ment of cancer enhances the response of T cells against the tumor [1–3,5]. Unfortunately,
not all treated patients respond to checkpoint inhibitors, but immune-activated tumors,
including those with high PD-L1 expression, are more prepared to orchestrate an adequate
immune response following checkpoint blockade [6,7]. In this context, several studies
have explored the potential of genomic signatures to predict outcomes and response to
checkpoint inhibitors by identifying immune-activated tumors [8–10].

Exploiting immunotherapy as a therapeutic tool has mainly focused on the adaptive
immune system to induce and boost an efficient T cell response [3]. Targeting innate
immunity has recently attracted attention as a potential therapeutic option for many types
of human cancers [11,12]. Macrophages, one of the components of the innate immune
system, can contribute to the elimination of tumor cells by phagocytosis and contact-
dependent and independent killing. Of note, two subsets of macrophages have been
described: The M1 subtype, which exhibits a pro-inflammatory phenotype and displays
anti-tumoral activities and phagocytic functions, and the M2 subtype, closely related to the
so-called tumor-associated macrophages (TAMs), which has potent anti-inflammatory and
tissue-repair (fibrotic) functions and promotes tumor progression [13].

Inhibitory signals also control macrophages activation. The signal-regulatory protein
α (SIRPα) is an inhibitory receptor that presents immunoreceptor tyrosine-based inhibition
motifs (ITIMs) [14,15]. SIRPα is expressed not only on macrophages but also on dendritic
cells (DC) and neutrophils [16,17]. SIRPα plays an inhibitory role when activated by its
ligand CD47. This interaction generates a “do not eat me” signal that prevents phagocytosis.
Cancer cells may escape the immune surveillance of macrophages by the upregulation of
CD47 expression [17,18].

Strategies to block this inhibitory pathway are under evaluation and aim at mimicking
the success achieved with PD1 and PD-L1 inhibitors. Inhibition of the SIRPα-CD47 axis will
enable macrophages to phagocytize and eliminate tumor cells in an efficient manner [16,17].
Currently, more than twenty early-stage clinical studies evaluating antibodies against the
SIRPα-CD47 axis are ongoing [17]. Following the approach with checkpoint inhibitors
evaluating PD-L1 expression, some of these new studies explore the presence of CD47 in
relation to clinical efficacy. However, it is expected that the mere expression of this marker,
like for PD-L1 expression, would not completely identify responder tumors.

In this study, we aimed to identify genomic correlates associated with the expression of
CD47 in breast cancer to get insights into the immunologic characteristics of those tumors.

2. Results
2.1. Identification of Genes Expressed in Breast Tumors with High Expression of CD47

We used public genomic data to identify genes highly associated with CD47 expres-
sion at mRNA level in breast cancer tumors (n = 1764). Thereafter, we analyzed the
transcripts which were positively (Spearman correlation, SC > 0.4 and p < 0.05) and nega-
tively (SC < −0.4 and p < 0.05) correlated with CD47 expression. We identified 142 genes
with a positive and five genes with a negative correlation with CD47 expression (Figure 1a).
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Figure 1. Immune system related transcriptional profiles associated with outcome and with CD47
expression in breast cancer. (a) Flow chart of gene selection, describing the tools and selection
criteria used. (b) Functional analyses of the selected genes described in A using Enrichr Online
Tool. For positively correlated genes (Spearman correlation (SC) > 0.4 and Hazard Ratio (HR) < 1),
gene ontologies (GO) of biological process with a p < 0.05 are shown. The processes related to the
immune system are highlighted. (c) Heat map displaying HR values extracted from Kaplan–Meier
survival plots of the association between PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, OPTN, and CD47
individually expressed and patient prognosis, including relapse-free survival (RFS) (n = 1764) and
overall survival (OS) (n = 626), for all breast subtypes from the exploratory cohort. (d) Kaplan–Meier
survival plots of the association between PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, and OPTN mean
expression levels and patient prognosis, including relapse-free survival (RFS) (n = 1764) and overall
survival (OS) (n = 626) for all breast subtypes from the exploratory cohort.

