
1. Introduction—The Need for Identifying Landscape Organizational Principles of 
Hyporheic Zone Functioning
Over the past three decades, there has been a paradigm shift in groundwater-surface water research from defining 
rivers and aquifers as discrete entities toward understanding them as an integral part of the stream-catchment 
continuum (Bencala,  1993,  2000; Bencala et  al.,  2011; Boulton & Hancock,  2006; Brunke & Gonser,  1997; 
Fleckenstein et al., 2010; Harvey & Gooseff, 2015; Jencso et al., 2009; Winter, 1998, 1999). This shift started with 
the early works of hydrobiologists defining the hyporheos, or hyporheic zone as a new habitat (Angelier, 1953; 
Karaman, 1935; Orghidan,  1959). From an interdisciplinary perspective, the hyporheic zone may be defined 
as the interface between aquifers and streams where the flow of surface water into streambed sediments and 
river banks promotes interactions with streambed porewater and potentially groundwater before re-emerging to 
the stream (Bencala, 2000; Boano et al., 2014; Cardenas, 2015; Gooseff, 2010; Krause, Hannah, Fleckenstein, 
et al., 2011; Ward, 2016).

Interdisciplinary research focused on the hydrological, biogeochemical, and ecological functioning of hyporheic 
zones has aimed to understand the extent to which this ecohydrological interface (Krause et al., 2017) influences 

Abstract Hyporheic zones increase freshwater ecosystem resilience to hydrological extremes and 
global environmental change. However, current conceptualizations of hyporheic exchange, residence time 
distributions, and the associated biogeochemical cycling in streambed sediments do not always accurately 
explain the hydrological and biogeochemical complexity observed in streams and rivers. Specifically, existing 
conceptual models insufficiently represent the coupled transport and reactivity along groundwater and surface 
water flow paths, the role of autochthonous organic matter in streambed biogeochemical functioning, and the 
feedbacks between surface-subsurface ecological processes, both within and across spatial and temporal scales. 
While simplified approaches to these issues are justifiable and necessary for transferability, the exclusion of 
important hyporheic processes from our conceptualizations can lead to erroneous conclusions and inadequate 
understanding and management of interconnected surface water and groundwater environments. This is 
particularly true at the landscape scale, where the organizational principles of spatio-temporal dynamics of 
hyporheic exchange flow (HEF) and biogeochemical processes remain largely uncharacterized. This article 
seeks to identify the most important drivers and controls of HEF and biogeochemical cycling based on a 
comprehensive synthesis of findings from a wide range of river systems. We use these observations to test 
current paradigms and conceptual models, discussing the interactions of local-to-regional hydrological, 
geomorphological, and ecological controls of hyporheic zone functioning. This improved conceptualization 
of the landscape organizational principles of drivers of HEF and biogeochemical processes from reach to 
catchment scales will inform future river research directions and watershed management strategies.
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Key Points:
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in landscapes is key for generalizing 
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•  Local HEF, metabolism, and 
biogeochemical cycling are embedded 
within the larger context of fluvial and 
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surface water and groundwater flows, water quality, and ecological status of freshwaters (Boano et al., 2014; 
Boulton,  2007; Boulton et  al.,  1998,  2010; Brunke & Gonser,  1997; Buffington & Tonina,  2009; Graham 
et  al.,  2019; Harvey & Gooseff,  2015). Hyporheic zones both structure and connect surface and subsurface 
environments, providing key ecosystem services, including stream flow modulation (Costigan et al., 2016; Fleck-
enstein et al., 2006; Malzone et al., 2016; Villeneuve et al., 2015), moderation of thermal conditions in streams 
and groundwater (e.g., Arrigoni et  al.,  2008; Burkholder et  al.,  2008; Folegot, Hannah, et  al.,  2018; Hannah 
et  al.,  2009; Krause, Hannah, & Blume,  2011), enhanced metabolism and biogeochemical cycling (Bardini 
et al., 2012; DelVecchia et al., 2016; Fellows et al., 2001; Gomez-Velez et al., 2015; Knapp et al., 2017; Krause 
et al., 2009, 2013; Pinay et al., 2009; Schmadel, Ward, Kurz, et al., 2016; Trauth et al., 2015; Valett et al., 1997), 
and contaminant transformation (Freitas et al., 2015; Gandy et al., 2007; Jaeger et al., 2019; Lawrence et al., 2013; 
Liu et al., 2019; Packman & Brooks, 2001; Posselt et al., 2020; Schaper et al., 2019; Weatherill et al., 2014, 2018). 
With their distinct physico-chemical conditions, hyporheic zones provide unique habitats that serve as a refugia 
for a wide range of species (Boulton et al., 2010; Datry et al., 2008; Datry & Larned, 2008; Folegot, Krause, 
et al., 2018; Hancock et al., 2005; Stanford & Ward, 1988). Clearly, hyporheic zones, and their hydrological inter-
actions with surface water and groundwater, are important for the resilience of freshwater ecosystems to hydro-
logical extremes, landscape development, and global environmental changes including hydrological and climate 
modifications (Dole-Olivier,  2011; Dole-Olivier et  al.,  1997; Fisher et  al.,  1998; Lewandowski et  al.,  2019; 
Nelson et al., 2020; Stubbington et al., 2009).

Several landscape-scale conceptualizations of river corridors highlight the relevance of connectivity between 
groundwater and surface water (Bencala et  al.,  2011; Buffington & Tonina,  2009; Harvey & Gooseff,  2015; 
Jencso et  al.,  2009; Malard et  al.,  2002; Pinay et  al.,  2015; Winter,  1998). Evidence from experimental and 
modeling studies reveals the impact of stream flow velocity and bedform geometry on exchange flow (Carde-
nas et al., 2004; Cardenas & Wilson, 2007a; Harman et al., 2016; Marzadri et al., 2010; Trauth et al., 2013), 
residence time distributions (Cardenas et al., 2008; Hester & Doyle, 2008) and biogeochemical cycling (Pinay 
et al., 2009; Zarnetske et al., 2011a, 2011b) in the hyporheic zone. Previous research has demonstrated the func-
tional significance of hyporheic zone ecosystem services (Boulton et al., 1998; Brunke & Gonser, 1997; Stanford 
& Ward, 1993) and has explored the drivers and controls of specific hyporheic zone processes and their relevance 
at multiple scales and in different landscape contexts (Buffington & Tonina, 2009). However, the landscape-wide 
organizational principles of the drivers and controls of key hyporheic functions in space and time remain elusive 
(Harvey & Gooseff,  2015; Krause et  al.,  2014,  2017; Lee-Cullin et  al.,  2018; Pinay et  al.,  2015; Stonedahl 
et al., 2010). The longstanding focus on conceptualizing the principles of hyporheic zone functioning primarily 
at the local and reach-scale is understandable, given the difficulty investigating this environment. However, this 
local focus constrains our understanding of the influence of the hyporheic zone on relevant hydrological, bioge-
ochemical, and ecological processes at larger spatial scales, particularly at the catchment scale. Additionally, as 
studies of temporal dynamics in drivers of hyporheic exchange are now emerging (Hester et al., 2019; Kaufman 
et al., 2017; Malzone et al., 2016; Singh et al., 2019; Trauth & Fleckenstein, 2017; Wu et al., 2018), we have a 
new opportunity to describe and predict hyporheic zone functioning through space and time (Boano et al., 2014; 
Cardenas, 2015; Gooseff, 2010; Harvey & Gooseff, 2015; Krause et al., 2017; Krause, Hannah, Fleckenstein, 
et al., 2011; Lee-Cullin et al., 2018; Ward, 2016; Ward & Packman, 2019).

