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Abstract 

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2, COVID-19) has an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 

53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed 

with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal 

mosaicism for chromosome events (CME) and 226 males (5.08%) with acquired loss of 

chromosome Y (LOY). Individuals with clonal mosaic events (CME and/or LOY) showed a 54% 

increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of 

immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes 

involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, 

CME and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in 

aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal 

mosaicism should be implemented as biomarker of COVID-19 severity in elderly people.  

 

 

KEYWORDS: Clonal mosaicism, chromosomal mosaic events, loss of chromosome Y, COVID-

19, SARS-CoV-2, elderly people, mortality. 
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Background 

 

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a major health threat to the entire 

world.1 As of December, 2021, there have been over 400 million confirmed cases of COVID-19 

worldwide, with more than 5.7 million deaths reported. A best estimate of the overall case 

fatality ratio after adjusting for demography and under-ascertainment in the initial outbreak in 

China was 1.38% (95% confidence interval 1.23–1.53), being significantly higher in aging 

people (6.4% in ≥60 and 13.4% in ≥80 age groups) and in males.2 World-wide data of the age-

stratified case fatality ratio and infection fatality ratio show a similar pattern with a remarkable 

sex-bias increasing with advanced age, with 60% overall deaths reported in men (estimated 

hazard ratio of 1.59, 95% confidence interval 1.53-1.65).3 Interestingly, sex-dependent 

differences in disease outcomes were also found during the past SARS-CoV and MERS-CoV 

epidemics4,5 and also in mice infected with the virus.6 

 

Understanding the underlying basis of this different sex and age vulnerability is crucial because 

aging men and women are likely to have fundamentally different reactions to the SARS-CoV-2 

virus infection, treatments, and vaccines. Male patients with COVID-19 have higher plasma 

levels of innate immune cytokines (IL-8 and IL-18) and stronger induction of non-classical 

monocytes, while females had more robust T cell activation during infection. Proposed causes 

include different case definition of disease, different environmental and social factors (such as 

lifestyle, smoking history or work-environment) and sex-specific immune-defense factors. The X 

chromosome harbors multiple genes important for immunity and there are many X-linked 

immunodeficiencies, so males have greater susceptibility to infections starting at birth.6 More 

specifically, SARS viruses use the angiotensin converting enzyme (ACE2), encoded by an X-

linked gene, as a receptor to enter and infect ACE-2 expressing cells.1 Sex variation in the 

expression of this gene with paradoxically higher expression and higher circulating levels in 

men than in women has also been proposed as a candidate mechanism.7 However, 

ascertainment bias and environmental factors are unlikely to prevail in different populations 

while the gender-specific immune factors or ACE2 variation would not fully explain the 

increased risk and sex-divergence with aging. The analysis of previously untreated patients with 

moderate COVID-19 disease revealed that male patients have higher levels of innate immune 

cytokines and more robust induction of non-classical monocytes, while female patients have 

more robust T-cell activation, which is sustained in old age.8 A B-cell autoimmune disorder 

present in about 10% of individuals with life-threatening COVID-19 pneumonia has been 

reported, 5 times more common in males than females, characterized by detection of 

neutralizing immunoglobulin G autoantibodies against interferon type 1.9 Finally, a meta-

analysis of genome-wide association studies searching for host-specific genetic factors has 

revealed 13 loci significantly associated with SARS-Cov2 infection or severe manifestations of 

COVID-19, but do not fully explain the gender differences.10  
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Chromosomal mosaic events (CME) detectable in blood, including deletions, gains or copy 

neutral changes, are age-related somatic alterations that indicate clonal hematopoiesis when 

detectable and have been associated with increased risk for cancer, cardiovascular disease and 

overall mortality.11-15 Expanded CMEs have also been recently associated with increased risk 

for incident infections, including COVID-19 hospitalization.16 Multiple germline genetic alleles 

involved in susceptibility to clonally expanded CME have been identified, with enrichment at 

regulatory sites for the immune system.16 In men, mosaic X chromosome monosomy (XCM), 