We next explored the association of the selected gene transcripts with patient outcome,
in terms of relapse-free survival (RFS), in 1764 breast cancer patients from all subtypes.
From the 142 genes positively correlated with CD47, 83 genes (58.5%) predicted favorable
RFS, and 32 genes (22.5%) were predicted to be detrimental to RFS. Of note, no association
with survival was observed for 27 genes (19%). The five genes negatively correlated
with CD47 were associated with a favorable prognosis (Figure 1a). A complete list of the
identified genes is shown in Figure S1.

The get insights into the biological functions of the identified genes, we used the
gene set enrichment analysis tool Enrichr (http://amp.pharm.mssm.edu/Enrichr/, ac-
cessed on 20 March 2020) [19]. For those genes correlated with detrimental prognosis, no
immunologic-related functions were found (Figure S2a), neither for the five genes nega-
tively correlated with CD47 expression (Figure S2b). For the genes positively correlated

http://amp.pharm.mssm.edu/Enrichr/
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with CD47 and associated with favorable RFS, 17 biological processes with a p < 0.01 value
were detected (Figure 1b). As the main goal of this project was to explore immunological
correlates associated with the expression of CD47, we focused only on those biological
functions related to immunology. From those, we selected only those genes from biological
processes related to the immune system: (i) regulation of T cell-mediated cytotoxicity (PT-
PRC, HLA-E, and TGFBR2) and (ii) positive regulation of defense response (PTGER4, ETS1,
and OPTN) (Figure 1b). Other biological functions included ‘cell protein modification’,
‘endosome organization’, ‘protein localization to plasma membrane’, ‘response to peptide
stimulus’, and ‘positive regulation of biosynthetic process’, among others (Figure 1b). A
complete list of the biological functions of the proteins codified by PTPRC, HLA-E, TGFBR2,
PTGER4, ETS1, and OPTN genes obtained via UniProt is shown in Table S1.

2.2. CD47-Immune Signature is Associated with Favorable Prognosis in Breast Cancer, Especially
for the BASAL-Like and HER2+ Subtypes

Each gene individually, PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, and OPTN was
associated with favorable outcomes (RFS and OS) in a statistically significant manner
(Figure 1c); although, some did not predict better than the just the expression of CD47.
However, given the fact that CD47 expression has been described as a negative regulator
of the anti-tumoral action of macrophages [20,21], we aimed to explore the association
of the CD47-immune signature composed by PTGER4, ETS1, PTPRC, HLA-E, TGFBR2,
and OPTN with clinical outcomes. Using the exploratory dataset which includes more
than 1764 patients with RFS data, and 626 patients with OS information, we found that
the combination of PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, and OPTN predicted favor-
able RFS (HR = 0.65; CI = 0.55–0.76; p = 1.2 × 10−7 and OS (HR = 0.53; CI = 0.39–0.73;
p = 5.6 × 10−5) in breast cancer (Figure 1d). This prediction was better than single gene
prediction, including CD47, and displayed a very low false-discovery rate (FDR).

Next, we explored if clinical outcomes could differ based on different breast cancer
subtypes, as immune surveillance in each tumor subtype can be substantially different.
In line with this heterogeneity, the prediction capacity of each gene varied, being the
basal-like and HER2+ subtypes those in which the majority of genes predicted a favorable
outcome, particularly for OS (Figure 2a). A similar correlation was observed for most of
the genes in the basal-like, but not for the HER2 subtype, in the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) study (Figure 2b). For the combined
signature, we found that differences in outcome were more evident for the basal-like
and HER2+ breast cancer subtypes for both RFS and OS (Figure 2c,d). In the basal-like
subgroup, the expression of the CD47-immune signature predicted favorable outcome
for RFS (HR = 0.4; CI = 0.29–0.56; p = 1.2 × 10−8) and OS (HR = 0.23; CI = 0.12–0.44;
p = 1 × 10−6) (Figure 2c). In the HER2+ subgroup a similar association was identified for
RFS (HR = 0.43; CI = 0.27–0.68; p = 0.00021) and OS (HR = 0.25; CI = 0.11–0.57; p = 0.00034)
(Figure 2d).