We propose that current limitations of upscaling conceptual models of hyporheic zone hydrological and biogeo-
chemical functioning toward a landscape perspective can be overcome by:

1.  Better integration and synthesis of complexity from field observations across different scales (and beyond 
small headwater streams) with systematic modeling and controlled laboratory studies and

2.  Rigorous testing of assumptions of drivers and controls of hyporheic process dynamics at their specific scale 
before extrapolating process knowledge from small-scale studies to the landscape context

Technological advances in sensor and tracer technologies have yielded very detailed data from field investigations, 
enabling quantifications of hyporheic residence time distributions (Marçais et al., 2018; Rinaldo et al., 2015) and 
resulting influences on biogeochemical processes under site specific conditions and hydro-geomorphic settings 
(González-Pinzón et al., 2015; Harvey et al., 2013; Krause et al., 2013, 2014; Zarnetske et al., 2011a). The result-
ing mechanistic process knowledge helps to understand hyporheic zone functioning under those site-specific 
conditions. However, the transferability of process understanding to other sites and conditions is still limited 
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because the broader context of the drivers and controls of hyporheic exchange and biogeochemical reactivity are 
complex and difficult to observe, and the dominant underlying mechanisms that interact in their situation-spe-
cific control of hyporheic exchange flow (HEF) processes have not been investigated in sufficient detail to 
enable cross-site comparisons or upscale projections. Moreover, different field studies reveal that a wide range 
of site-specific conditions control the relative importance of drivers and controls of hyporheic zone processes 
at particular locations and scales (Endreny & Lautz, 2012; Jones & Holmes, 1996; Krause, Munz, et al., 2012; 
Munz et al., 2011; Ward & Packman, 2019). These conditions complicate further generalizations, such as the 
potential relevance of small-scale low-conductivity structures in streambed sediments for larger scale patterns 
of hyporheic zone processes (Bardini et al., 2013; Gomez-Velez et al., 2014; Laube et al., 2018; Sawyer, 2015; 
Sawyer & Cardenas, 2009). We suggest that these limitations can be overcome by accounting for the wider land-
scape controls of the broad range of encountered site-specific variability in streambed properties. Generalizing 
and transferring process understanding and concepts across river systems and spatial scales beyond the specific 
study area is difficult, but the focus to date on local understanding has limited the possibilities for advancing our 
understanding of hyporheic zone functioning within the wider river network and landscape context.

A substantial amount of our existing theory and understanding of hyporheic zone processes has been based on 
systematic studies designed to advance beyond limitations of individual system observations and to analyze the 
dynamics of hyporheic zone processes across a range of conditions. In particular, systematic modeling (Bardini 
et  al.,  2012; Boano, Camporeale, & Revelli,  2010; Boano, Revelli & Ridolfi,  2020; Cardenas et  al.,  2004; 
Gomez-Velez et al., 2014) and controlled laboratory studies in flumes (Arnon et al., 2009; Fox et al., 2014, 2016; 
Salehin et al., 2004; Thibodeaux & Boyle, 1987) have revealed key mechanisms controlling hyporheic exchange 
fluxes and their associated residence time and ecological function. However, we frequently fail to relate core 
principles identified in these controlled studies to observations of more complex dynamics and patterns at a river 
network scale. This failure suggests multiple knowledge gaps that prevent us from effectively linking the design 
and underlying assumptions of many of our systematic modeling studies to the actual governing mechanisms of 
those process dynamics and their spatio-temporal variability that can be observed in situ. As an example, current 
conceptual models propose that hyporheic residence times and the relationship between residence and reaction 
times (as expressed by the non-dimensional Damköhler number; Marzadri et al., 2012; Pinay et al., 2015; Zarnet-
ske et al., 2012) act as a primary control on the fate of reactive solutes in the hyporheic zone. Longer residence 
time in the hyporheic zone results in a shift from aerobic to anaerobic metabolic pathways, including denitrifi-
cation, sulfur reduction, and methanogenesis (Briggs et al., 2014; Pinay et al., 2009; Trauth et al., 2014, 2015; 
Zarnetske et  al.,  2011a). However, despite promising advances in representing spatial variability in physical 
sediment properties (Tonina et al., 2016) and improved in situ measurements (Bray & Dunne, 2017; Ryan & 
Boufadel,  2007), field observations frequently reveal hyporheic carbon, nitrogen, and oxygen concentration 
patterns that are inconsistent with the assumption that bulk hyporheic residence time controls biogeochemical 
reactions and turnover rates. In this sense, considering the spatial variability in sediment biogeochemical reactiv-
ity resulting from the structural controls such as the patterns of deposited sediments and autochthonous reagents 
(e.g., terrestrial organic carbon; Krause et al., 2013) and microbial community structure and activity may help 
understanding the observed patterns.

There is a similar disconnection between empirical observations and conceptual models for the effects of stre-
ambed structural heterogeneity on hyporheic exchange, residence time distributions, and nutrient cycling (Bardini 
et al., 2012, 2013; Cardenas et al., 2004; Laube et al., 2018; Sawyer & Cardenas, 2009; Tonina et al., 2016). This 
divergence often occurs due to the significant spatial heterogeneity of hyporheic exchange (Genereux et al., 2008) 
as well as biogeochemical properties, nutrient concentrations and turnover rates observed in hyporheic zone labo-
ratory and field studies across multiple scales (Hou et al., 2017; Krause et al., 2013; Marion et al., 2008; Packman 
et al., 2006; Salehin et al., 2004). Consequently, the conceptual boundaries set for many model studies might be 
based on assumptions which do not necessarily represent the most relevant processes governing the respective 
real-world context.

We suggest intensifying our efforts on improving the transferability of findings required to overcome fragmen-
tation in process understanding and to increase our capacity to conduct, interpret, and conceptualize field obser-
vations across river network and landscape scales. Useful strategies include the development of standardized 
methodologies for collecting comparable hyporheic zone data and understanding of the drivers of their landscape 
organizing principles (Barthel & Banzhaf, 2016; González-Pinzón et al., 2015; Krause, Hannah, Fleckenstein, 
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et al., 2011; Lee-Cullin et al., 2018), consistent descriptions of metadata to enable synthesis efforts, and organ-
ized synoptic field sampling to assess global patterns in exchange processes and the resultant ecosystem services.

There is a critical need for integrating and advancing existing conceptual approaches to identify landscape organ-
izational principles of HEF and biogeochemical processing in order to better contextualize and understand the 
role of hyporheic zone functioning in river networks across both spatial and temporal scales. The principal aim 
of this article is to provide a comprehensive analysis and synthesis of the interactions between important drivers 
and controls of hyporheic exchange and biogeochemical cycling and how they vary across scales, integrating 
results from a wide range of case studies that go beyond current conceptual model frameworks. In Section 2, we 
therefore discuss the interactions of different local-to-regional controls and drivers of hyporheic zone processes, 
such as hydrodynamic and hydrostatic drivers of hyporheic exchange, sediment hydraulic conductivity, the role 
of autochthonous organic matter sources, and feedbacks between hydrological exchange and ecological processes 
in the streambed. We explore the implications of these interactions for biogeochemical cycling in the landscape 
context. Emerging from this discussion, we identify existing knowledge gaps and mismatches between empirical 
observations and current concepts and theories. In Section 3, we integrate conceptualizations of organizational 
principles of hyporheic exchange and biogeochemical cycling from reach to catchment scale. We expect that 
increasing awareness and embracing the landscape organizing principles of hyporheic zones will advance the 
future of research at groundwater-surface water interfaces.

