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The occurrence of 4.8–7.2 million tons of hexachlorocyclohexane (HCH) isomers stocked in dumpsites 
around the world constitutes a huge environmental and economical challenge because of their 
toxicity and persistence. Alkaline treatment of an HCH mixture in a dehydrochlorination reaction is 
hampered by the low reactivity of the β‑HCH isomer (HCl elimination unavoidably occurring through 
syn H–C–C–Cl arrangements). More intriguingly, the preferential formation of 1,2,4‑trichlorobenzene 
in the β‑HCH dehydrochlorination reaction (despite the larger thermodynamical stability of the 
1,3,5‑isomer) has remained unexplained up to now, though several kinetic studies had been reported. 
In this paper, we firstly show a detailed Density Functional study on all paths for the hydroxide 
anion‑induced elimination of β‑HCH through a three‑stage reaction mechanism (involving two types 
of reaction intermediates). We have now demonstrated that the first reaction intermediate can 
follow several alternative paths, the preferred route involving abstraction of the most acidic allylic 
hydrogen which leads to a second reaction intermediate yielding only 1,2,4‑trichlorobenzene as the 
final reaction product. Our theoretical results allow explaining the available experimental data on 
the β‑HCH dehydrochlorination reaction (rate‑determining step, regioselectivity, instability of some 
reaction intermediates).

The occurrence of many uncontrolled stockpiles containing large quantities of Persistent Organic Pollutants 
(POPs) constitutes a major environmental, economical challenge to be  solved1,2. Interestingly, most of such waste 
is derived from the 1,2,3,4,5,6-hexachlorocyclohexane (HCH) production by means of benzene photochlorina-
tion. Between 4.8 and 7.2 million tons of HCH waste are estimated to have been produced and stocked around 
the  world3.

The raw product from benzene photochlorination is mostly composed of a mixture of HCH diastereomers 
named by Greek letters (55–80% α, 5–14% β, 8–15% γ, 2–16% δ, 3–5% ε, see Fig. 1)4. In the 1940s and 50s, the 
technical HCH mixture as a whole was commercialized as an insecticide. Since insecticidal properties are indeed 
only due to γ-HCH (lindane), the industrial process was subsequently modified to extract that stereoisomer, 
whereas the remaining isomers (as well as non-extracted γ-HCH) were deposed in dumpsites close to the pro-
duction plants, which have become serious pollution  foci4.

Despite the apparent similitude between HCH isomers, β-HCH shows a particular chemical behavior. Because 
of the all-trans arrangement of chlorine atoms in β-HCH (all H–C–C–Cl sequences showing cis dispositions), 
elimination is significantly hampered. Thus, Cristol et al. showed that β-HCH reacts with hydroxide ion in an 
ethanol/water mixture at 30 ºC much more slowly than other isomers (from 7000 to 24,000 times)5.

Significant environmental differences between HCH isomers can accordingly be  found6. Thus, α-HCH and 
γ-HCH are slowly hydrolyzed in seawater (hydrolytic half-lives are 26 and 42 a, respectively)7 whereas a negligible 
reactivity of β-HCH can be inferred from Cristol data (half-life = 38–96 Ga). High persistence of β-HCH is also 
found for bacterial degradation since LinA-type enzymes (using an E2 path)8 degrade α-, γ- and δ-HCH, but 
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not the β  isomer9. As a consequence of the scarcity of natural degradation mechanisms, β-HCH is becoming 
the predominant isomer in the  environment10 as observed in the Baltic Sea  water11 and human fatty  tissues12.

Because of their suspected carcinogenic, persistent, bioaccumulative, and endocrine-disrupting properties, 
α-, β-, and γ-HCH isomers were included in Annex A of the Stockholm Convention on Persistent Organic 
 Pollutants13 thus compelling the signing countries to eliminate releases of such compounds. Evidently, the best 
strategy to avoid accidental HCH emissions should include the transformation of HCH stockpiles into innocu-
ous  materials3.

Inexpensive safe treatment of large quantities of HCH waste may be envisaged through dehydrochlorination 
reaction with sodium hydroxide. However, obtaining quantitative yields in the alkaline treatment of an HCH 
mixture is seriously hampered by the low reactivity of the β-isomer. Reaction mixtures including significant 
concentrations of β-HCH should not be acceptable.