Given the exploratory nature of this cohort, we next analyzed these results using
a confirmatory dataset. To do so, we used the METABRIC study that involved more
than 1988 patients (PMID: 22522925). This dataset only provides information about OS.
Using the validation cohort, we confirmed that for basal-like (HR = 0.54; CI = 0.4–0.73;
p = 4.4 × 10-5) and HER2+ (HR = 0.6; CI = 0.38–0.95; p = 0.025) tumors the CD47-immune
signature predicted favorable OS (Figure 2e,f). Altogether, this data demonstrates that the
prediction observed was particularly strong and reproducible in the basal-like subtype.
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Figure 2. Kaplan–Meier survival curves of the association between transcriptomic expression of
PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, and OPTN and clinical outcome in basal-like, HER2+,
luminal A, and luminal B breast cancer patients. (a,b) Heat map displaying HR values extracted from
Kaplan–Meier survival plots for the association between PTGER4, ETS1, PTPRC, HLA-E, TGFBR2,
OPTN, and CD47 individually expression levels and patient prognosis, in the exploratory cohort
and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) validation cohort,
respectively. (c,d) basal-like (relapse-free survival (RFS); n = 360 and OS; n = 153), and HER2+ (RFS;
n = 156 and OS; n = 53), breast tumors in the exploratory cohort. (e,f) basal-like (OS; n = 331) and
HER2+ (OS; n = 135) in the validation cohort (METABIRC project). (g,h) luminal B (RFS; n = 841 and
OS; n = 271), and luminal A (RFS; n = 407 and OS; n = 129) in the exploratory cohort. (i,j) luminal B
(OS; n = 816), and luminal A (OS; n = 665) breast tumors in the validation cohort (METABIRC project).
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In luminal B tumors, the association between the CD47-immune signature and pa-
tient outcome was statistically associated with outcome (RFS: HR = 0.5; CI = 0.35–0.69;
p = 3.2 × 10-5; OS: HR = 0.39; CI = 0.19–0.79; p = 0.0072) (Figure 2g). This result was con-
firmed using the validation cohort (OS: HR = 0.82; CI = 0.68–0.99; p = 0.038) (Figure 2i).
However, for the more frequent breast cancer subtype, the luminal A subgroup, no associa-
tion was observed in either of the two cohorts: for the exploratory cohort RFS: HR = 0.81;
CI = 0.63–1.03; p = 0.09; OS: HR = 0.65; CI = 0.37–1.16; p = 0.14 (Figure 2h) and for the
validation cohort: OS: HR = 0.86; CI = 0.7–1.05; p = 0.14 (Figure 2j).

2.3. CD47-Immune Signature Correlated with the Presence of Immune Infiltrates in Basal-Like and
HER2+ Breast Tumors

The expression of the six genes composing the CD47-immune signature was associated
with low tumor purity in all breast cancer subtypes analyzed (Figure 3), suggesting a high
infiltration of non-tumor cells. For the basal-like subtype a positive correlation (partial
correlation (pc) > 0.4) was observed for PTGER4, ETS1, OPTN, PTRC, and HLA-E for
DCs, neutrophils, and CD4+ T cells. PTPRC, HLA-E, and TGFBR2 were also highly
correlated with the presence of CD8+ T cells (pc > 0.5). No association was observed with
macrophages, with the exception of TGFBR2 (pc > 0.5) (Figure 3b). For the HER2+ subtype,
a positive correlation (pc > 0.4) was observed between ETS1, PTPRC, and HLA-E and CD8+
T cells, CD4+ T cells, neutrophils, and DCs, with ETS1 and PTPRC showing a pc > 0.7.
Expression of TGFBR2 was again linked with a high presence of macrophages (pc > 0.6),
while no association with macrophages was identified for the other genes (Figure 3c).
For the luminal subtype, a positive association was observed for most genes, but more
significantly for PTPRC and DC, neutrophils, CD4+ T cells, and CD8+ T cells (Figure 3d).