2. Drivers and Controls of Hyporheic Exchange Flow: Unraveling Spatio-Temporal 
Complexity and Their Implications for Biogeochemical Cycling
Mechanistic understanding of hyporheic exchange has advanced significantly in recent years with a large body of 
field-based, laboratory (flumes), and numerical model investigations. These studies have revealed how hydrostatic 
and hydrodynamic drivers of hyporheic exchange are controlled by regional flow acting on local head gradients 
and patterns of stream flow velocity, channel morphology, and flow turbulence (Boano et al., 2006, 2007; Botta-
cin-Busolin & Marion, 2010; Buffington & Tonina, 2009; Cardenas et al., 2004; Cardenas & Wilson, 2007a; Fox 
et al., 2014; Hester & Doyle, 2008). Despite this significant progress, the relative importance of different indi-
vidual drivers and controls of hyporheic exchange, their scale-specific and context-dependent relevance, and the 
principles that explain their spatial organization in river networks and landscapes are still under debate (Boano 
et al., 2014; Gomez-Velez et al., 2014; Krause, Klaar, et al., 2014; Stonedahl et al., 2010; Tonina & Buffing-
ton, 2011; Ward, 2016). This lack of consensus drives us to unravel the importance of both spatial variability 
(e.g., sediment hydraulic conductivity and autochthonous organic matter) and temporal dynamics (e.g., in stream 
flow and stage) as drivers and controls of hyporheic exchange. Moreover, we embrace the idea that this fluvial 
structural variability strongly influences spatial patterns and temporal dynamics of biogeochemical cycling in 
hyporheic zones, and ultimately in river networks. In the following sections we discuss—and at times chal-
lenge—accepted conceptualizations of drivers and controls of hyporheic exchange and biogeochemical cycling 
by presenting evidence from field, laboratory, and modeling experiments that do not always fit or may even 
contradict the application of current concepts and theory.

2.1. Interactive Effects of Hydrodynamic and Hydrostatic Drivers of Hyporheic Exchange Flow

Deconvolution of the combined effects of multiple geomorphic drivers is essential for quantifying scale-de-
pendencies of hyporheic exchange, residence time distributions, and subsequently, biogeochemical transforma-
tion rates. Hyporheic exchange and associated hyporheic residence time distributions vary and interact across 
orders of magnitude in spatial and temporal scales (Figure  1). These exchanges range from relatively short-
term (seconds-minutes) and small spatial scale (mm) dynamics to long-term (weeks-years) and large-scale (km) 
patterns, such as inter-meander flow of several hundreds of meters and beyond (Boano et  al.,  2014; Krause, 
Hannah, Fleckenstein, et al., 2011; Stonedahl et al., 2010; Wondzell, 2011).

The drivers of hyporheic exchange, forcing surface water to down-well into the streambed and reside in the 
hyporheic zone before re-emerging to the river (Figure  2a), include hydrodynamic and hydrostatic forcings. 
Hydrodynamic drivers include stream flow turbulence (Boano et al., 2011; Cardenas & Wilson, 2007a; Roche 
et  al.,  2018, 2019; Trauth et  al.,  2013) and advective pumping induced by bedforms, such as ripples, dunes, 
steps, and pool-riffle sequences (Boano et  al.,  2007,  2014; Bottacin-Busolin & Marion,  2010; Buffington & 
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Tonina, 2009; Cardenas et al., 2004; Elliott & Brooks, 1997a; Singh et al., 2019; Storey et al., 2003; Trauth 
et al., 2014) or by flow obstacles such as weirs, boulders, woody debris, and streambed engineering or resto-
ration structures (Briggs et al., 2013; Kasahara & Hill, 2006; Krause, Klaar, et al., 2014; Wondzell, LaNier, & 
Haggerty,  2009; Zhou & Endreny,  2013). Hydrodynamic drivers usually create small and intermediate scale 
hyporheic exchange at scales ranging from 0.1 to 100 m (Figure 1). Concurrent hydrostatic forcing is induced 
by elevation head gradients between surface water and groundwaters or between different surface waters such 
as river branches or confluences. Hydrostatic gradients are primarily controlled by morphology of individual 
features or larger river structures (e.g., multi-thread channels) and regional groundwater flows. Hydrostatic driv-
ers cause exchange via mechanisms including bank exchange, inter-meander flow, and large-scale groundwater 
circulation cells ranging from tens of meters to several kilometres (Boano, Camporeale, & Revelli, 2010; Boano, 
Demaria, Revelli, & Ridolfi, 2010; Boano et al., 2006; Gooseff et al., 2006; Munz et al., 2011; Pinay et al., 1998; 
Figure 1).

The majority of hydrological studies on flow in the hyporheic zone have conceptualized hyporheic exchange 
as a result of either small scale (streambed feature scale) or large scale (catchment-scale) drivers (Figure 1). 
Few studies have so far attempted to quantify the impact of interactions, either potentially overlapping or coun-
ter-acting, between hydrodynamic and hydrostatic forces across spatial and temporal scales (Figure 1). Experi-
mental findings include suppression of local hyporheic exchange by regional groundwater up-welling (Anger-
mann et al., 2012; Krause et al., 2009, 2013; Krause, Hannah, & Blume, 2011), which has been systematically 
investigated in a range of conceptual models of bedform-induced hyporheic exchange impacted by groundwater 
up-welling and/or ambient lateral groundwater flow (Boano et al., 2008, 2009; Cardenas & Wilson, 2006, 2007b; 
Storey et al., 2003; Trauth et al., 2013, 2015; Trauth & Fleckenstein, 2017; Wu et al., 2018; Figure 2b). However, 
the impact of regionally losing conditions that potentially expand the hyporheic zone and enhance hyporheic 
exchange and broaden residence time distributions (Figure 2c) has been less examined (De Falco et al., 2016; Fox 
et al., 2014; Preziosi-Ribero et al., 2020). In particular, the combined influence of hydrodynamic and hydrostatic 
forcings on hyporheic exchange and biogeochemical cycling under losing conditions still needs to be established 
in detail (Trauth et al., 2015).

Systematic analyses of hyporheic exchange and hyporheic residence time distributions have predominantly inves-
tigated the impact of singular features and successions thereof (Bardini et al., 2013; Boano et al., 2007; Bottac-
in-Busolin & Marion, 2010; Cardenas et al., 2008; Cardenas & Wilson, 2006; Elliott & Brooks, 1997b; Herzog 
et al., 2019). Previous research has provided increased evidence of the co-existence of the integrated, and often 

Figure 1. Spatial and temporal scales, overlaps, and interactions of example physical and biological drivers and controls 
of hyporheic exchange flow and hyporheic residence time distributions (adapted partly from Boano et al., 2014) with 
consequences for streambed solute mixing and biogeochemical cycling (Depicted processes are selected to demonstrate scale 
overlaps and are not claiming to be exhaustive; sediment ksat = sediment hydraulic conductivity).
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nested, impacts of different geomorphic structures on hyporheic exchange, such as the overlapping effects of 
ripples along pool-riffle structures nested in an inter-meander flow system (Azizian et al., 2017; Kasahara & 
Wondzell, 2003; Poole et al., 2008; Stonedahl et al., 2010, 2012). The complexity of overlapping geomorphic 
drivers and controls of hyporheic exchange (Figure 1) requires advanced observation that explicitly focuses on 
understanding and conceptualization of hierarchical, interacting geomorphological drivers, which are commonly 
analyzed separately. Such an integrated approach allows systematically exploration of the conditions under which 
either the impacts of small-scale processes are expressed at larger scales, or the conditions under which the 
effects of small-scale processes are overwhelmed by larger-scale drivers (Herzog et al., 2019; Krause et al., 2017; 
Stonedahl et al., 2010).

