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Abstract: In this work, two thiourea ligands bearing a phosphine group in one arm and in the
other a phenyl group (T2) or 3,5-di-CF3 substituted phenyl ring (T1) have been prepared and their
coordination to Au and Ag has been studied. A different behavior is observed for gold complexes,
a linear geometry with coordination only to the phosphorus atom or an equilibrium between the
linear and three-coordinated species is present, whereas for silver complexes the coordination of
the ligand as PˆS chelate is found. The thiourea ligands and their complexes were explored against
different cancer cell lines (HeLa, A549, and Jurkat). The thiourea ligands do not exhibit relevant
cytotoxicity in the tested cell lines and the coordination of a metal triggers excellent cytotoxic
values in all cases. In general, data showed that gold complexes are more cytotoxic than the silver
compounds with T1, in particular the complexes [AuT1(PPh3)]OTf, the bis(thiourea) [Au(T1)2]OTf
and the gold-thiolate species [Au(SR)T1]. In contrast, with T2 better results are obtained with silver
species [AgT1(PPh3)]OTf and the [Ag(T1)2]OTf. The role played by the ancillary ligand bound to the
metal is important since it strongly affects the cytotoxic activity, being the bis(thiourea) complex the
most active species. This study demonstrates that metal complexes derived from thiourea can be
biologically active and these compounds are promising leads for further development as potential
anticancer agents.
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1. Introduction

Cancer is one of the leading causes of death in the world [1]. Due to the continued
necessity to combat this mortal illness, the number of research groups that has focused
their studies on this area is very wide. Antitumor compounds that show cytotoxicity
and genotoxicity in these treatments can also alter healthy cells causing very important
side effects [2]. Consequently, these undesired effects can limit the effectiveness of the
treatments. For this reason, the development of selective antitumor agents has become a
great challenge in last decades.

Metal-based drugs have been widely used for chemotherapeutic treatments in certain
types of cancer. For instance, cisplatin and other Pt derivatives have been clinically used
in several cancer types [3–5]. However, recently, the interest in metal complexes not
containing Pt as a metal center has stimulated the possibility of developing new anticancer
agents with new modes of action [6–9]. For example, ruthenium complexes are already
being studied and some of them are in clinical trials [10,11].
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In this field, one of the best alternatives has been the design and preparation of ac-
tive gold species, which have gathered increasing attention due to their strong inhibitory
growth effect in tumor cells [12–19]. In addition, gold complexes exert their antitumor prop-
erties through different targets to those of cisplatin, and thiol containing enzymes mainly in
mitochondria, especially thioredoxin reductase and others as for example proteasome, glu-
tathione reductase, or cyclooxygenases, are the main targets of gold compounds [14,16,20].
Our group has a great and long experience in this appealing field of research [21–27].

In this context, numerous gold complexes have been prepared with a wide range of
ligands with antitumor activity and some studies show that the gold centers and their
ligands are important for the transport of the metal atom to the biological target, thus
avoiding collateral effects. For this reason, the use of biologically active ligands is an
interesting and challenging task to be developed [28–30].

The stability of gold complexes in the biological environment is an important property
to take into account in the development of new gold-based drugs. For this reason, ligands
with biological interest have been chosen to achieve an effective interaction with gold
atom. Hence, thiolate [31,32], dithiocarbamate [33,34], phosphine [35,36], or N-heterocyclic
carbene [20,37–40] ligands, among others, have been at the center of study in the last two
decades, showing good biological results (Figure 1).
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On the other hand, Ag(I) complexes have also been widely used as antimicrobial [41]
and anti-inflammatory [42] agents and have also received special attention for their antitu-
mor activity [26,43–47]. An important advantage of silver compounds as anticancer drugs
is the low toxicity exhibited by their complexes [48]. The mechanism of action for which
silver compounds exert their antiproliferative effects is probably the interaction with DNA
and by binding to thiol containing proteins, thus combining to some extent the mode of
action of platinum and gold complexes.

Therefore, the design and synthesis of new Au and Ag species can give access to a
class of complexes with interesting biological and pharmacological properties which are
different from those of cisplatin derivatives, becoming an interesting alternative in the
research of bioinorganic and bioorganometallic medical chemistry.

Moreover, among the antitumor compounds discovered in recent years thiourea
derivatives have exhibited potent anticancer properties [49–57]. These ligands, due to the
presence of hydrogen bonding NH moieties, can favor the formation of such bonds, thus
increasing their solubility in an aqueous medium and allowing a better cellular uptake.
The great versatility of thioureas is noteworthy, since some of their derivatives have proven
to be agents with a great diversity of biological properties, ranging from bactericidal to
herbicidal or insecticides [58–63].

In 2010, Che and co-workers pioneered the use of thiourea-group 11 metal complexes
with good cytotoxic activity and excellent TrxR inhibition (Figure 2) [64]. In this work
the authors concluded that the metal complex considerably improved the results given
by thiourea ligand alone. Hence, by varying the thiourea ligands, the resulting metal
complexes can lead to a novel alternative in drug development. In particular, it has been
demonstrated that the Au(I)–thiourea complex I confers specific tight-binding inhibition of
TrxR with a potency among the highest reported and exhibits effective suppression of the
cellular reductase activity. By variation of the thiourea ligand, metal-thiourea complexes
have the prospect to be a new class of metal-based drugs leads.
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After this pioneering work, scarce transition metal complexes bearing thiourea derived
ligands have been reported and evaluated as potential anticancer drugs. In this context
and more recently, only Kollipara and co-workers disclosed a work based on neutral
and cationic half-sandwich arene d6 metal complexes (Ru, Rh, Ir) containing pyridyl and
pyrimidyl thiourea ligands with interesting bonding modes and their cytotoxic activity
against different cancer cells [65].

Hence, in this manuscript, we report the study concerning a synergistic effect between
metals, such as Au and Ag, and thiourea ligands. To the best of our knowledge, this work
represents one of the scarce examples centered on thiourea-metal complexes and their
antitumor activity.

