

ALKYNE CYCLOTRIMERIZATION MEDIATED BY LOW-COORDINATE Fe(II) AND CO(II) COMPLEXES

Ana M. Geer,¹ P. Alamán-Valtierra,¹ W. Lewis,² L. J. Taylor,² D. Kays,² Cristina Tejel¹

¹ Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain ² School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom Email: anageer@unizar.es

Earlier work in our research group has focused on the design, synthesis and reactivity of rhodium(I) complexes supported by an anionic tripodal phosphane with uncommon *pseudo-tetrahedral* coordination environments. The reactions between these complexes and alkynes was explored leading to organometallic compounds were the alkyne acts as a four-electron donor with one equivalent of alkyne, whilst with excess alkyne they were found to be efficient precatalyst for the regioselective dimerization of terminal alkynes to E-enynes.^[1] Inspired by these results and with the purpose of elucidating the role of the metal center and its coordination environment in alkyne oligomerization catalysis we turned to first-row two-coordinate complexes containing bulky ligands whose unique geometry can offer new opportunities in reactivity and catalysis.^[2]

Here in the present communication, we present two-coordinate cobalt(II) and iron(II) diaryl complexes stabilized by *m*-terphenyl ligands as efficient precatalysts for alkyne cyclotrimerization under mild reaction conditions. The importance of the reaction conditions and its connection to the chemoselectivity will be discussed.

Financial support acknowledgment

MINECO-FEDER CTQ2017-83421-P and GA-FES (Reactivity and Catalysis in Inorganic Chemistry, E50_20D).

References

- [1] (a) A. M. Geer, A. Julián, J. A. López, M. A. Ciriano, C. Tejel, *Chem. Eur. J.* **2018**, *24*, 17545. (b) A. M. Geer, A. Julián, J. A. López, M. A. Ciriano, C. Tejel, *Chem. Eur. J.* 2014, *20*, 2732.
- [2] L. Taylor, D. Kays, Dalton. Trans. **2019**, 48, 12365-12381.