Figure 3. Association of the expression of the selected genes with immune infiltrates in breast cancer.
Heat map depicting the Pearson correlation coefficient (R) between gene expression (PTGER4, ETS1,
PTPRC, HLA-E, TGFBR2, and OPTN), tumor purity, and the presence of tumor immune infiltrates
in (a) all, (b) basal-like, (c) HER2+, and (d) luminal breast cancer tumors using TIMER. Tumor
immune infiltrates were separated into two groups: first, CD8+ T cells, CD4+ T cells, neutrophils,
and dendritic cells (DCs); second, B cells and macrophages.
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2.4. CD47-Immune Signature is Associated with Markers of T Cell Activation and
Antigen Presentation

Next, we explored the association between the genes included within the CD47-
immune signature and genes that encode for markers of T cell activation and antigen
presentation. We found a strong positive correlation between the expression of CD69 and
HLA-DRA, markers of T cell activation, with the expression of all the genes except for
OPTN and ETS1 in all breast cancer subtypes (Figure 4a). Similar findings were observed
when markers of antigen presentation, namely CD40, CD86, and CD83, were evaluated
(Figure 4b). Figure S3 shows the data obtained using the cohort from the TCGA project.

Figure 4. Relationship between gene expression and genomic signatures of immune activation. Heat
map depicting the Pearson correlation coefficient (R) of the association between (a) markers of T
cell activation (CD69 and HLA-DRA) or (b) antigen presentation (CD40, CD86, and CD83) and the
expression of the selected genes using CANCERTOOL and the METABRIC cohort. (c) Heat map of
Pearson correlation coefficient (R) of the expression of the CD47-immune signature and the HLA
signature, IFN gamma signature, expanded immune gene signature, and CTL level signature in all
(n = 1988), basal (n = 334), HER2+ (n = 137), luminal B (n = 680), and luminal A (n = 837) breast cancer.

2.5. CD47-Immune Signature Correlated with Gene Signatures of T Cell Activation

The findings described before suggested that the tumors expressing CD47 were en-
riched with T cells, DCs, and neutrophils. To further assess immune activation, we explored
the correlation of our six-gene signature with already described genomic profiles of immune
activation, including the HLA-A/B signature, the IFN gamma signature, the expanded
immune gene signature, and the CTL signature [10–12]. We found that the CD47-immune
signature was positively associated with these four transcriptomic profiles (Figure 4c),
suggesting that this signature identifies tumors with a high presence of activated T cells
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and DCs. Given the fact that PTPRC or CD45 is a gene that codes for a marker globally
expressed in different immune populations, being considered as a pan-leukocyte antigen,
we repeated the analysis excluding this gene. As can be seen in Supplementary Figure S4a,
the correlation was present even with the absence of this gene.

2.6. Gene-Set Enrichment Analysis (GSEA) Confirm the Association of the CD47-Immune
Signature with Pro-Tumoral Macrophages

We next used gene-set enrichment analysis (GSEA) to test whether the CD47-immune
signature composed by PTPRC, HLA-E, TGFBR2, PTGER4, ETS1, and OPTN was pref-
erentially associated with a specific macrophage polarization state. The CD47-immune
signature was not significantly enriched in the transcriptome of either anti-inflammatory
macrophages (M-MØ) or monocyte-derived pro-inflammatory (GM-MØ), suggesting
that the expression of this gene set was independent of the macrophage polarization
state (Figure 5a). However, the signature was found to be significantly enriched (FDR
q value = 0.018) in the transcriptome of IL-10-treated adherent peripheral blood mononu-
clear cells (monocytes) (Figure 5b). Since IL-10 is a major factor that determines the
pro-tumoral action of tumor-associated macrophages (TAM) [20,22], this result suggests
that the 6-gene CD47-immune signature might be regulated by factors promoting TAMs.
In a similar manner, we performed the same analysis but excluded PTPRC, observing that
the results were in the same direction (Figure S4b,c).