2.2. Potential Influence of Heterogeneous Substrate Hydraulic Conductivity on Hyporheic Exchange 
Flow

The nested influence of hydrostatic and hydrodynamic forcings of hyporheic exchange is modified by the spatial 
patterns and temporal dynamics of substrate hydraulic conductivity (Conant, 2004; Genereux et al., 2008; Hester 
et al., 2017, 2019; Stewardson et al., 2016). Controlled flume experiments (Fox et al., 2014; Salehin et al., 2004) 
and field studies (Genereux et al., 2008; Krause et al., 2013; Weatherill et al., 2014) confirm that even small-scale 
spatial variability of sediment hydraulic conductivity can have the potential to substantially impact hyporheic 
exchange and residence time distributions because of preferential flow through higher-conductivity pathways. 
Only a limited number of numerical modeling studies consider spatial heterogeneity in streambed properties, 
such as hydraulic conductivity (Bardini et  al.,  2013; Cardenas et  al.,  2004; Gomez-Velez et  al.,  2014; Irvine 

Figure 2. Drivers and controls of hyporheic exchange flow (HEF) through stream bedforms in different landscape contexts 
with predominantly surface hydrology driven HEF and homogeneous streambed sediments (a), interacting surface water and 
groundwater (GW) forcings on HEF and homogeneous streambed sediments under gaining (b) and losing (c) conditions, 
dominant surface water forcing in spatially heterogeneous sediments without (d) and with (e) GW upwelling, under 
consideration of highly heterogeneous sediment hydraulic conductivities with discrete sediment boundaries (f), under the 
influence of variable streambed surface roughness through sediment properties and vegetation (g) sediment clogging (h), and 
stream flow obstacles (i), such as large woody debris (LWD).
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et al., 2012; Laube et al., 2018; Poole et al., 2006; Salehin et al., 2004; Sawyer & Cardenas, 2009; Figure 2d). 
With few exceptions (Bray & Dunne, 2017; Cardenas et al., 2004; Tonina et al., 2016), hydraulic conductivity 
in numerical modeling studies is conceptualized to be spatially homogeneous, despite abundant field evidence 
of the importance of river bed heterogeneity in physical properties, such as hydraulic conductivity, particularly 
in mid-stream or lowland sections of high order streams (Chen, 2004; Genereux et al., 2008; Krause, Blume, & 
Cassidy, 2012; Krause et al., 2013; Leek et al., 2009; Mendoza-Lera & Datry, 2017; Mendoza-Lera et al., 2019; 
Sebok et al., 2015; Stewardson et al., 2016; Wondzell, LaNier, Haggerty, Woodsmith, & Edwards, 2009). This 
common assumption highlights a possible bias in model parameterization toward conditions that have been more 
frequently observed in low-order headwater streams or in alluvial rivers with moderate to low hydraulic gradients 
and not constrained vertically or laterally.

Initial modeling studies aimed to quantify streambed heterogeneity impacts on hyporheic exchange, residence 
time distributions and biogeochemical cycling considered some limited spatial variability of streambed hydraulic 
conductivity with patterns often characterized by assumed correlation lengths (Bardini et al., 2013; Cardenas 
et al., 2004; Salehin et al., 2004; Sawyer & Cardenas, 2009). Such studies could be extended toward analysis of how 
this structural variability affects the interactions of groundwater upwelling and hyporheic exchange (Figure 2e). 
This variability has been observed and simulated independently, but not included together in integrated multi-
scale models. With a few exceptions (Gomez-Velez et al., 2014; Laube et al., 2018; Y. Zhou et al., 2014a), previ-
ous conceptual modeling studies do not consider the effects of many-orders of magnitude differences in channel 
morphology and hydraulic conductivity found in situ (Chen, 2004; Conant, 2004; Fox et al., 2014; Genereux 
et al., 2008; Krause et al., 2013; Nowinski et al., 2011; Weatherill et al., 2014; Figure 2f). These limitations prop-
agate to conclusions that have suggested only limited impacts of streambed structural heterogeneity on residence 
time distributions and biogeochemical cycling in the hyporheic zone (Bardini et al., 2013; Laube et al., 2018). 
In addition, it is crucial to determine how streambed sediment structures and hydraulic conductivity patterns 
are controlled by ecological drivers, such as interactions between aquatic vegetation and streambed sediments 
(Baranov et al., 2017; Jones et al., 2008, 2012; Ullah et al., 2014; Figure 2g) causing sediment clogging and by 
particle deposition and biofilm growth (Brunke, 1999; Nogaro et al., 2010; Rode et al., 2015; Figure 2h), bioengi-
neers causing bioturbation (Baranov et al., 2016; Mendoza-Lera & Mutz, 2013) and the impact of flow obstacles, 
such as large woody debris (Gippel, 1995; Krause, Klaar, et al., 2014; Sawyer et al., 2012; Shelley et al., 2017; 
Figure 2i). These processes are critical to engineering streambeds for purposes, such as nutrient removal and river 
restoration, which involves using spatial heterogeneity to control fluxes and residence times to achieve desired 
outcomes (Herzog et al., 2018; Vaux, 1968; Ward et al., 2011).

2.3. Multi-Scale Interactions of Lateral and Vertical Drivers of Hyporheic Exchange in the River 
Corridor

Similar principles to those identified for in-channel controls on hyporheic exchange also apply to interactions 
between groundwater and surface water across multiple scales in river corridors (Figure 1; Boano, Demaria, 
Revelli, & Ridolfi, 2010; Revelli et al., 2008; Stonedahl et al., 2010). For instance, stream sinuosity is a dominant 
control of inter-meander subsurface flow (Figure 3a) in addition to stream flow velocity and sediment hydraulic 
conductivity (Boano, Camporeale, & Revelli, 2010; Boano et al., 2006; Pescimoro et al., 2019). Regional ground-
water up-welling (Figure 3b) and down-welling (Figure 3c) interact with local channel morphology to control 
patterns of surface-groundwater exchange (Balbarini et al., 2017). Resulting inter-meander flow has been shown 
to control residence time distributions; and thus, redox zonation and nutrient turnover in sediments (Boano, 
Demaria, Revelli, & Ridolfi, 2010; Dwivedi et al., 2017). However to date from field studies, we rarely consider 
the vast spatial heterogeneity of hydraulic and hydrogeological properties of sediments between the river channel, 
the meanders, and floodplains (Figure 3d; Bersezio et al., 2007; Bridge et al., 1995; Dara et al., 2019), such as 
preferential flow through sub-surface paleo-channels (Lowell et al., 2009; Stanford & Ward, 1993; Słowik, 2014).

Hyporheic exchange is occurring across a range of scales being controlled by a variety of the processes discussed 
above (Boano et al., 2014; Harvey & Gooseff, 2015; Krause et al., 2014, 2017; Magliozzi et al., 2018; Poole 
et al., 2008; Stonedahl et al., 2010). However, increased efforts are required to integrate and compare the respec-
tive context specific importance of multi-scale interactions between groundwater and surface water. Recent 
model-based attempts to quantify the relative importance of bedform-driven versus meander-driven exchange 
between surface water and groundwater for nitrogen processing in river networks provide a promising path 
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forward (Gomez-Velez et al., 2015). However, these results still require field validation and as yet, do not account 
for spatial heterogeneity in sediment hydraulic conductivity, biogeochemical properties, nor landscape context, 
known to control both small-scale hyporheic exchange and large-scale groundwater flow.

2.4. Dynamic Hydrological Forcing of Hyporheic Exchange Flow

Recent experimental and modeling based research has started to explore the impacts of transience (non-steady 
conditions) in hydrostatic and hydrodynamic forcing on hyporheic exchange and residence time distributions 
(Boano et al., 2007, 2013), with a particular focus on extreme flow conditions during freshets and flood scenarios 
(Malzone et al., 2016; Schmadel, Ward, Kurz, et al., 2016, Schmadel, Ward, Lowry, & Malzone, 2016; Singh 
et al., 2019; Trauth & Fleckenstein, 2017; Ward et al., 2018) and temporally variable groundwater flow (Trauth 
et al., 2014; Wu et al., 2018).