2. Results and Discussion
2.1. Synthesis of Thioureas T1 and T2 and Metal Complexes C1a–e

Initially, the synthesis of model thioureas T1 and T2 was carried out (Scheme 1). The
formation of T1 and T2 was performed by reaction of the corresponding isothiocyanate
1a,b with 2-(diphenylphosphino)ethylamine (2), in a 1:1 ratio, generating thioureas T1
(80%) and T2 (85%) with very good yields. We hypothesized that the synthesis of these
two thioureas could facilitate their access to the interior of the cell membrane and thus,
their activity could be improved for the metal complexes, especially T1 with two CF3
groups, since it is well-known that that presence of fluorine atoms in the structure would
improve metabolic stability, bioavailability, and protein–ligand interactions, as already
demonstrated in fluorinated drugs [66,67].
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After that, the corresponding metal complexes derived from T1 were prepared. First,
the synthesis of Ag(I) and Au(I) complexes were carried out (Scheme 2). Therefore, com-
plexes C1a and C1b were synthesized in a 1:1 ratio of T1 ligand by reaction with complex
[M(OTf)(PPh3)] (M = Ag, Au), in which the high tendency of silver to higher coordination
geometries gives coordination to both the sulfur and phosphorus atoms and for gold
only coordination to the phosphorus atom is proposed. The reaction of thiourea T1 with
[AuCl(tht)] affords complex C1d, for which substitution of the Cl ligand for a 2,3,4,6-tetra-
O-acetyl-1-thio-β-D-glucopyranose moiety provides the thiolate gold complex with the
sugar fragment, which may enhance the cellular uptake and the selectivity to cancer cells,
as they are overexpressed in cancer cells.
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The structures of the synthesized complexes are disclosed in Scheme 2.
All synthesized compounds were characterized by different spectroscopic techniques.

A relevant signal in this type of compounds is the phosphorus resonance. Interestingly, in
the 31P{1H} NMR spectrum of T1, a singlet was observed at −21.83 ppm that corresponds
to the P atom, with the negative value of the chemical shift showing the presence of a
non-coordinated phosphorus atom. Therefore, when the P atom is coordinated to the metal
atom, its value is shifted towards lower fields. The values of the 31P{1H} NMR spectra for
the ligand and complexes are represented in Table 1.

Table 1. 31P{1H} NMR (ppm) data for T1 and complexes C1.

Compound δ 31P{1H} NMR (ppm)

T1 −21.83 (s)
C1a 12.55 (m) and 5.89–3.41 (m)
C1b 36.60 (m) and 34.52 (m)
C1c 36.22 (s)
C1d 24.56 (s)
C1e 30.80 (s)

It is worth noting the complexity of these metal species in terms of the signals disclosed
in the spectra of 31P{1H} NMR. Usually, in silver phosphine complexes, a dissociation of
the phosphine ligand takes place and, consequently, these species are in equilibrium. This,
together with the presence of two silver isotopes active in NMR, 109Ag and 107Ag, causes
broadening of the signals. For complex C1a there are two inequivalent phosphorus atoms,
and two broad signals, one of them as a doublet assigned to the average coupling to the
silver isotopes. In order to avoid this effect, the NMR was carried out at low temperature
and it is expected that the equivalent phosphorus atoms would give rise to two doublets by
coupling with the two silver isotopes. Unfortunately, although the NMR was carried out
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in CD2Cl2 at −80 ◦C, no resolution of the signals was observed. In this case, we propose
a flat trigonal coordination of silver, with coordination to phosphorus and sulfur atoms
of thiourea.

In the case of complex C1b, the gold center has a higher tendency to be linearly
coordinated but the presence of the sulfur atom nearby could afford the three-coordination.
The 1H and the 31P{1H} NMR spectra showed resonances compatible with the coordination
of the gold center to the phosphorus atom, with two slightly broad resonances in the
phosphorus spectrum. However, the low temperature spectrum presents equilibrium
between the linear C1b and the three-coordinated species C1b’ (Scheme 3), both as an
AB system for the inequivalent phosphorus.
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Scheme 3. Equilibrium of complex C1b in solution.

Complex C1c with the gold center coordinated to two thiourea-phoshine ligands
showed a sharp singlet in the 31P{1H} NMR spectrum even at low temperature, for which
linear coordination to the phosphorus atoms is proposed. However, we cannot rule
out the possibility of a pseudo-tetracoordination around the metal center. Unfortunately,
all the attempts to grow crystals in order to confirm the structure by X-ray diffraction
were unsuccessful.

Complex C1d is formed by addition of [AuCl(tht)] to the thiourea and also showed a
singlet resonance in the 31P{1H} NMR at lower field corroborating the coordination of the
gold center to the phosphorus atom. Substitution of the chloride ligand for a thiolate can
be achieved by treatment of C1d with 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose in
the presence of a mild base, K2CO3.

2.2. Synthesis of Complexes C2a–c

The synthesis of new complexes C2a–c was carried out in the same way as for the case
of T1, in order to compare the cytotoxic effect of both thioureas (Scheme 4).
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All complexes were characterized by NMR techniques. As mentioned in the previous
example, the 31P{1H} NMR spectra provide relevant information in the synthesis of these
complexes. In this way, the presence of a signal at −21.33 ppm that corresponds to the P of
thiourea T2 is observed, and for the synthesized complexes, signals are shifted towards
down field (see the characterization part). Similar spectra to those of thiourea T1 were
found for all metal complexes (see Supporting Information).

Moreover, and interestingly, we were able to obtain the crystal structure of the silver
complex C2c with two thiourea ligands and the proposed structure was confirmed by X-ray
diffraction (Figure 3).

Molecules 2021, 26, x FOR PEER REVIEW 6 of 16 
 

 

 
Scheme 4. Synthesis of metal complexes C2a–c derived from T2. 

Moreover, and interestingly, we were able to obtain the crystal structure of the silver 
complex C2c with two thiourea ligands and the proposed structure was confirmed by X-
ray diffraction (Figure 3). 