Figure 5. Gene-set enrichment analysis (GSEA) between gene expression and macrophage signatures. Gene-set enrichment
analysis (GSEA) of the six-gene CD47-immune signature on (a) the ranked comparison of anti-inflammatory macrophages
(M-MØ) or M2 and monocyte-derived pro-inflammatory (GM-MØ) or M1 whole transcriptomes, previously described
in [20,22] (GSE27792 and GSE68061) or (b) the transcriptomes of adherent human peripheral blood mononuclear cells either
untreated (PBMC) or treated with 10 ng/mL IL-10 for 24 h (PBMC + IL-10) that have been previously described. GSEA of the
genes that positively correlate with CD47 and are associated with good prognosis (Figure S1) on (c) the ranked comparison
of M-MØ or M2 and GM-MØ or M1 whole transcriptomes, previously described in [21,23] (GSE27792 and GSE68061) or
(d) the ranked comparison of the transcriptome of lipopolysaccharide (LPS)-treated M-MØ or M2 and LPS-treated GM-MØ
or M1 transcriptomes, previously described in [24] (GSE99056).

Last, we hypothesized that the genes that positively correlate with CD47 and that
were associated with a good prognosis (see Figure 1 and Figure S1) might be associated
with a specific type of macrophage polarization. To test this hypothesis, we analyzed
the expression of this gene set on the ranked comparison of M-MØ and GM-MØ tran-
scriptomes [21,23]. GSEA revealed a very significant enrichment of this set of genes in
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the transcriptome of pro-tumoral M-MØ (ES = 0.51; NES = 1.91; p-value = 0.000; FDR
q-value = 0.000) (Figure 5c). Indeed, and using the available information on the transcrip-
tomes of activated M-MØ and GM-MØ [24], a lower but significant enrichment was also
observed in activated pro-tumoral M-MØ (ES = 0,33; NES = 1.31; p-value = 0.074; FDR
q-value = 0.129) (Figure 5d).

Altogether, these results indicate that the expression of genes that positively correlate
with CD47 and are associated with a good prognosis are preferentially expressed by
macrophages with anti-inflammatory capacity.

3. Discussion

In the present article, we described a transcriptomic immune signature formed by
six genes that were expressed in breast tumors with high expression of CD47 and were
associated with favorable outcomes. The CD47 ligand is present on the surface of tumoral
cells, and by binding to its receptor SIRPα, inhibits the induction of phagocytosis by
macrophages [18–20]. CD47 is a perfect target to stimulate the activation of macrophages as
well as other innate immunity cells, and several therapeutic strategies blocking the CD47-
SIRPα axis are under evaluation in clinical studies.

When analyzing the genes positively correlated to CD47 expression in breast cancer,
we observed that only a very limited number of these genes, 33 (22.5%) predicted detri-
mental outcomes, while 83 genes (58.5%) predicted good outcomes. Among the identified
functions of the genes linked to favorable prognosis, our attention was attracted to the two
functions related to the immune system; the genes included within these functions were
PTGER4, ETS1, PTPRC, HLA-E, TGFBR2, and OPTN. We termed the combination of these
genes as the “CD47-immune signature”, and predicted favorable prognosis in all breast
tumors, but particularly in the HER2+ and basal-like subtype. These results obtained from
the exploratory dataset including 1764 patients was confirmed by an independent cohort
that included 1947 patients.