As a further challenge, the alkali elimination of HCH isomers (including β-HCH) preferentially leads to 
1,2,4-trichlorobenzene14 despite the larger stability of 1,3,5-isomer15. No satisfactory explanation has been given 
up to now to such a paradoxical result.

In this work, we study the complete mechanism for the β-HCH + hydroxide anion reaction using Density-
Functional calculations. We hope that a better mechanistic insight on that process can help to a rational design 
of HCH waste treatment.

Results and discussion
Elimination pathways. The β-HCH dehydrochlorination reaction takes place through three stages (Fig. 2). 
The first reaction stage corresponds to β-HCH elimination yielding rel-(3R,4S,5R,6S)-1,3,4,5,6-pentachlorocy-
clohexene (1). The Gibbs free energy of activation (starting from the β-HCH +  HO− pre-reactive complex) for 
the first stage was firstly studied by using different theoretical levels in gas phase and two continuum models. 
Results on the activation barrier (see Table S1) are consistent with well-known trends for theoretical levels (exag-
geration by  HF16, underestimation for  BLYP17, similar results for B3LYP and M06-2X18) and continuum models 
(lower activation barriers in gas  phase19, close results for IEFPCM and CPCM  models20). As a consequence, 
CPCM(water)/M06-2X/6-311++G(d,p) calculations are only considered along the paper.

The activation barrier for the first reaction stage (9.3 kJ  mol−1) is much lower than the experimental value for 
the β-HCH + sodium hydroxide reaction in ethanol at 30 ºC (129.8 kJ/mol)21, consistently with the overestimated 
reactivity of anions by using continuum solvent  models22. Nevertheless, the occurrence of a positive activation 
barrier for the first reaction stage for β-HCH (in contrast with the lack of calculated TSs for other isomers) is 
consistent with the well-known aversion for the syn H–C–C–Cl arrangement in elimination  reactions14.

In the second reaction stage, eight dehydrochlorination reaction paths starting from 1 (three of them leading 
to 5 as a common product) to yield tetrachlorocyclohexadienes 2–7 can be envisaged. Both 1,2 (involving two 
contiguous  sp3 carbons) and 1,4 (involving both  sp3 allylic carbons) regiochemistries are possible.

Pathways for dehydrochlorination of 1 leading to tetrachlorocyclohexadienes 2–6 showed positive activation 
Gibbs free energies. Routes involving the removal of allylic hydrogens from C3 and C6 (4.2–9.6 kJ  mol−1) are 
clearly preferred over those implying non-allylic atoms C4 and C5 (33.4–34.8 kJ  mol−1), in agreement with the 
relative acidity of allylic hydrogens. When routes leading to conjugated tetrachlorocyclohexadienes are compared, 
a preference for the formation of 5 (involving allylic proton removal) relative to 2 (implying non-allylic hydrogen 
abstraction) by a 200,000:1 ratio (according to calculated relative rate  constants23) is found.

All attempts to locate transition states for the transformations of 1 into non-conjugated tetrachlorocyclohexa-
dienes (3 and 4) yielded instead structures leading to the favored conjugated isomers.

No TS could be located for the 1 → 7 transformation using the M06-2X or the HF level (typically overesti-
mating activation  barriers16) since a monotonic energy descent for the 1 +  HO− approximation leading to 7 is 
found instead. A strong preference for the formation of 7 as a key intermediate in the β-HCH elimination, even 
larger than that corresponding for the formation of the other conjugated tetrachlorocyclohexadienes, can thus 
be inferred.

To ascertain the source of the strong preference of 1 for the formation of 7, calculations were carried out on 
1,3- and 1,2-dichlorocyclohex-2-en-1-yl carbanions (see Fig. 3), lacking additional  Csp

3-bound chlorines (thus 

Figure 1.  Major HCH diastereomers.
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avoiding the spontaneous chloride anion leave). Interestingly, non-planar π-allyl structures were found in both 
cases, similarly to 1-fluoro or 1-hydroxy substituted allyl anions through HF/6-31+G(d)  calculations24. Such a 
geometrical feature can be attributed to the preference for the pyramidal geometry of the carbanionic carbon 

Figure 2.  β-HCH dehydrochlorination reaction pathways indicating the regiochemistry (1,2 vs. 1,4) and the 
carbon undergoing deprotonation (in parentheses, if necessary) of every elimination step.
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(lone pair showing a 22.13% s+77.19% p hybridization, according to NBO calculations) as a consequence of the 
C–Cl bond  polarity25, analogously to the strong predilection for pyramidal geometry in  NF3