 
Figure 3. Crystal structure of the cation of complex C2c. Hydrogen atoms with the exception of 
thiourea NH have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ag1-P1 
2.4198(11), Ag1-P2 2.4270(13), Ag1-S1 2.6725(8), Ag1-S2 2.7028(9), S1-C41 1.694(2), S2-C42 1.714(2); 
P1-Ag1-P2 137.81(3), P1-Ag1-S1 101.74(3), P2-Ag1-S1 105.08(3), P1-Ag1-S2 101.87(4), P2-Ag1-S2 
102.96(3), S1-Ag1-S2 103.18(3). 

The crystal structure corroborates that the silver atom is coordinated by two thiourea 
T2 ligands in a chelated form, through the sulfur and phosphorus atoms. The silver center 
has a somewhat distorted tetrahedral geometry, mainly due to the chelation angles of the 
ligand, P1-Ag1-S1 101.74(3)° and P2-Ag1-S2 102.96(3)°, which are slightly lower than the 
ideal of 109°. The Ag-P distances are Ag1-P1 2.4198(11) and Ag1-P2 2.4270(13) Å, which 
are in agreement for this type of bonds in tetra-coordinated silver complexes [68]. The Ag-
S distances of Ag1-S1 2.6725(8) and Ag1-S2 2.7028(9) Å are longer than those found in 

Figure 3. Crystal structure of the cation of complex C2c. Hydrogen atoms with the excep-
tion of thiourea NH have been omitted for clarity. Selected bond lengths (Å) and angles (◦):
Ag1-P1 2.4198(11), Ag1-P2 2.4270(13), Ag1-S1 2.6725(8), Ag1-S2 2.7028(9), S1-C41 1.694(2),
S2-C42 1.714(2); P1-Ag1-P2 137.81(3), P1-Ag1-S1 101.74(3), P2-Ag1-S1 105.08(3), P1-Ag1-S2 101.87(4),
P2-Ag1-S2 102.96(3), S1-Ag1-S2 103.18(3).

The crystal structure corroborates that the silver atom is coordinated by two thiourea
T2 ligands in a chelated form, through the sulfur and phosphorus atoms. The silver center
has a somewhat distorted tetrahedral geometry, mainly due to the chelation angles of the
ligand, P1-Ag1-S1 101.74(3)◦ and P2-Ag1-S2 102.96(3)◦, which are slightly lower than the
ideal of 109◦. The Ag-P distances are Ag1-P1 2.4198(11) and Ag1-P2 2.4270(13) Å, which are
in agreement for this type of bonds in tetra-coordinated silver complexes [68]. The Ag-S
distances of Ag1-S1 2.6725(8) and Ag1-S2 2.7028(9) Å are longer than those found in other
complexes, and consequently there is a weaker bond interaction with these atoms. The
triflate counteranion is disordered over two positions and the oxygen atoms form hydrogen
bonds with the NH groups of the thiourea.

2.3. Biological Study

After the synthesis of the ligands T1 and T2 and the resulting metal complexes C1 and
C2 above described, the cytotoxicity study (IC50) was carried using three cancer cell lines:
HeLa (human cervical carcinoma), A549 (human lung carcinoma) and Jurkat (leukemia)
(Tables 2 and 3).
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Table 2. Antitumor activity of complexes C1a–e expressed in IC50 values compared with that of thiourea T1 as reference.

Entry Compound
IC50 (µM) Values for Cell Lines a

HeLa A549 Jurkat

1 T1 >25 13.89 ± 4.0 >25
2 [T1-Ag-PPh3]OTf (C1a) 10.17 ± 1.74 7.06 ± 1.95 3.89 ± 0.19
3 [T1-Au-PPh3]OTf (C1c) 2.09 ± 0.17 >25 0.62 ± 0.03
4 [T1-Au-T1]OTf (C1b) 0.25 ± 0.12 >25 0.70 ± 0.06
5 [T1-Au-Cl] (C1d) >25 >25 19.80 ± 0.46
6 [T1-Au-SR] (C1e) 4.52 ± 0.23 5.98 ± 1.18 2.57 ± 0.15
7 Cisplatin 55 ± 9 b 114.2 ± 9.1 c 10.8 ± 1.2 c

a Each value represents the mean ± standard deviation from three independent experiments. b Cisplatin dissolved in DMSO [26]. c Cisplatin
dissolved in H2O [69].

Table 3. Antitumor activity of complexes C2a–c expressed in IC50 values compared with that of thiourea T2 as reference.

Entry Compound
IC50 (µM) Values for Cell Lines a

HeLa A549 Jurkat

1 T2 8.16 ± 0.15 >25 14.20 ± 0.72
2 [T2-Ag-PPh3]OTf (C2a) 0.87 ± 0.06 0.79 ± 0.04 0.64 ± 0.04
3 [T2-Au-PPh3]OTf (C2b) 1.48 ± 0.15 4.91 ± 0.23 5.15 ± 0.32
4 [T2-Ag-T2]OTf (C2c) 1.52 ± 0.09 0.58 ± 0.02 1.53 ± 0.31

a Each value represents the mean ± standard deviation from three independent experiments.

Before starting the cytotoxicity measurements, we tested the stability of all complexes
in DMSO, as part of the medium used in the in vitro assays. Thus, we studied the stability
of the complexes C1 and C2 in DMSO by 1H NMR, verifying that they are stable after one
week. The cytotoxicity study performed by the MTT assay with the family of compounds
derived from thiourea T1 and the calculated IC50 values for the complexes after 24 h of
incubation are shown in Table 2. The values for the cisplatin after 24 h, although dissolved
in H2O, for A549 and Jurkat and in DMSO for HeLa, have been included for comparison
in Table 1 and this supports that the silver and gold complexes with both thioureas are
considerably more active.

From these results, it can be concluded that the ligand T1 showed only a moderate
cytotoxic activity in the A549 cells, whereas higher values were found for the other cell
lines. Comparing all the cell lines, the complexes were more sensitive to Jurkat cells, for
which all the complexes showed very good activity, except complex C1d. Interestingly,
a certain selectivity of some of the compounds towards HeLa and Jurkat was observed,
and this is because the A549 cancer cell line is more resistant. Comparing the gold and
silver complexes, most of them showed good activity but the results depend upon the
ancillary ligand. Coordination of two thiourea ligands promoted higher cytotoxicity in the
gold derivative against HeLa and Jurkat cell lines, while higher cytotoxicity for the same
complex is found against A549 cells. For gold complexes, the substitution of the chloride
ligand for a thiosugar drastically enhanced the anticancer activity for the three cell lines.