The CD47-immune signature includes a variety of genes that code for proteins with a
wide range of functions that have been rarely described in relation to the immune response
in cancer. PTGER4 which is a member of the G-protein coupled receptor family and can
activate T cell factor signaling [25]; ETS1 which codes for a member of the ETS family of
transcription factors that are involved in stem cell development, cell senescence and death,
and tumorigenesis [26]; PTPRC a member of the protein tyrosine phosphatase (PTP) family
that regulates a variety of cellular processes including cell growth, differentiation, mitosis,
and oncogenic transformation [27]; HLA-E which belongs to the HLA class I heavy chain
paralogues and functions as a ligand for natural killer (NK) cell inhibitory receptor KLRD1-
KLRC1, enabling NK cells to monitor the expression of other MHC class I molecules in
healthy cells [28]; TGFBR2 a transmembrane protein that has a protein kinase domain,
forms a heterodimeric complex with TGF-beta receptor type-1, and binds TGF-beta [29];
and finally, OPTN that encodes the coiled-coil containing protein optineurin that interacts
with adenovirus E3-14.7K protein and may utilize tumor necrosis factor-alpha or Fas-ligand
pathways to mediate apoptosis, inflammation or vasoconstriction [30].

To study whether CD47 positive tumors are linked to an active T cell response, we
correlated the CD47-immune signature with immune populations using bioinformatic
approaches. Data demonstrated that there was a positive correlation at a single gene level
with the presence of infiltrating T cells, DCs, and neutrophils. It is relevant to mention that
although the strongest effect was observed in the basal-like and HER2+ population, such
associations were also observed for all breast cancer patients. A limitation of our analysis
was that we were not able to dissect the presence of immune infiltrates in the two different
luminal breast cancer subtypes, luminal A and B.

Finally, we aimed to confirm this association by exploring the correlation of each gene
contained in the CD47-immune signature with well-known markers of T cell activation
and of antigen presentation. We observed a positive correlation for all genes except for
OPTN and ETS1. Moreover, a strong positive correlation was identified between the whole
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expression of the signature and that of described signatures of T cell activation, including
HLA-A/B, the CTL signature, the expanded immune gene signature, and the IFN gamma
signature [8–10,31]. Finally, a surprising finding was that no increase in the macrophage
population was observed, but those identified were pro-tumoral. This finding was further
confirmed when exploring the whole transcriptomic signature of each of the different
subtypes of macrophages, in line with the inhibitory action of CD47.

Our study had several limitations. This was an in silico study which needs further
clinical validation using human samples. We do acknowledge that our study is based
on associations and correlations among biological parameters. However, we tried to
use different datasets as well as associations between genes, biomarkers, and immune
populations to avoid findings produced by casualty.

We believe it is relevant to explore if this signature could help identify patients that
would respond to anti-CD47 agents. In line with this, the data observed here suggest the
combined administration of anti-PD-L1 inhibitors with anti-CD47/ SIRPα agents to boost
the T cell response and the activation of macrophages. In this regard, ongoing studies are
exploring the activity of targeting both pathways [16,17]. Given the fact that strategies
are under evaluation targeting CD47 and SIRPα, it might be interesting to evaluate the
transcriptomic profile of tumors with high expression of SIRPα.

4. Materials and Methods
4.1. Exploratory Cohort

Samples included in the KM Plotter Online Tool (http://www.kmplot.com, accessed
on 20 March 2020) [32] were used as an exploratory cohort. This publicly available database
shows the relationship between gene expression and patient outcome in different breast
cancer subtypes, including relapse-free survival (RFS) and overall survival (OS). Patients
were distributed according to the best cutoff values of the gene expression (lowest p-value)
into “high” vs. “low”. RFS was defined as the time from diagnosis to the first recurrence,
and OS as the time from diagnosis to patient death. The number of breast cancer patients
included in each subtype for RFS was: all: n = 1764; basal-like: n = 360; HER2+: n = 156;
luminal B: n = 407; luminal A: n = 841. For OS: all: n = 626; basal-like: n = 156; HER2+:
n = 73; luminal B: n = 129; luminal A: n = 271 (HGU133 array 2.0) (available data April 2020).

To identify genes whose expression correlated to CD47 expression, the probe set
226016 was correlated using all samples from the exploratory cohort. For each gene,
Spearman rank correlation was computed to compare its normalized gene expression
and CD47 expression. Then, the genes were ranked based on the achieved Spearman
correlation coefficients.