An increasing number of field observations and controlled laboratory experiments provide evidence of the ecolog-
ical and biogeochemical implications of temporally dynamic hyporheic exchange and hyporheic residence time 
distributions. However, a systematic analysis of the influence of stream flow dynamics on hyporheic exchange 
and residence time distributions in different landscape contexts is long overdue (Datry & Larned, 2008; Dole-Ol-
ivier et al., 1997; Malcolm et al., 2009; Schmadel, Ward, Kurz, et al., 2016). Recent laboratory and numerical 
modeling studies have started to more systematically explore the variable importance of different drivers on 
the temporal dynamics of hyporheic exchange (Kaufman et al., 2017; Singh et al., 2019; Wu et al., 2018). Such 
studies still need to be extended to explore the impact of episodic high-flow events that mobilize sediments, 
yielding spatial and temporal erosion, and deposition dynamics and subsequent non-stationary patterns of bed 
morphology, sediment structure, and hydraulic conductivity as seen in field and flume experiments (Ahmerkamp 
et al., 2015; Kessler et al., 2015; Packman & Brooks, 2001). Despite small bedforms, such as ripples originating 
directly from sediment movement and changing in time, most flume studies, conceptual models, and modeling 

Figure 3. Inter-meander flow of surface water through alluvial sediment driven by stream flow velocity and sinuosity 
(a), under the influence of regional groundwater (GW) flow with gaining (b) and losing (c) conditions as well as spatial 
heterogeneity in riparian sediment conditions including paleo-channels as fast conduits and preferential flow paths and 
stagnation zones caused by spatially variable hydraulic conductivity patterns (d).
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exercises simplify reality and assume stationary bedforms. Some flume studies are now considering bedform 
migration (Ahmerkamp et al., 2015; Kessler et al., 2015; Wolke et al., 2019) with far-reaching hydrological and 
biogeochemical implications. Systematic analyses of the wide spectrum of flow transience across different river 
types, combined with regional groundwater flow interactions, will reveal the degree to which short-term and 
long-term changes in stream flow alter hyporheic exchange, hyporheic residence time distributions, and related 
ecological and biogeochemical processes.

2.5. Spatio-Temporal Variability of Hydrological Opportunity and Biogeochemical Reactivity in the 
Hyporheic Zone

The magnitude and array of hyporheic biogeochemical processes, associated with transitions between aerobic 
and anaerobic respiration, are a function of the hydrological opportunity for metabolism, defined by the influx 
and residence time of reactants, nutrients, and metabolic substrates in local environments with specific reac-
tivity. These processes are set by the concentrations of reactants and the frequency of their spatial coincidence 
(Battin et al., 2008; Marcé et al., 2018; Reeder, Quick, Farrell, Benner, Feris, Marzadri, & Tonina, 2018), micro-
bial community dynamics (e.g., recruitment, growth, and activity) and the hyporheic biogeochemical reactivity 
(Krause et al., 2017; McClain et al., 2003). The supply and mixing of reactants (including buried autochthonous 
streambed organic matter), the residence time distributions, and the bulk average reaction rates, are controlled 
directly by hyporheic exchange, which transports solutes and fine particles from the surface water into and 
through the streambed sediments, and hence controls both distributions and rates of reactions within porewater.

Most current conceptual models of streambed biogeochemical cycling assume surface water solute concentra-
tions and HEF-driven residence times in streambed sediments to be the primary (and often only) controls of 
biogeochemical reactions and rates in the hyporheic zone (Bardini et al., 2012; Boano et al., 2014; Hester & 
Doyle, 2008; Marzadri et al., 2012; Zarnetske et al., 2011a, 2012). In this context, the hyporheic zone is conceptu-
alized as a single, homogeneous chemical reactor that receives reactants (e.g., dissolved organic carbon, nutrients, 
and dissolved oxygen) exclusively via hyporheic exchange from the surface water (Figure 4a). Biogeochemical 
reactions and rates are thus dependent on the turnover of solutes in the hyporheic zone (Bardini et al., 2013; 
Boano et al., 2014; Briggs et al., 2014; Trauth et al., 2014; Zarnetske et al., 2011a). With the exception of recent 
modeling work that allows for variation in reaction rates with sediment depth (Aubeneau et al., 2015; Caruso 
et al., 2017; Li et al., 2017) and heterogeneities in the physical pore network structure of hyporheic sediments 
(Briggs et al., 2015; Sawyer, 2015), biogeochemical reaction rates are typically considered independent from 
the location of the chemical reaction taking place in the hyporheic zone. Consequently, the efficiency of biogeo-
chemical turnover in the hyporheic zone is often assumed to be limited by the availability of reactants transported 
by hyporheic exchange from the surface into the streambed (Aubeneau et  al.,  2015; Bardini et  al.,  2013; Li 
et al., 2017; Trauth et al., 2015; Zarnetske et al., 2011b). Such conditions, where types of reactions and rates are 
solely a function of surface water concentrations of reactants and their HEF-controlled hyporheic residence time, 
have been observed in the field. For example, carbon respiration in the hyporheic zone of oligotrophic headwater 
streams has been found to depend on surface water inputs and hyporheic travel time, with respiration shifting 
from aerobic to anaerobic conditions along hyporheic flow paths (Zarnetske et al., 2011b). As a result, denitri-
fication is reliant on both, sufficient residence time to consume sufficient dissolved oxygen from the infiltrating 
surface water and bioavailable organic carbon remaining as an electron donor (Holmes et al., 1994; Jones & 
Holmes, 1996; Ocampo et al., 2006; Zarnetske et al., 2011b). Hyporheic zones support nutrient retention in river 
corridors, with hyporheic metabolism reducing concentrations of organic carbon, bioavailable inorganic nitrogen, 
and dissolved oxygen in the hyporheic water before it subsequently returns to the stream (Figure 4a; Gomez-Velez 
et al., 2015; Krause et al., 2014; Krause, Hannah, Fleckenstein, et al., 2011; Li et al., 2017; Pinay et al., 2009; 
Poole et al., 2008; Wondzell, 2011).

Such conceptualizations of spatially homogeneous hyporheic reactivity are certainly useful to simplify estimates 
of solute turnover in hyporheic zone as the ratio of residence time and biogeochemical reaction time, expressed by 
the dimensionless Damköhler number (Marzadri et al., 2012; Zarnetske et al., 2011a). This approach represents a 
potentially powerful methodology for spatial upscaling (Pinay et al., 2015; Reeder, Quick, Farrell, Benner, Feris, 
Marzadri, & Tonina, 2018; Reeder, Quick, Farrell, Benner, Feris, & Tonina, 2018). However, if the goal is to nest 
biogeochemical function of hyporheic zones at landscape scales, the Damköhler number approach has further 
potential to be enhanced in its ability to upscale hyporheic biogeochemical function to river network scales 
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(Marzadri et al., 2017, 2021). It currently does not capture the full range of coupling between biogeochemical 
processes and hyporheic exchange, abiotic and biotic heterogeneities or the scale-dependency resulting from 
decreasing HEF rates and concentrations of exchanged solutes with depth in the hyporheic zone.