These values support our initial hypothesis of work, since this demonstrates that the
cytotoxic activity of thiourea T1 is modulated and improved with the presence of a metal,
achieving better results with Au(I) complexes.

After this first promising study, the effects of thiourea T2 and its derivatives were also
analyzed (Table 3).

The results showed a better effect for the thiourea T2 on the cytotoxicity in the cell lines
studied in contrast with the moderate cytotoxicity showed by T1 in general. Interestingly,
all synthesized metal complexes C2a-c improved these results.

In some cases, excellent and better results have been obtained with this family of metal
complexes in comparison with those derived from T1 in Table 2. Analyzing independently
each cancer line, we have achieved the best results of cytotoxicity in HeLa, reaching values
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of <1 µM using Ag(I) complex C2a (entry 2). Furthermore, the higher value was only
around 5 µM with Au(I)-triphenylphosphine complex C2b (entry 3) against Jurkat cell line.
Regarding the A549 cell line, excellent results were also achieved with Ag(I) complexes
C2a and C2c, 0.79 µM (entry 2) and 0.58 µM (entry 4), respectively.

Finally, with the Jurkat cells, although the complexes are less active than in the other
two cell lines, values of 0.64 µM were achieved for the silver complex C2a (entry 2).
Nevertheless, in all cases very encouraging results were found.

In general, the best results were observed for T2 and its derivatives. This may be
due to the fact that the aromatic ring can favor the stabilization of thiourea, allowing its
complexes to cross the membrane more easily, achieving lower values of cytotoxicity.

These preliminary results are of high importance because a new field of investigation
with thiourea ligands can be opened in which their activity is improved with the formation
of Au and Ag complexes. Although these results are still at a very early stage in a long
process, it is encouraging to continue in the development of biologically active molecules
to combat diseases such as cancer and open the door to further investigations ongoing in
our lab. In particular, interaction with key enzymes such as thioredoxin reductase, type of
cell death, cellular uptake by ICP-mass, toxicity, etc.

3. Materials and Methods

Purification of reaction products was carried out by column chromatography using
silical-gel (0.063–0.200 mm). Analytical thin layer chromatography was performed on
0.25 mm silical gel 60-F plates. 1H NMR spectra were recorded at room temperature on
a BRUKER AVANCE 400 (Bruker, Billerica, MA, USA) spectrometer (1H, 400 MHz) or
on a BRUKER AVANCE II 300 (Bruker, Billerica, MA, USA) spectrometer (1H, 300 MHz),
with chemical shifts (ppm) reported relative to the solvent peaks of the deuterated solvent.
CD2Cl2 and DMSO-d6 were used as the deuterated solvents. Chemical shifts were reported
in the δ scale relative to residual CH2Cl2 (5.32 ppm) and DMSO (2.50 ppm) for 1H-NMR and
to the central line of CD2Cl2 (54 ppm) and DMSO-d6 (39.43 ppm) for 13C-APT NMR. Mass
spectra were recorded on a BRUKER ESQUIRE 3000 PLUS (Bruker, Boston, MA, USA),
with the electrospray (ESI) technique.

All reactions were performed under air atmosphere and solvents and reagents were
used as received without further purification or drying. All reagents were commer-
cially available.

3.1. Synthesis of Thiourea T1

To a solution of CH2Cl2 (5 mL), 2-(diphenylphosphino)ethylamine (1.8 mmol, 413.2 mg)
and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (2 mmol, 310 µL) were added. The reac-
tion was carried out at room temperature during 18 h. After that, the solvent was partially
evaporated, and the product was purified by precipitating with hexane, filtered and suc-
cessive washes with more hexane (3 × 5 mL). The final thiourea T1 was obtained as a
white solid in 80% yield [70]. 1H NMR (300 MHz, CD2Cl2) δ (ppm): 7.89 (br s, 1H, NHb),
7.81 (s, 2H, H-C5), 7.72 (s, 1H, H-C7), 7.51–7.29 (m, 10H, H-C10–12), 6.46 (br s, 1H, NHa),
3.79 (td, J = 12.5, 6.8 Hz, 2H, H-C2), 2.47 (t, J = 7.0 Hz, 2H, H-C1). 13C-APT NMR (101 MHz,
CD2Cl2) δ (ppm): 181.1 (s, 1C, C3), 139.7 (s, 1C, C4), 137.9 (d, J = 11.4 Hz, 2C, C9), 133.2 (d,
J = 19.0 Hz, 4C, C10), 132.9 (q, J = 32.0 Hz, 2C, C6), 129.6 (s, 2C, C12), 129.2 (d, J = 7.0 Hz, 4C,
C11), 124.6 (m, 2C, C5), 123.5 (q, J = 273.7 Hz, 2C, C8), 119.8 (m, 1C, C7), 42.9 (d, J = 18.8 Hz,
1C, C2), 28.1 (d, J = 13.0 Hz, 1C, C1). 31P{1H} NMR (162 MHz, CD2Cl2) δ (ppm): −21.83 (s,
1P, P-Ph2). 19F NMR (377 MHz, CD2Cl2) δ (ppm): −63.25 (F-CF3). HRMS (ESI+) calculated
for C23H19F6N2NaPS 523.0803, found 523.0803 [M + Na].