26.
For 1,3-dichlorocyclohex-2-en-1-yl anion, two enantiomeric minima can interconvert through a delocalized 

TS, thus indicating a stabilization through localization (16.5 kJ  mol−1 in electronic energy; 14.8 kJ  mol−1 in Gibbs 
free energy) in contrast with the localization destabilization of the non-substituted allyl  anion27. An energy mini-
mum was found for the localized 1,2-dichlorocyclohex-2-en-1-yl carbanion, but not for the alternative localized 
allylic system (2,3-dichlorocyclohex-2-en-1-yl anion).

Calculations show larger stability for 1,2-dichlorocyclohex-2-en-1-yl carbanion relative to the 1,3-isomeric 
anion (8.0 kJ  mol−1 in electronic energy; 8.5 kJ  mol−1 in Gibbs free energy). These results show that the stabiliza-
tion of an allylic carbanion by a chlorine substituent is larger on the central position than that on the extremal 
site, consistently with the larger gas phase acidity of 2-chloropropene28 relative to 1-chloropropene24.

Calculations show larger stability for 1,2-dichlorocyclohex-2-en-1-yl carbanion relative to the 1,3-isomeric 
anion (8.0 kJ  mol−1 in electronic energy; 8.5 kJ  mol−1 in Gibbs free energy). These results show that a chlorine 
in the central position increases the stability of the allylic carbanion more than a chlorine in the extremal site, 
which is consistent with the fact that 2-chloropropene is more acidic than 1-chloropropene in gas  phase24.

In other words, chloroalkenes show a preference for proton removal from the CH group next to the chlorine-
bearing vinylic carbon rather than that contiguous to hydrogen-bearing vinylic carbon.

The extension of such a conclusion to reaction intermediate 1 allows understanding the preferential deproto-
nation from C6 rather than proton removal from C3. Although both 1,2- and 1,4-elimination regiochemistries 
(leading, respectively, to 7 and 6) can be envisaged, a preference for the formation of 7 in the second stage is 
finally found.

The third reaction stage corresponds to the elimination of tetrachlorocyclohexadienes 2–7 yielding trichlo-
robenzene (TCB) isomers. Two alternative dehydrochlorination paths (or one, if equivalent) are possible start-
ing from every tetrachlorocyclohexadiene (involving the chloride anion leave from each carbon) leading to 
two (or one) trichlorobenzene(s). Very low or negative activation Gibbs free energies (between −3.2 kJ  mol−1 
and +3.8 kJ  mol−1) are found for the third stage involving the elimination of intermediates 2–7 (monotonic energy 
descents were indeed found for both transformations 3 → 1,2,4-TCB and 4 → 1,3,5-TCB). Such results can be 
attributed to the aromaticity emergence as the driving force of the third stage. The high decomposition rate of 
tetrachlorocyclohexadienes allows explaining the composition of Dense Nonaqueous Phase Liquid (DNAPL) 
formed in HCH dumpsites, typically rich in hexachlorocyclohexanes, pentachlorocyclohexenes, and trichlo-
robenzenes, but lacking  tetrachlorocyclohexadienes29.

The preferred reaction pathway involves the sequence β-HCH → 1 → 7 → 1,2,4-TCB where the first stage 
corresponds to the rate-limiting step, as typically found in kinetic  studies5,14. A more detailed description of 
such a preferred path is gathered below.

Preferred reaction path. Calculated reaction intermedia and TSs involved in the most favored pathway 
for the complete elimination reaction of β-HCH is shown in Fig. 4. A preference for the all-equatorial conforma-
tion is found for β-HCH.

The reaction of β-HCH with hydroxide anion leads to a very asynchronous TS for the first reaction stage, 
the C–H bond being essentially broken (1.896 Å), whereas the C–Cl bond is almost intact (1.911 Å). High asyn-
chronicity for syn E2 TSs (in comparison with anti structures) has also been reported in theoretical studies on 
reactions of fluoride anion with  fluoroethane30 and  iodoethane31. The high asynchronicity of a syn 1,2-elimination 
TSs (involving a very advanced proton removal and a very incipient chloride anion leave) allows explaining the 
strong influence of proton acidity on activation barriers. A chair conformation is adopted by the cyclohexane 
ring in the TS for the first elimination stage, in contrast with Hine’s proposal on a boat  form21. On the other 

Figure 3.  1,3- and 1,2-Dichlorocyclohex-2-en-1-yl carbanions. Calculated relative Gibbs free energies (kJ 
 mol−1) are shown in parentheses.
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Figure 4.  Preferred reaction path for the complete β-HCH + hydroxide anion elimination. Three-dimensional 
structures were generated using  CYLView44.
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hand, the water molecule (formed by proton removal by hydroxide anion) is bound to the leaving chloride anion 
through electrostatic interactions (2.815 Å).