Water residence time may be the main control of hyporheic biogeochemical cycling for many oligotrophic and 
relatively homogeneous, low-order headwater streams with limited variability in sediment texture (e.g., Pinay 
et al., 2009; Zarnetske et al., 2011a, 2011b). However, this concept is frequently contradicted by field observa-
tions in other small streams (Drummond et al., 2016; Marcé et al., 2018) as well as in more complex lowland 
rivers, particularly in agricultural areas with enriched nutrient conditions (Abbott, Moatar, et  al.,  2018; Frei 
et al., 2020; Krause et al., 2009, 2013; Sawyer, 2015). The assumption of an otherwise “empty” and inert, homo-
geneous streambed reactor charged by hyporheic exchange driven solute inputs from surface water (Bardini 
et al., 2012; Boano et al., 2014; Trauth et al., 2014, 2015; Zarnetske et al., 2011a) is not applicable when stre-
ambed sediments also contain autochthonous reactants, as both the dissolved form and particulate organic matter 
(Figures 4b and 4c). In this case, the encountered diversity of turnover rates and reaction types cannot be solely 
explained by hyporheic exchange controls of reaction times and surface water solute inputs, as these processes 
are strongly influenced by the concentrations of bioavailable dissolved organic matter and mineralization rates 
of particulate organic matter in the sediment (Corson-Rikert et  al.,  2016; Krause et  al.,  2009,  2013; Reeder, 
Quick, Farrell, Benner, Feris, Marzadri, & Tonina, 2018; Reeder, Quick, Farrell, Benner, Feris, & Tonina, 2018; 
Trimmer et  al.,  2012). Dissolved and particulate organic matter concentrations have significant spatial varia-
bility within the sediment (Datry et al., 2017; Drummond et al., 2017, 2018; Krause et al., 2009, 2013; Shel-
ley et al., 2017). The spatial patterns of organic matter distributions in the streambed often coincide with the 
spatial organization of physical sediment properties that result from the fluvial depositional history of the river 
(Drummond et al., 2017, 2018; Larsen et  al., 2015; Larsen & Harvey, 2017). High organic matter content is 
generally associated with low hydraulic conductivity strata of organic sediments, while highly permeable mineral 

Figure 4. Conceptual models of the hyporheic zone as a biogeochemical reactor: Variability in the mixing of different 
reactive solute sources [carbon (C) and nitrogen (N) fractions, and free oxygen (O)], impacts on stream(bed) metabolism and 
down-stream effects of hyporheic processing, for single water source (surface water) dominated systems (a + b) and systems 
with reactive solute contributions from multiple water sources mixing in the hyporheic zone (c + d), with (b), (c), and (d) and 
without (a) relevance of autochthonous streambed organic matter (OM). Clouds representing gaseous losses of metabolites 
and symbol sizes indicating relative proportions of their concentrations with arrow sizes and directions indicating minor or 
major increases or reductions in downstream concentrations.
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sediments are often characterized by low organic matter content (Pinay et  al.,  1995,  2000). The relationship 
between physical and biogeochemical sediment controls provide additional and perhaps underutilized predictive 
capacity to explain observed heterogeneity in hyporheic zone biogeochemical reactivity, as a function of interact-
ing sediment conductivity, residence time, and reactivity patterns. Concordantly, field studies using hydrometa-
bolic tracers have indicated that the entire hyporheic zone is not metabolically active contributing to ecosystem 
respiration and biogeochemical cycling (Argerich et al., 2011), though the locations and timescales associated 
with transformation are only beginning to be understood (Ward, Wondzell, et al., 2019). This finding has been 
corroborated by particle-tracking and pore-network models showing that hyporheic zone biogeochemical turno-
ver can be largely driven by the residence time of water in hyporheic bioactive layers or redox microzones (Briggs 
et al., 2015; Li et al., 2021).

As a consequence of the heterogenous distributions of residence times (and related hydrological opportuni-
ties) and sediment biogeochemical reactivities, reactions of the interlinked carbon and nitrogen cycle are often 
more complex. For example, contrasting concentrations of dissolved oxygen have resulted in comparable rates 
of microbial carbon processing due to compensation by the composition of the microbial community (Risse-
Buhl et al., 2017). Previous conceptualizations of residence time control of biogeochemical turnover in hypor-
heic zones also widely ignore other nitrogen transformation processes evidenced in the field, such as dissimi-
latory nitrate reduction to ammonium (DNRA) and anaerobic oxidation of ammonium (Anammox; Lansdown 
et  al.,  2015,  2016; Trimmer et  al.,  2012,  2015; S. Zhou et  al.,  2014). Depending on the relative importance 
of the contribution from buried streambed autochthonous organic matter to hyporheic biogeochemical cycling, 
hyporheic exchange might result in either a reduction or an increase of in-stream loading of carbon and nitrogen 
(Figure 4b). Furthermore, hyporheic exchange could decrease in-stream carbon and nitrogen loading due to trans-
port toward the aquifer in the case of losing conditions (Figure 4c).

In many cases, up-welling groundwater may contribute reactive solutes to the streambed (Figure 4d), which is 
particularly relevant for legacy pollutants, such as nitrate contamination in groundwater, which in many lowland 
agricultural catchments represent the main nitrogen source (Basu et al., 2010; Bochet et al., 2020; Frei et al., 2020; 
Withers et al., 2014) and industrial contaminants, such as chlorinated solvents in urban areas (Rivett et al., 2012; 
Weatherill et al., 2018). The concurrence of spatially variable up-welling of solutes from groundwater and tempo-
rally dynamic down-welling of surface water pollutants has frequently been observed to create complex patterns 
of reactions in the hyporheic zone (Liu et  al.,  2019; Shelley et  al.,  2017; Weatherill et  al.,  2014) that go far 
beyond the current concepts of hyporheic exchange and residence time controls on streambed biogeochemical 
cycling. In fact, the observed impacts of groundwater solute contributions and autochthonous sediment organic 
matter have been shown to produce a hot spot of biogeochemical transformation in the hyporheic zone (Krause 
et al., 2009, 2013), which does not match current conceptualizations. In particular, the net-effect of hyporheic 
zone biogeochemical cycling on nitrate removal might be underestimated given that model-based quantifications 
do not consider the interactions of multiple solute pathways into the streambed sediments which may already 
contain standing stocks of bioavailable organic matter.

To capture these effects, process conceptualizations currently used in numerical models should be extended to 
improve identification and representation of the dominant process dynamics across multiple scales, considering 
solute mixing from different sources, including buried autochthonous streambed organic matter (Figures 4b–4d). 
This approach will require a dialog to incorporate the frequently observed behaviours that have been identified as 
being relevant in the field into existing numerical models in parsimonious approaches where parameters remain 
tractable and identifiable within acceptable confidence bounds. Many of the existing models should have the 
capability to account for these additional processes if parameterized adequately. However, new numerical frame-
works are also needed to better capture multiscale interactions, process interactions, and feedbacks that change 
system conditions.