3.2. Synthesis of Metal Complexes C1a–g
3.2.1. Synthesis of Complex [Ag(PPh3)(T1)]OTf (C1a)

To a solution of T1 (0.052 mmol, 26.0 mg) in CH2Cl2 (8 mL), [AgOTfPPh3] (0.052 mmol,
26.9 mg) was added. The reaction was carried out at room temperature during 30 min cov-
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ered from the light. After the indicated reaction time, the solvent was partially evaporated,
precipitated with hexane, and filtered to give a white solid in 88% yield. 1H NMR (400 MHz,
CD2Cl2) δ (ppm): 9.37 (br s, 1H, NHb), 8.54 (s, 1H, NHa), 7.77 (s, 2H, H-C5), 7.65 (s, 1H,
H-C7), 7.59–7.06 (m, 25H, H-C10–12, H-C14–16), 4.51–4.19 (m, 2H, H-C2), 2.88–2.60 (m, 2H,
H-C1). 13C-APT NMR (101 MHz, CD2Cl2) δ (ppm): 181.1 (s, 1C, C3), 140.5 (s, 1C, C4),
134.2 (d, J = 16.0 Hz, 6C, C14), 133.1 (d, J = 16.0 Hz, 4C, C10), 131.9 (q, J = 33.0 Hz, 2C, C6),
131.7 (s, 3C, C13), 131.5 (s, 3C, C16), 131.4 (d, J = 7.0 Hz, 2C, C12), 129.9 (m, 4C, C11), 129.7 (d,
J = 10 Hz, 6C, C15), 125.3 (m, 2C, C5), 123.7 (q, J = 273.7 Hz, 2C, C8), 120.9 (q, J = 315.2 Hz,
1C, OTf), 119.4 (m, 1C, C7), 43.2 (m, 1C, C2), 29.2 (s, 1C, C1). 31P{1H} NMR (162, CD2Cl2)
δ (ppm): 12.55 (Ph3P-Ag), 5.89–3.41 (Ph2P-Ag). 19F NMR (377 MHz, CD2Cl2) δ (ppm):
−63.16 (F-CF3), −79.00 (F-OTf). HRMS (ESI+) calculated for C41H34AgF6N2P2S 869.0868,
found 869.0868 [M − OTf].

3.2.2. Synthesis of Complex [Au(PPh3)(T1)]OTf (C1b)

To a solution of CH2Cl2 (5 mL), [AuCl(PPh3)] (0.1 mmol, 49.5 mg) and Ag(OTf)
(0.12 mmol, 30.8 mg) were added. The reaction was carried out at room temperature
during 1 h covered from the light. The generated AgCl was filtered by diatomaceous earth
and washed with CH2Cl2. The white solid [Au(PPh3)](OTf) was obtained after evaporation
of the solvent under vacuum. To the resulting solution in CH2Cl2 (5 mL), T1 (0.1 mmol,
50.0 mg) was added. The solution was reacting during 1 h and, after that, the solvent was
partially evaporated, precipitated with hexane, and filtered to give a white solid in 70%
yield. 1H NMR (400 MHz, CD2Cl2) δ (ppm): 9.13 (br s, 1H, NHb), 8.30 (br s, 1H, NHa),
7.83 (s, 2H, H-C5), 7.78–7.63 (m, 5H, H-C7, 4H-Ar), 7.61–7.28 (m, 21H, H-Ar), 4.33–4.14 (m,
2H, H-C2), 3.10–2.95 (m, 2H, H-C1). 13C-APT NMR (101 MHz, CD2Cl2) δ (ppm): 181.3 (s,
1C, C3), 141.2 (s, 1C, C4), 134.4 (d, J = 14.4 Hz, 6C, C14), 133.5 (d, J = 12.8 Hz, 4C, C10),
132.2 (d, J = 20.9 Hz, 2C, C12), 132.2 (s, 3C, C16), 131.9 (q, J = 33.3 Hz, 2C, C6), 131.3 (m, 3C,
C13), 130.6 (m, 2C, C9), 129.9 (d, J = 13.0 Hz, 4C, C11), 129.8 (d, J = 10.9 Hz, 6C, C15), 123.9 (q,
J = 273.7 Hz, 2C, C8), 123.8 (m, 2C, C5), 121.2 (q, J = 321.2 Hz, 1C, OTf), 118.0 (m, 1C, C7),
41.2 (s, 1C, C2), 29.6 (d, J = 29.1 Hz, 1C, C1). 31P{1H} NMR (162 MHz, CD2Cl2) δ (ppm):
36.60 (P-PPh3), 34.52 (P-PPh2). 19F-RMN (373 MHz, CD2Cl2) δ (ppm): −63.13 (F-CF3),
−78.96 (F-OTf). HRMS (ESI+) calculated for C41H34AuF6N2P2S 959.1482, found 959.1484
[M − OTf].

3.2.3. Synthesis of Complex [Au(T1)2]OTf (C1c)

To a solution of T1 (0.1 mmol, 50.2 mg) in CH2Cl2 (8 mL), [Au(tht)2](OTf) (0.05 mmol,
26.1 mg) was added after generation in situ. For the preparation of this species, [Ag(tht)OTf]
(0.055 mmol, 19 mg) reacts with [AuCl(tht)] (0.055 mmol, 17.6 mg) in a solution with CH2Cl2
(8 mL) for 2 h covered from the light. The generated AgCl was filtered by diatomaceous
earth and washed with CH2Cl2. The white solid [Au(tht)2](OTf) was obtained after evap-
oration of the solvent under vacuum. Then, T1 was added to this solution and it was
allowed to react during 45 min at room temperature. After the indicated reaction time,
the solvent was partially evaporated, precipitated with hexane, and filtered to give a
white solid in 98% yield. 1H NMR (400 MHz, CD2Cl2) δ (ppm): 8.72 (br s, 1H, NHb),
7.85 (s, 2H, H-C5), 7.79–7.66 (m, 5H, H-Ar), 7.56 (s, 1H, H-C7), 7.52–7.40 (m, 6H, NHa,
H-Ar), 4.30–4.07 (m, 2H, H-C2), 3.15–3.01 (m, 2H, H-C1). 13C-APT NMR (75 MHz, CD2Cl2)
δ (ppm): 181.5 (s, 2C, C3), 140.8 (s, 2C, C4), 133.7 (m, 8C, C10), 132.6 (m, 4C, C12), 131.9 (q,
J = 33.0 Hz, 4C, C6), 130.1 (m, 8C, C11), 129.6 (m, 4C, C9), 123.8 (q, J = 271.5 Hz, 4C, C8),
123.6 (s, 4C, C5), 120.6 (q, 1C, OTf), 118.4 (m, 2C, C7), 41.3 (m, 2C, C2), 28.3 (m, 2C, C1).
31P{1H} NMR (121 MHz, CD2Cl2) δ (ppm): 36.22 (P-Au). 19F NMR (282 MHz, CD2Cl2)
δ (ppm): −63.32 (F-CF3), −78.94 (F-OTf). HRMS (ESI+) calculated for C46H38AuF12N4P2S2
1197.1482, found 1197.1450 [M − OTf].
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3.2.4. Synthesis of Complex [Au(Cl)(T1)] (C1d)

