

EXPERIMENTAL AND THEORETICAL STUDIES ON THE OXIDATION OF A "PLATINUM-BUTTERFLY" COMPLEX BY HALOCARBONS

Lorenzo Arnal,¹ Sara Fuertes,¹ Daniel Escudero,² Antonio Martín,¹ Violeta Sicilia¹

¹ Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain ²Department of Chemistry, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium Email: lorenzoav@unizar.es

The oxidative addition (OA) of halocarbons (RX) to d⁸ Rhodium (I) and Iridium (I) dinuclear bispyrazolate complexes have been widely studied yielding in many cases metal-metal bonded M₂(II,II) compounds.^[1] In this regard, moving into the Platinum(II) chemistry, the activation of RX by a similar system has been recently studied in our group for the first time.^[2]

Here we report the oxidation of a $Pt_2(II,II)$ complex, $[{Pt(C^C^*)(\mu-pz)}_2]$ (HC^C*= 1-(4-ethoxycarbonylphenyl)-3-methyl-1*H*-imidazol-2-ylidene, **A**), by halocarbons such as RX (R= CH₃, CH₂Ph; X = Br, I). Depending on the nature of RX and on the reaction's conditions, the oxidation affords the metal-metal bonded $Pt_2(III,III)$ complexes (R-[Pt]-[Pt]-X) ([Pt] = [Pt^{III}(C^C^*)(\mu-pz)]; R= CH_2Ph; X = Br, I) or go further up to the $Pt_2(IV,IV)$ derivatives [R-[Pt](μ -X)[Pt]-R]X ([Pt] = [Pt^{IV}(C^C^*)(μ -pz)]; R=CH₃, X = I; R= CH₂Ph, X = Br). Experimental work and density functional theory calculations have been carried out to decipher the mechanism, the metal-metal cooperative effects and the influence of both fragments (R, X) in the oxidation reactions.

Figure: Energy profile for the oxidative addition of CH₃I to **A**

References

C. Tejel, M. A. Ciriano, A. J. Edwards, F. J. Lahoz and L. A. Oro, *Organometallics* **1997**, *16*, 45-53; [2] V. Sicilia, L. Arnal, S. Fuertes, A. Martin and M. Baya, *Inorg Chem* **2020**, *59*, 12586-12594.