2.6. The Missing Link? Ecological Controls on Hyporheic Exchange Flow and Biogeochemical Cycling

Previous interdisciplinary research has mainly focused on the analysis and quantification of hyporheic exchange 
and biogeochemical cycling impacts on aquatic ecosystem functioning (Figure 5) (Boulton et al., 1998, 2010; 
Boulton & Hancock, 2006; Hancock et al., 2005). This research highlights that hyporheic exchange and streambed 
biogeochemical processes create a unique ecological niche (Brunke & Gonser, 1997; Stanford & Ward, 1993; 
Stubbington et al., 2009) that potentially acts as a refuge during extreme conditions (Folegot, Krause, et al., 2018) 
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enhancing biodiversity and ecosystem resilience to environmental change (Kurz et  al.,  2017). However, our 
understanding of the impacts in the reverse direction, where ecological processes can influence hyporheic 
exchange and biogeochemical cycling is in its infancy (Figure 5; Buxton et al., 2015). Initial work on the func-
tioning of microbial biofilms established how dynamic growth of benthic and hyporheic biofilms affects turbu-
lent flow in the stream channel and consequently modifies turbulence-driven hyporheic exchange (Nikora, 2010; 
Roche et al., 2017). Biofilms also cause bio-clogging of streambed sediments (Caruso et al., 2017; Newcomer 
et al., 2016; Chowdhury et al., 2020; Figure 2h), where complex biofilm communities on the streambed surface 
and within sediment pores reduce the effective porosity of the streambed substrate and subsequently hyporheic 
exchange (Battin & Sengschmitt, 1999; Mendoza-Lera & Mutz, 2013; Newcomer et al., 2016; Roche et al., 2017; 
Figure 2h). At larger scales, the dynamic growth of submerged macrophytes has been shown to strongly modify 
turbulent flow patterns in the channel and enhance the trapping of fine sediment (Drummond et al., 2014; Liu 
et al., 2018; Liu & Nepf, 2016; Sand-jensen, 1998; Figure 2g), directly impacting hyporheic exchange and hypor-
heic biogeochemical processes (Salehin et  al.,  2003; Ullah et  al.,  2014). The presence of macrophytes alters 
flow paths and residence time distributions, providing additional substrate and input of organic carbon as well 
as enhancing nutrient uptake during the growth phase (Baranov et al., 2017; Nikolakopoulou et al., 2018; Ribot 
et al., 2019).

In addition to these microbial- and plant-induced influences on the hyporheic hydrology and biogeochemis-
try, there is increasing evidence that some invertebrate bioturbator species and ecosystem engineers modify 
hyporheic hydrological and biogeochemical conditions. These ecosystem engineers alter the conditions of their 
habitat to augment their ecological needs, with direct and indirect influences on the dynamics of both hyporheic 
exchange and hyporheic biogeochemical process (Hölker et al., 2015). For example, burrowing chironomid larvae 
pump significant amounts of surface water through their U-shaped sediment burrows, directly affecting hyporheic 
exchange by actively transporting greater volumes of water and solute mass to deeper sediments. This process 
influences sediment metabolism and biogeochemical cycles (Mermillod-Blondin,  2011; Mermillod-Blondin 
et al., 2004; Nogaro et al., 2009) with potentially significant impacts on greenhouse gas production and seques-
tration (Baranov et  al.,  2016). These findings highlight the urgent need to extend analyses toward frequently 
observed behavior of other species, such as the burrowing of crayfish in streambeds during hydrological extremes 
or the active movement of Gammarus pulex (freshwater shrimp) and other hyporheic invertebrates triggered by 
thermal and hydrological stress (DiStefano et al., 2009; Statzner et al., 2000; Vander Vorste et al., 2016, 2017). 
The activities of these invertebrates are likely to alter sediment structure and thus, hydraulic conductivity and 
hyporheic exchange. Many vertebrates, such as fish or freshwater mammals (Janzen & Westbrook, 2011; Shurin 
et al., 2020) also directly affect hyporheic exchange and streambed biogeochemical conditions. For instance, when 
fish select gravel spawning habitat with their preferred hyporheic exchange and biogeochemical conditions, these 
conditions may be affected also by their spawning activities (Baxter & Hauer, 2000; Buxton et al., 2015; Harrison 
et al., 2019; Malcolm et al., 2004, 2009; Moir & Pasternack, 2010; Tonina & Buffington, 2009). In Columbia, one 

Figure 5. Multi-directional interactions between physical controls of hyporheic exchange flow, streambed biogeochemical 
cycling, and biological community structure and ecological (metabolic) functioning (red arrows), including ecological 
feedbacks on streambed biogeochemistry biogeochemistry [e.g., microbial demand for substrate shifting porewater from oxic 
to anoxic (aerobic to anaerobic metabolic pathways)] as well as hyporheic exchange (e.g., bioturbation, bioclogging, and 
ecosystem engineering).
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of the world’s largest mammals, the non-native hippopotamus (Hippopotamus amphibious), acts as an ecosystem 
engineer affecting hyporheic exchange and impacting hydrological habitats (Shurin et al., 2020). This activity is 
considered valuable to fill an important ecosystem function as megaherbivores amphibious ecosystem engineers 
became extinct in South America at the end of the Pleistocene (MacPhee & Schouten, 2019).

Given the observed ecological impacts on hyporheic exchange and biogeochemical processes in the hyporheic 
zone (Figure 5), future research requires in-depth attempts to integrate the advancing knowledge of ecological 
controls into conceptual and quantitative models of hyporheic hydrological and biogeochemical process dynam-
ics (Hannah et al., 2007; Krause et al., 2017; Krause, Hannah, Fleckenstein, et al., 2011). We are only beginning 
to understand the magnitude of ecological controls and their impact on non-stationarity and temporal dynamics of 
hyporheic processes, caused, for instance, by time-variable biological processes. Hence, a fully coupled approach 
is required that considers ecosystem process response to changes of both hydrological and biogeochemical habitat 
conditions, as well as the impact of biological activity on physical and chemical properties of the hyporheic zone 
(Figure 5).

3. A Landscape Perspective of Organizational Principles of Hyporheic Exchange 
Fluxes and Biogeochemical Cycling Along the Catchment Continuum
Our synthesis of field observations and modeling studies highlights complex interactions among a broad diversity 
of drivers and controls of hyporheic exchange, biogeochemical cycling, and biological activity. This synthe-
sis furthermore provides evidence that hyporheic exchange, hyporheic biogeochemical cycling, and hyporheic 
ecosystems are highly organized and spatially structured in fluvial landscapes. Understanding the underlying 
organizational principles of these systems is key for enabling transferability and generalization of knowledge to 
predict the landscape-wide significance of hyporheic exchange and hyporheic biogeochemical cycling on water 
balance, nutrient dynamics, reactive contaminant transport, and ecosystem functioning at catchment scale.

The majority of experimental or modeling studies to date have focused on individual stream reaches and then 
scaled up observations, with only a few experimental studies attempting to quantify hyporheic exchange along 
a river continuum using a river network approach (Gootman et al., 2020; Lee-Cullin et al., 2018; Ward, Kurz, 
et al., 2019; Wondzell, 2011). Here, we build on previous conceptual models of landscape organizational princi-
ples (Boulton et al., 1998; Boulton & Hancock, 2006; Buffington & Tonina, 2009; Frissell et al., 1986; Helton 
et al., 2011; Malard et al., 2002) to synthesize and conceptualize the spatial and temporal organization of different 
drivers and controls of hyporheic exchange and hyporheic biogeochemical cycling along a river network contin-
uum from first order headwaters to lowland streams (Figure 6a). We propose advances to existing landscape 
scale conceptualizations of hyporheic exchange that account not only for interactions among different drivers 
and controls of hyporheic flow, biogeochemical cycling, and ecology, but also their spatially nested co-existence 
(Figure 1).

Integrating the drivers of hyporheic exchange and hyporheic biogeochemical cycling into a catchment context 
requires using landscape organizational principles developed in hydrology, geomorphology, and ecology to 
explain hyporheic exchange patterns (Boano et al., 2014; Magliozzi et al., 2018, 2019). For example, basic prin-
ciples of sediment transport and storage along river networks indicate a general down-stream reduction in channel 
slope, lateral channel confinement, sediment grain size, and channel roughness coupled with an increase in stre-
ambed organic matter from headwater to lowland streams (Figure 6). This longitudinal change in the characteris-
tics of the streambed sediments results in a downstream shift in hyporheic exchange and often coincides with an 
increase in groundwater contributions (Figure 3). Decreasing hydraulic gradients cause a downstream reduction 
in driving forces for vertical hyporheic exchange, coinciding with deeper fluvial and alluvial deposits, leading 
to longer and deeper hyporheic flow paths and slower hyporheic flow velocities in finer grained sediments with 
lower permeability, which results in increased hyporheic residence times (Figure 6a). At the same time, river 
meandering in low-gradient mid-stream sections results in enhanced river corridor connectivity, longer lateral 
HEF path, and increased hyporheic and riparian residence times and flow permanence (Figure 6b). Depending 
on the dominant geomorphodynamic processes, these changes and flow path transitions can be highly nonlinear, 
yielding sharp thresholds at regions of known geomorphic transitions, such as between mountain ranges, foot-
hills, valleys, and lowlands (Marzadri et al., 2017; Wondzell, 2011). Abrupt changes in multiple factors, such as 
the transition from steep coarse-bedded and constrained mountain rivers into finer-grained and less-constrained 



Water Resources Research

KRAUSE ET AL.