To a solution of T1 (0.12 mmol, 71.4 mg) in CH2Cl2 (10 mL), [AuCl(tht)] (0.119 mmol,
38.1 mg) was added. The reaction was carried out at room temperature during 30 min.
After the indicated reaction time, the solvent was partially evaporated, precipitated with
hexane, and filtered to give a white solid in 97% yield. 1H NMR (400 MHz, CD2Cl2) δ (ppm):
10.57 (br s, 1H, NHb), 8.46 (br s, 1H, NHa), 7.91 (s, 2H, H-C5), 7.78–7.61 (m, 5H, H-C7,
H-C10–12), 7.58–7.38 (m, 6H, H-C10–12), 4.13–3.93 (m, 2H, H-C2), 3.19–2.96 (m, 2H, H-C1).
13C-APT NMR (101 MHz, CD2Cl2) δ (ppm): 189.5 (s, 1C, C3), 139.7 (s, 1C, C4), 133.9 (d,
J = 13.4 Hz, 4C, C10), 132.7 (d, J = 2.1 Hz, 2C, C12), 132.4 (q, J = 33.0 Hz, 2C, C6), 130.0 (d,
J = 11.7 Hz, 4C, C11), 128.9 (d, J = 60.3 Hz, 2C, C9), 126.2 (s, 2C, C5), 124.6 (s, 1C, C7), 123.5 (q,
J = 273.7 Hz, 2C, C8), 41.8 (d, J = 6.6 Hz, 1C, C2), 30.3 (d, 1C, C1). 31P{1H} NMR (162 MHz,
CD2Cl2) δ (ppm): 24.56 (s, P-Ph2). 19F NMR (373 MHz, CD2Cl2) δ (ppm): −63.15 (F-CF3).
HRMS (ESI+) calculated for C23H19AuF6N2PS 697.0571, found 697.0571 [M − Cl].

3.2.5. Synthesis of Complex [Au(2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose)(T1)] (C1e)

To a solution of complex C1d (0.075 mmol, 56.1 mg) in CH2Cl2 (10 mL), 2,3,4,6-
tetra-O-acetyl-1-thio-β-D-glucopyranose (0.075 mmol, 27.3 mg) and an excess of K2CO3
(1.5 equivalents) were added. The reaction was carried out at room temperature during
5 h. After the indicated reaction time, the base was filtered, and the solvent was partially
evaporated, precipitated with hexane, and filtered again, to give a white solid in 98% yield.
1H NMR (400 MHz, CD2Cl2) δ (ppm): 8.79 (s, 1H, NHb), 8.17–7.15 (m, 14H, NHa, H-Ph),
5.27–4.88 (m, 4H, H-C13–16), 4.36–4.051 (m, 3H, H-C2, H-C17), 4.00–3.61 (m, 2H, H-C1),
3.43–3.19 (m, 1H, H-C18), 3.06–2.80 (m, 1H, H-C18), 2.26–1.73 (m, 12H, H-C20, H-C22, H-C24,
H-C26). 13C-APT NMR (101 MHz, CD2Cl2) δ (ppm): 181.5 (s, 1C, C3), 171.0, 170.7, 170.2,
169.9 (s, 4C, C19, C21, C23, C25), 133.9 (dd, J = 3.0 Hz, 13.0 Hz, 4C, C10), 132.4 (s, 2C, C5),
131.8 (q, J = 33.3 Hz, 2C, C6), 130.7 (d, J = 7.0 Hz, 2C, C9), 129.9 (dd, J = 3.3 Hz, 11.3 Hz, 4C,
C11), 123.95 (q, J = 274.7 Hz, 2C, C8), 123.7 (m, 4C, C12), 118.1 (m, 1C, C7), 84.3 (s, 1C, C13),
79.3 (s, 1C, C14), 76.6 (s, 1C, C15), 74.9 (s, 1C, C17), 69.0 (s, 1C, C17), 62.9 (s, 1C, C18), 41.0 (s,
1C, C2), 28.0 (d, 1C, C1), 21.0 (s, 4C, C20, C22, C24, C26). 31P{1H} RMN (162 MHz, CD2Cl2)
δ (ppm): 30.80 (s, 1P, Au-P). 19F NMR (373 MHz, CD2Cl2) δ (ppm): −63.23 (F-CF3). HRMS
(ESI+) calculated for C37H38AuF6N2O9PS2Na 1083.1218, found 1083.1196 [M + Na].

3.3. Synthesis of Thiourea T2

To a solution of CH2Cl2 (5 mL) and 2-(diphenylphosphino)ethylamine (1.8 mmol,
418.2 mg), phenyl isothiocyanate (2.0 mmol, 244 µL) was added. The reaction was carried
out at room temperature during 18 h. After that, the solvent was evaporated and the
product was purified by column chromatography (SiO2, hexane:AcOEt, 7:3), obtaining the
final product T2 as a white solid in 85% yield [71]. 1H NMR (400 MHz, CD2Cl2) δ (ppm):
7.66 (br s, 1H, NHb), 7.51–7.08 (m, 15H, H-C5–7, H-C9–11), 6.29 (br s, 1H, NHa), 3.82–3.66 (m,
2H, H-C2), 2.47–2.37 (m, 2H, H-C1). 13C-APT NMR (101 MHz, CD2Cl2) δ (ppm): 181.1 (s,
1C, C3), 138.3 (d, J = 12.2 Hz, 2C, C8), 136.8 (s, 1C, C4), 133.2 (d, J = 19.1 Hz, 4C, C9), 130.6 (s,
2C, C11), 129.4 (s, 2C, C6), 129.1 (d, J = 6.9 Hz, 4C, C10), 127.5 (s, 1C, C7), 125.6 (s, 2C, C5),
43.1 (d, J = 21.1 Hz, 1C, C2), 28.4 (d, J = 13.4 Hz, 1C, C1). 31P{1H} NMR (162 MHz, CD2Cl2)
δ (ppm): −21.33 (P-PPh2). HRMS (ESI+) calculated for C21H21N2NaPS 387.1055, found
387.1055 [M + Na].