4.2. Validation Cohort

Survival analysis was performed in basal-like (n = 331), HER2+ (n = 135), luminal
B (n = 668), and luminal A (n = 825) patient samples from the METABRIC (Molecular
Taxonomy of Breast Cancer International Consortium) project (PMID: 22522925). Gene
expression values were quantile normalized in R. The molecular subtype designation was
based on St. Gallen criteria [33], and the expression of ESR1, ERBB2, and MKI67 on the
arrays was used to define the patient cohorts. In this, basal breast cancer was defined
by those negative for ESR1 and ERBB2, luminal A was defined as those ESR1 positive
ERBB2 negative MKI67 negative, HER2+enriched was defined as those ERBB2 positive
ESR1 negative, and luminal B comprises all remaining samples.

4.3. Gene Function Analysis

Genes positive-correlated with CD47 and associated with good or detrimental out-
comes were analyzed using the biological function enrichment analyses tool Enrichr (
http://www.amp.pharm.mssm.edu/Enrichr/, accessed on 20 March 2020) [34]. Biolog-
ical process with a p-value < 0.01 were selected for CD47 positively correlated genes
and with a p-value < 0.05 CD47 negatively correlated genes. Biological processes related
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to the immune system were grouped. Immune system processes contained the follow-
ing gene ontologies: positive regulation of defense response (GO:0031349), regulation of
T cell-mediated cytotoxicity (GO:0001914), and positive regulation of alpha-beta T cell
proliferation (GO:0046641).

4.4. Protein Functional Analyses

We used UniProt Online Tool (http://www.uniprot.org/, accessed on 20 March
2020) [35] for protein functional analysis. UniProt provides a comprehensive, high-quality,
and freely accessible resource of protein sequence and functional information. All data is
freely available on the web. Proteins codified by genes related to immune system processes
were studied. For complete protein functional analyses, we collected all biological function
gene ontologies included in UniProt.

4.5. Association between Tumor Immune Infiltrates and Gene Expression

Tumor Immune Estimation Resource (TIMER) platform (https://cistrome.shinyapps.
io/timer/, accessed on 2 April 2020) [36] was used to analyze tumor purity, and the
association between the presence of tumor immune infiltrates, namely CD4+ T cells, CD8+
T cells, DCs, macrophages, neutrophils, B cell, and macrophages and the expression of the
selected genes. TIMER contains 10,897 samples from diverse cancer types from the TCGA
(The Cancer Genome Atlas) project. We explored the tumor immune infiltrates in breast
cancer subtypes: basal-like, HER2+, and luminal. TIMER does not allow for the analysis of
the luminal A and luminal B subtypes separately.

4.6. Correlation between Gene Expression and T Cell Activation and Antigen Presentation

CANCERTOOL (http://web.bioinformatics.cicbiogune.es/CANCERTOOL/index.
html, accessed on 2 April 2020) [37] was used to explore the relationship between the
expression of CD47-immune signature genes and the expression of T cell activation (CD69
and HLA-DRA) and antigen presentation (CD40, CD86, and CD83) markers in all, basal-
like, HER2+, luminal B, and luminal A breast cancer. This open-access resource for the
analysis of gene expression provides the Pearson correlation coefficients of every pair of
genes analyzed. The datasets used for the analysis included METABRIC as the primary
cohort, and TCGA, as a validation cohort.

The complete METABRIC cohort (total: n = 1988; basal: n = 331; HER2+: n = 135;
luminal B: n = 668; luminal A: n = 825 breast cancer) was used to explore the correlation
between the identified CD47-immune signature and previously described signatures, in-
cluding: the HLA signature (HLA-A and HLA-B) [10] the interferon (IFN) gamma signature
(IDO1, CXCL10, CXCL9, HLA-DRA, ISGF-3, and IFNG) [12], the expanded immune gene
signature (CD30, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA, CXCL13, IL3RG,
NKG7, HLA-E, CXCR6, LAG3, TAGAP, CXCL10, STAT1, and GZMB) [29] and the cytotoxic
T lymphocyte (CTL) signature (CD8A, CD8B, GZMA, GZMB, and PRF1) [11].

