VOLATILE MASS SPECTRAL FINGERPRINTING BY SPME MS FOR

CLASSIFICATION OF HONEY BOTANICAL SOURCE

J.E. Quintanilla-López¹, R. Lebrón-Aguilar¹, A.C. Soria^{2*}

¹ Instituto de Química-Física "Rocasolano" (IQFR-CSIC). Serrano 119, 28006 Madrid (Spain) ² Instituto de Química Orgánica General (IQOG-CSIC). Juan de la Cierva 3, 28006 Madrid (Spain) ^{*}E-mail: acsoria@iqog.csic.es

Honey is greatly appreciated by consumers, not only for its nutritive properties and sweet taste, but also for its pleasant aroma which plays a significant role in honey selection by consumer. A number of honeys from different botanical source (unifloral, multifloral and honeydew honeys), holding distinctive organoleptic properties and with different commercial value, are marketed nowadays [1]. As frauds regarding mislabeling of honey botanical source are one of the most common [2], their identification is a subject of great interest not only for consumers but also for regulatory bodies.

In this study, volatile fingerprints by Headspace-Solid-Phase Microextraction followed by Mass Spectrometry (HS-SPME MS) have been evaluated as an alternative approach to the corresponding gas chromatography method (HS-SPME GC-MS) for classification of honey botanical source. The performance of four data sets, considering the use of carboxen/polydimethylsiloxane (C/PDMS) and polyacrylate (PA) SPME fiber coatings per approach, has been compared using different chemometric procedures. Irrespective of the approach, C/PDMS fiber provided better discrimination than PA. Stepwise linear discriminant analysis (S-LDA) of HS-SPME GC-MS data showed a very good classification capability (average classification error < 1.8%), whereas optimal results were provided when HS-SPME MS data were subjected to PLS-LDA (average classification error < 1.1%). Although citrus source was the most accurately classified by any of these two approaches, classification errors < 3% were obtained from MS fingerprints for all the five honey types here considered when the C/PDMS fiber was used. Therefore, HS-SPME MS is shown as an advantageous approach for the fast and accurate classification of samples in studies on honey source authentication.

Acknowledgements

This work has been funded by the Ministerio de Economía, Industria y Competitividad of Spain (project AGL2016-80475-R, AEI/FEDER, UE) and by the Comunidad de Madrid and European funding from FSE and FEDER programs (project S2018/BAA-4393, AVANSECAL-II-CM).

References

A. Zappi, D. Melucci, S. Scaramagli, A. Zelano, G.L. Marcazzan, Eur. Food Res. Technol. 244, 2149 (2018).
European Commission (2017).