3.4. Synthesis of Metal Complexes C2a–e
3.4.1. Synthesis of Complex [Ag(PPh3)(T2)]OTf (C2a)

To a solution of T2 (0.05 mmol, 18.2 mg) in CH2Cl2 (8 mL), [Ag(OTf)(PPh3)] (0.05 mmol,
25.9 mg) was added. The reaction was stirring at room temperature during 1 h. After the
indicated reaction time, the solvent was partially evaporated, precipitated with hexane,
and filtered to give a white solid in 84% yield. 1H NMR (400 MHz, CD2Cl2): 8.69 (s, 1H,
NHb), 7.65–7.11 (m, 30H, H-Ar), 7.01 (br s, 1H, NHa), 4.48–4.13 (m, 2H, H-C2), 2.83–2.56 (m,
2H, H-C1). 1H NMR (300 MHz, CD2Cl2) δ (ppm): 8.69 (br s, 1H, NHb), 7.65–7.01 (m, 30H,
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H-Ar), 7.01 (br s, 1H, NHa), 4.48–4.13 (m, 2H, H-C2), 2.83–2.56 (m, 2H, H-C1). 13C-APT
NMR (101 MHz, CD2Cl2) δ (ppm): 180.4 (s, 1C, C3), 134.2 (d, J = 16.1 Hz, 6C, C13), 133.2 (d,
J = 16.2 Hz, 4C, C9), 132.1 (d, J = 28.0 Hz, 3C, C12), 131.2 (d, J = 8.9 Hz, 4C, C10), 129.8 (s,
2C, C6), 129.7 (s, 6C, C14), 129.6 (m, 3C, C15), 129.5 (s, 2C, C11), 127.0 (m, 1C, C7), 125.8 (m,
2C, C5), 121.1 (q, J = 319.8 Hz, 1C, OTf), 43.3 (m, 1C, C2), 29.1 (s, 1C, C1). 31P{1H} NMR
(162 MHz, CD2Cl2) δ (ppm): 12.21 (P-PPh3), 1.59 (P-PPh2). 19F NMR (373 MHz, CD2Cl2)
δ (ppm): −78.95 (F-OTf). HRMS (ESI+) calculated for C39H36AgN2P2S 735.1121, found
735.1096 [M − OTf].

3.4.2. Synthesis of Complex [Au(PPh3)(T2)]OTf (C2b)

To a solution of [Au(OTf)(PPh3)] (0.05 mmol, 30.4 mg), prepared in situ as above
mentioned, in CH2Cl2 (5 mL), T2 (0.05 mmol, 18.2 mg) was added. The reaction was
carried out at room temperature during 2.5 h. After the indicated reaction time, the solid
was partially evaporated, precipitated with hexane, and filtered to give a white solid in
64% yield. 1H NMR (400 MHz, CD2Cl2) δ (ppm): 8.44 (br s, 1H, NHb), 7.93–6.91 (m, 31H,
NHa, H-Ar), 4.38–4.12 (m, 2H, H-C2), 3.06–2.81 (m, 2H, H-C1). 13C-APT NMR (101 MHz,
CD2Cl2) δ (ppm): 181.1 (s, 1C, C3), 138.3 (s, 1C, C4), 134.5 (d, J = 14.6 Hz, 6C, C13), 133.4 (d,
J = 13.5 Hz, 4C, C9), 132.0 (d, J = 17.1 Hz, 4C, C10), 131.6 (d, J = 9.09 Hz, 3C, C12), 131.1 (d,
J = 5.1 Hz, 2C, C8), 129.9 (s, 2C, C11), 129.7 (d, J = 10.9 Hz, 6C, C14), 129.2 (s, 2C, C6), 126.3 (s,
1C, C7), 125.2 (s, 2C, C5), 121.1 (q, J = 320.2 Hz, 1C, OTf), 41.9 (s, 1C, C2), 29.3 (d, J = 28.1 Hz,
1C, C1). 31P{1H} NMR (162 MHz, CD2Cl2): 36.92 (s, 1P, PPh3) 35.51 (m, 1P, PPh2). 19F NMR
(373 MHz, CD2Cl2) δ (ppm): −78.91 (F-OTf). HRMS (ESI+) calculated for C39H36AuN2P2S
823.1734, found 823.1735 [M − OTf].

3.4.3. Synthesis of Complex [Ag(T2)2]OTf (C2c)

To a solution of T2 (0.10 mmol, 36.4 mg) in CH2Cl2 (8 mL), [Ag(OTf)] (0.05 mmol,
12.8 mg) was added. The reaction was carried out at room temperature during 1.5 h. After
the indicated reaction time, the solid was partially evaporated, precipitated with hexane,
and filtered to give a white solid in 86% yield. 1H NMR (400 MHz, DMSO-d6) δ (ppm):
9.91 (br s, 2H, NHb), 7.92–7.06 (m, 28H, NHa, H-C5–7, H-C9–11), 6.79–6.52 (m, 4H, H-Ar),
4.35–4.04 (m, 4H, H-C2), 2.82–2.61 (m, 4H, H-C1). 13C-APT NMR (101 MHz, DMSO-d6)
δ (ppm): 178.2 (s, 2C, C3), 136.7 (s, 2C, C4), 134.0 (m, 4C, C8), 132.5 (s, 8C, C9), 130.2 (s,
4C, C11), 129.0 (s, 8C, C10), 128.9 (s, 4C, C6), 125.9 (m, 2C, C7), 124.8 (s, 4C, C5), 42.8 (s, 2C,
C2), 27.8 (s, 2C, C1). 31P{1H} NMR (162 MHz, DMSO-d6) δ (ppm): 2.33, 0.00 (Ph2P-Ag).
19F NMR (373 MHz, DMSO-d6) δ (ppm): −77.71 (s, 1F, OTf). HRMS (ESI+) calculated for
C42H42AuN4P2S2 925.1986, found 925.1916 [M − OTf].