4.7. Correlation between Gene Expression and Macrophage Signatures

Gene set enrichment analysis (GSEA) (http://software.broadinstitute.org/gsea/index.
jsp, accessed on 5 May 2020) [38] was done to assess enrichment of the indicated gene-
sets in the transcriptomes of human monocyte-derived pro-inflammatory (GM-MØ) and
anti-inflammatory macrophages (M-MØ) (GSE27792 and GSE68061) [20,22].

4.8. Statistical Analysis

The Kaplan–Meier (KM) plots are presented with the hazard ratio (HR), the 95%
confidence interval (CI), the log-rank p-value (p), and the false discovery rate (FDR). The
FDR was computed after performing the Cox regression analysis across all cutoff values
between the lower and upper quartiles of expression, and only results with an FDR below
10% were accepted as significant. For the METABRIC dataset, only the median was used to
define high and low cohorts, and therefore FDR values were not calculated. In addition
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to the HR and FDR cutoff values described above, statistical significance was defined as
p < 0.05. Genes that had an HR < 1 and a p < 0.05 were considered predictors of a favorable
outcome, while genes that had an HR > 1 and p < 0.05 were considered predictors of
detrimental outcome.

5. Conclusions

Here we described an immune gene signature associated with elevated levels of
CD47 that predicts favorable outcomes in breast cancer tumors. In addition, the described
signature was linked with the presence of T cell, DC, and neutrophil infiltrates, T cell
activation and antigen presentation, and correlated with pro-tumoral macrophages. Further
studies should confirm the predictive capacity of this signature in ongoing clinical studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22083836/s1. Figure S1. Tables depicting genes 83 positively correlated with CD47
(SC > 0.4 and p-value < 0.05) associated with good prognosis (HR < 1 and p-value < 0.05); 32 genes
positively correlated with CD47 (SC > 0.4 and p-value < 0.05) associated with worse prognosis
(HR > 1 and p-value < 0.05); 27 genes positively correlated with CD47 (SC > 0.4 and p-value < 0.05)
no associated with prognosis (p-value > 0.05) and 5 negatively correlated with CD47 (SC < −0.4 and
p-value < 0.05) associated with good prognosis (HR < 1 and p-value < 0.05). Figure S2. Functional
analyses using Enrichr Online Tool. For positively correlated genes (SC.0.4 and HR < 1) Gene
ontologies (GO) of biological process with a p < 0.05 are shown for (A) genes positively correlated
with CD47 expression (SC > 0.4 and p < 0.05) associated with unfavourable prognosis (HR > 1)
and (B) genes negatively correlated with CD47 expression (SC < −0.4 and p < 0.05) associated with
favourable prognosis (HR < 1). Figure S3. Relationship between markers of T cell activation (CD69
and HLA-DRA) and antigen presentation (CD40, CD86 and CD83) expression and the expression of
the selected genes using CANCERTOOL in TCGA cohort. Figure S4. Heat map of Pearson correlation
coefficient (R) of the expression of the CD47-immune signature (excluding PTPRC) and the HLA
signature, IFN gamma signature, expanded immune gene signature, and CTL level signature in all
(n = 1988), basal (n = 334), HER2+ (n = 137), luminal B (n = 680), and luminal A (n = 837) breast cancer
subgroups. Gene-set enrichment analysis (GSEA) of the CD47-immune signature excluding PTPRC
on (b) the ranked comparison of M-MØ or M2 and GM-MØ or M1 whole transcriptomes, previously
described in (GSE27792, GSE68061) or (c) the transcriptomes of adherent human peripheral blood
mononuclear cells either untreated (PBMC) or treated with 10 ng/mL IL-10 for 24 h (PBMC+IL-10)
that have been previously described. Table S1. Complete list of the biological functions of the
proteins codified by PTPRC, HLA-E, TGFBR2, PTGER4, ETS1, and OPTN genes obtained via UniProt
Online Tool.
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