Reaction intermediate 1 is obtained in the first reaction stage. Such species can undergo a new reaction with 
hydroxide anion through different paths, though the preferred route yields reaction intermediate 7. Instead, 
intermediate 7 can only undergo a new HCl elimination through two equivalent paths.

Comparison between TSs for β-HCH → 1 and 7 → 1,2,4-TCB transformations shows a more reactant-like 
geometry for the latter (breaking C···H bond length: 1.896 Å vs. 1.275 Å, respectively), in agreement with the 
Hammond postulate because of more negative reaction energy due to the trichlobenzene aromaticity emergence. 
A very incipient water-assistance for the chloride anion (Cl···H distance = 3.037 Å) is also found.

The preferential formation of 1,2,4-TCB as the major reaction product has been usually observed in the 
elimination of β-HCH (as well as other isomers)14 despite the larger stability of the 1,3,5-isomer. Such a result 
was attributed in a study on γ-HCH (lindane) dehydrochlorination to the occurrence of two conformers of rel-
(3R,4S,5S,6R)-1,3,4,5,6-pentachlorocyclohexene (a diastereomer of 1) as the first reaction intermediate, lead-
ing to two different regioisomers of tetrachlorocyclohexa-1,4-diene, which finally afford 1,2,3- and 1,3,5- or, 
preferentially, 1,2,4-TCB32. In contrast, our study on β-HCH elimination allows attributing the overall reaction 
selectivity to the higher acidity of a CH allylic group of the first reaction intermediate 1 which leads to the pref-
erential formation of 7 (inexorably yielding 1,2,4-TCB).

Conclusion
In this theoretical study, the full mechanism on the β-HCH elimination reaction by hydroxide anion has been 
firstly reported. Results allow obtaining an insight into the three-stage reaction mechanism. The first stage 
involves the E2 elimination of β-HCH to yield 1. Although several pathways are possible for the subsequent 1 
elimination in the second stage, the preferred path shows the proton removal from C6 (allylic carbon next to the 
chlorine-bearing vinylic carbon) to yield 7. The subsequent elimination from 7 in the third stage can only yield 
1,2,4-TCB. These results allow explaining experimental data showing that the rate-determining step corresponds 
to the first stage as well as the preferential formation of 1,2,4-TCB. We think that this new detailed insight on the 
reaction mechanism of the β-HCH dehydrochlorination reaction can be helpful in the rational design of the treat-
ment for HCH waste stockpiles (e. g., involving a specific β-HCH treatment after separation by precipitation)33.

Computational methods. Calculations were carried out by using the Gaussian 09 package (version 
A.02)34. The activation barrier for the first stage (rate-controlling step) was studied by using Hartree-Fock35, 
 BLYP36,37,  B3LYP36–38, and M06-2X39 theoretical levels with the 6-311++G(d,p) basis set for all atoms through 
gas-phase as well as IEFPCM and CPCM (both involving water as an implicit solvent) media models. Instead, 
the full reaction mechanism (including all plausible conformations) was studied by means of the M06-2X func-
tional since M06-2X/6-311++G(d,p) calculations had been successfully applied to some related studies, such as 
halogenated  cyclohexanes40, cyclohexane  puckering41 and E2 elimination (both anti and syn)  reaction42. Cal-
culations were studied through CPCM media model. All energy minima were identified by the lack of imagi-
nary analytical frequencies, whereas all TSs were characterized by the occurrence of one imaginary frequency 
as well as Intrinsic Reaction Coordinate calculations linking the structures with the expected energy minima. 
1,3-Dichlorocyclohex-2-en-1-yl anion was studied by means of Natural Bond Orbital (NBO)  Analysis43 as 
implemented in Gaussian09. Hard data are gathered in the Electronic Supplementary Information.
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