10.1029/2021WR029771

14 of 25

lowland rivers is expected to yield sharp transitions in hyporheic exchange (Figures 6a and 6b), but these patterns 
have not been systematically investigated for a range of fluvial system conditions.

The wider application of fluvial sedimentology principles (Dara et al., 2019) and understanding of alluvial depo-
sitional history (Słowik,  2014) provides further and perhaps underutilized predictive capacity for the spatial 
distributions of sediment properties in river valleys and their impact on hydrologic connectivity between streams 
and groundwaters, including, hyporheic exchange, residence time distributions, and biogeochemical reactivity in 
river channel and riparian sediments (Figure 6b). The potential for combining model-based information of fluvial 
sediment transport to predict river valley and streambed sediment stratigraphy as controls of hyporheic exchange 

Figure 6. Landscape scale organizational principles of vertical hyporheic exchange flow (HEF) from headwater streams 
to lowland rivers (a—vertical profile) and of lateral inter-meander and parafluvial flow (b—plane view) as a function of 
surface hydrological drivers and multi-scale groundwater flow controls, and distribution of physical and chemical sediment 
properties, such as spatial variability in sediment hydraulic conductivity, hyporheic residence time (RT), or streambed organic 
matter (OM) content as drivers of biogeochemical processing (visualization of downstream tendencies are indicating general 
trends only and do not imply linear changes).
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and hyporheic biogeochemical processes is currently untapped, leaving a great underutilized potential for achiev-
ing step changes in understanding of hyporheic zone processes across large catchments.

This landscape perspective emphasizes that local hyporheic exchange dynamics are strongly modulated by larg-
er-scale patterns of topography, biogeography, and groundwater circulation (Figure 6). In this context, hyporheic 
interactions can be considered a local, near-surface manifestation of larger spatial scale and longer temporal scale 
surface-groundwater circulation patterns. Similarly, landscape patterns of terrestrial ecosystems, primary produc-
tion, and organic matter inputs both drive and condition hyporheic microbial activity and biogeochemistry. Look-
ing forward, the accumulated advances in knowledge of surface-groundwater systems outlined above, together 
with new capability in sensing, simulation, and data science, provide the potential to unify understanding of local 
drivers of ecological processes and their interactions with larger aquatic and terrestrial ecosystems.

The intensity and distribution of groundwater upwelling and the associated delivery of legacy pollutants, such as 
nitrate or chlorinated solvents, into hyporheic zones are likely to increase from headwaters (often with less agri-
culture and urbanization) to more intensively managed and impacted downstream lowland ecosystems (Figure 6). 
Similarly, the flow permanence of river channels increases in downstream direction, with many headwater 
streams being prone to drying and flow cessation (Benstead & Leigh, 2012; Boulton et al., 2017) and largely 
unknown impacts of dry phases on hyporheic zone functioning (Boulton et al., 2017; Datry et al., 2017; Datry & 
Larned, 2008). An overall downstream increase is assumed in the complexity of interactions of different hydrody-
namic, sedimentological, and biogeochemical drivers, including distributions of sediment structure and proper-
ties, groundwater upwelling, and solute contributions as well as patterns of autochthonous organic matter content 
in streambed sediments. On the other hand, spatial variability in stream chemistry, including pollutants, typically 
decreases moving downstream in river networks, suggesting a homogenization arising from averaging of different 
signals and attenuation of discrete sources (Abbott, Gruau, et al., 2018; Creed et al., 2015; Dupas et al., 2019).

We advocate for hyporheic research to embrace a wider landscape perspective when interpreting local obser-
vations, and to avoid applying principles derived predominantly from small headwater streams throughout the 
river network continuum. Furthermore, the current fragmentary approaches can lead to inaccuracies in system-
level understanding and management of the hyporheic zone at catchment scale. Therefore, studies considering 
a greater diversity in the ecological conditions of hyporheic zone are needed. Arid and semi-arid systems have 
fundamentally different hydrology and biogeochemistry (Fisher et al., 1998; Harms & Grimm, 2008). Still, many 
of the conceptualizations considered in this article predominantly reflect patterns under hydrologically gaining 
conditions with net groundwater to surface water flux, typical of temperate regions.

Acknowledging interactions between different drivers and controls of hyporheic exchange and hyporheic bioge-
ochemical cycling in a landscape context provides a pathway toward more accurate representations of governing 
processes in conceptual hyporheic zone models. This does not necessarily need to lead to an increase in complex-
ity for site specific models but supports the development of parsimonious approaches where the selection of 
representative processes is justified by understanding the most important hyporheic exchange controls at each 
location in a wider landscape context. We emphasize here that the general patterns illustrated in Figure 6 repre-
sent an overall expectation based on current understanding of watershed structure, both geophysical and ecologi-
cal. Hyporheic hydrology and biogeochemistry at any site in the landscape can vary substantially from the general 
expectation, necessitating careful consideration of both local- and landscape-scale drivers. New observational 
approaches are needed that are capable of capturing a wider range of environmental conditions in hyporheic 
zones across river networks (Krause, Hannah, Fleckenstein, et al., 2011; Lee-Cullin et al., 2018; Ward & Pack-
man, 2019). To ensure the contribution of hyporheic zone research to efficiently manage the interface between 
aquifers and rivers (Krause et al., 2014, 2017; Lewandowski et al., 2019), future research will need to test how 
those landscape principles either hold or need to be adapted across catchments, including heavily anthropo-
genically modified and polluted urban streams that are currently underrepresented in hyporheic investigations 
(Lawrence et al., 2013; Schaper et al., 2018, 2019).

The proposed advancements of process conceptualizations across scales also highlight the need for intensifying 
efforts to improve mechanistic process understanding through interdisciplinary research and knowledge exchange 
in emerging areas of hyporheic research. This includes providing evidence of the biological, physical, and bioge-
ochemical process interactions (i.e., how the physical environment controls habitat functioning), and also of how 
biological behavior is a feedback to hyporheic physical and biogeochemical conditions. Therefore, it will be 
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critical to establish landscape organizational principles of the abundance and activity of hyporheic and benthic 
fauna, including bioturbators, along the river continuum and as a consequence of changes in the type of sediments 
and accumulation of organic matter in streambeds.

To improve promising recent attempts into predictions of larger scale implications of hyporheic exchange and 
hyporheic biogeochemical processing, as well as to quantify the resilience of hyporheic functioning to global 
environmental change, future research also needs to specifically address the flow-dependent mobility of stre-
ambed sediments, and its impact on hyporheic zone processes and ecological functioning. With climate change 
projections suggesting that many rivers are likely to experience an increase in extreme hydrological events, it will 
be important to advance the understanding of hyporheic processes in particular under conditions of increased 
flow intermittence and sediment mobilizing flow events. The key for success in both hyporheic science and 
river ecosystem management lies in understanding the interactions of physical, biogeochemical, and ecological 
processes and how they vary across scales, as well as integrating knowledge between (field and lab) experimental 
and modeling approaches. We hope that the framework we propose here will stimulate discussions and open 
opportunities for further integrating existing and new process knowledge across scales within the landscape 
context.
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