3.5. Cytotoxicity Assay

The MTT assay was used to determine cell viability as an indicator of cell sensitivity
to the compounds. Exponentially growing cells were seeded at a density of approximately
104 cells per well (HeLa and A549) or 5 × 105 cells/mL (Jurkat) in 96-well flat-bottomed
microplates and allowed to attach for 24 h before the addition of compounds (HeLa and
A549). The compounds were dissolved in DMSO and added to cells in concentrations
ranging from 0.25 to 100 µM in quadruplicate. Cells were incubated with the tested
compounds for 24 h at 37 ◦C. Then, 10 µL of MTT (5 mg mL−1) were added to each well
and plates were incubated for 2 h at 37 ◦C. Finally, media was eliminated (plates were
centrifuged for 20 min at 2500 rpm in case of Jurkat cell culture) and DMSO (100 µL per
well) was added to dissolve the formazan precipitate. The optical density was measured
at 550 nm using a 96-well multi scanner auto reader (ELISA). The IC50 was calculated by
nonlinear regression analysis using OriginPro software. Each compound was analyzed at
least in three independent experiments.
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3.6. X-ray Diffraction Studies

Crystals were mounted in inert oil on glass fibres and transferred to the cold gas
stream of an Xcalibur Oxford Diffraction diffractometer equipped with a low-temperature
attachment. Data were collected using monochromated MoKα radiation (λ = 0.71073 Å).
Scan type$. Absorption corrections based on multiple scans were applied using spherical
harmonics implemented in SCALE3 ABSPACK scaling algorithm [72]. The structures were
solved by direct methods and refined on F2 using the program SHELXL-2016 [73]. All non-
hydrogen atoms were refined anisotropically. CCDC deposition numbers 2,114,494 (C2c),
contain the supplementary crystallographic data. These data can be obtained free of charge
by The Cambridge Crystallography Data Center.

4. Conclusions

The synthesis of thiourea ligands bearing a phosphine moiety has been carried out
with the purpose to study the coordination modes with Au and Ag metal atoms and check
the suitability of the final complexes as anticancer drugs. The differences among both
metal centers in terms of coordination geometries has allowed the preparation of linear
gold complexes, with the metal only bonded to the phosphorus atom, or trigonal planar
and tetrahedral silver complexes with the ligand coordinated as PˆS chelate. The thiourea
ligands and their complexes were explored by the MTT assay against different cancer cell
lines (HeLa, A549 and Jurkat). The results showed that thiourea ligands do not exhibit
relevant cytotoxicity in the tested cell lines, only a moderate activity was found for the
trifluoromethyl-phenyl substituted thiourea in A549, while somehow activity was obtained
with T2 against HeLa and Jurkat cell lines. Coordination of the metal center triggers
excellent cytotoxic values in most of the cases, also in comparison with previous reported
works, where thiourea-metal complexes were also explored in cancer cell lines [64,65].

In the complexes with thiourea T1, very low IC50 values were found in general for
gold complexes, although the cytotoxic activity depends upon the ancillary ligand bound
to the metal, with bis-thiourea complex affording the most active species. For thiourea T2
all complexes exhibit better cytotoxicity in general.

This study demonstrates that metal complexes derived from thiourea are biologically
active and that they could become a promising research line as a new class of metal-based
drug leads. Although additional studies would be required to identify the mechanisms
of action of these metal complexes, these compounds are promising leads for further
development as potential anti-cancer agents.

Supplementary Materials: The following are available online, Figure S1: 1H, 13C-APT, 31P{1H} and
19F NMR spectra (CD2Cl2) of T1, Figure S2: 1H, 13C-APT, 31P{1H} and 19F NMR spectra (CD2Cl2)
for complex C1a, Figure S3: 1H NMR spectrum (DMSO-d6) for complex C1a, Figure S4: Spectra of
1H, 13C-APT, 31P{1H} and 19F NMR spectra (CD2Cl2) for complex C1b, Figure S5: Spectra of 1H,
13C-APT, 31P{1H} and 19F NMR spectra (CD2Cl2) for complex C1c, Figure S6: 1H, 13C-APT, 31P{1H}
and 19F NMR spectra (CD2Cl2) for complex C1d, Figure S7: 1H, 13C-APT, 31P{1H} and 19F NMR
spectra (CD2Cl2) of complex C1e, Figure S8: 1H, 13C-APT and 31P{1H} NMR spectra (CD2Cl2) of
T2, Figure S9: 1H, 13C-APT, 31P{1H} and 19F NMR spectra (CD2Cl2) for complex C2a, Figure S10:
1H NMR spectrum (DMSO-d6) for complex C2a, Figure S11: 1H, 13C-APT, 31P{1H} and 19F NMR
spectra (CD2Cl2) for complex C2b, Figure S12: 1H NMR spectrum (DMSO-d6) for complex C2b,
Figure S13: 1H, 13C-APT, 31P{1H} and 19F NMR spectra (DMSO-d6) for complex C2c, Figure S14:
31P{1H} NMR spectrum (CD2Cl2) at 193 K for complex C1a, Figure S15: 31P{1H} NMR spectrum
(CD2Cl2) at 193 K for complex C1b, Figure S16: 31P{1H} NMR spectrum (CD2Cl2) at 193 K for
complex C1c, Figure S17: HSQC and COSY NMR spectra of C2c to explain the correlation among
protons and proton-carbon on C1 and C2, Figure S18: HSQC and COSY NMR spectra of C2b to
explain the correlation among protons and proton-carbon on C1 and C2, Figure S19: ESI-mass for
all compounds.
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