acquired by somatic loss of the Y chromosome (LOY), is the most common copy number 

alteration in male leukocytes, estimated to occur in <2% men under 60 years of age, but 

exponentially increasing with aging to 15–40% in 70–85 year-old males and >50% at 93 years 

of age.17 LOY has also been associated with a wide spectrum of human diseases including 

cancer, Alzheimer’s disease, cardiovascular disease, and reduced overall life expectancy in 

men.18-21 Genetic variation in multiple loci is involved in the inherited susceptibility to LOY, which 

can also be driven by smoking and other environmental exposures.17 Extreme down-regulation 

of chromosome Y gene expression mainly driven by genes with X-chromosome homologs that 

escape X-inactivation seems to be the functional mediator of the reported association between 

LOY and disease.22,23  

 

In women, developmental (causing Turner syndrome) or late onset XCM detectable in 

leukocytes, usually with loss of the inactive X-chromosome, is found with lower frequency than 

in men but also increasing with age (0.05% in 50-year old; 0.25% in 75-year old).24 Females 

with XCM have an increased risk for autoimmune disease, recurrent viral infections and earlier 

cardiovascular mortality,25 which is associated with excessive production of pro-inflammatory 

cytokines (IL-6), decrease in anti-inflammatory cytokines (IL-10, TGF-β) and a lower CD4:CD8 

ratio.26  
 

We have tested here the hypothesis that CME/XCM/LOY could be underlying factors for the 

increased severity and mortality of COVID-19 in the elderly and mainly in men. Overall, we have 

associated clonal mosaicism with a 50% increase in the risk of COVID-19 lethality. We have 

also correlated LOY in aging males with multiple parameters of cardiovascular dysfunction, and 

defined the transcriptomic deregulation that underlies disease risks, including signatures of 

immune system dysfunction and increased coagulation activity. We have finally studied how 

some of the genes deregulated by LOY are involved in the response to SARS-CoV-2 infection.  

 

 

Methods 

 

Covid-19 infection, mortality data, CME and LOY prevalence estimates 

Accumulated data until July 21st, 2021 was obtained from the Spanish National Epidemiological 
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Registry                                              

(https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTra

nsmisibles/Paginas/InformesCOVID-19.aspx). Hospitalization rates, intensive care admission 

rates, and mortality stratified by age and sex was obtained from this report. Prevalence 

estimates of CME and LOY by age were obtained from the general population.14,21  

 

EGCUT subjects, phenotype and genotype data 

LOY was assessed in a total of 530 adult men belonging to the Estonian Gene Expression 

Cohort (EGCUT, www.biobank.ee) that comprises a large cohort of 53,000 samples of the 

Estonian Genome Center Biobank, University of Tartu.27 Detailed phenotypic information from 

all the individuals studied, including clinical analysis (blood cell counts and general 

biochemistry) and follow-up until June 2020, was available in ICD-10 codes. Patients selected in 

this study were genotyped using OmniX array. All individuals had genotyping success rate 

above 95%. All studies were performed in accordance with the ethical standards of the 

responsible committee on human experimentation, and with proper informed consent from all 

individuals tested. 

 

SCOURGE subjects, phenotype and genotype data  

A total of 9578 (5134 females and 4444 males) patients diagnosed with COVID-19 and 

recruited to the SCOURGE study were included in this study.28 Mean age was 62.58 years, 

61.06 for females and 64.34 for males. Available phenotype data included age, sex, some 

clinical variables of past clinical history, several defined measures of COVID-19 severity and 

vital status (alive or dead) 90 days after diagnosis. The severity variables classified individuals 

in five levels called Asymptomatic (A), Mild (light: L), Moderate (M), Severe (G), and Critical 

(C). Additional information about pre-existing conditions as categorical variables was also 

available for most cases, including history of vascular disorders, cardiac problems, neurologic 

conditions, gastrointestinal disorders, onco-hematologic conditions, respiratory issues, and 

pulmonary thrombo-embolism. Blood DNA was genotyped using a customized Affymetrix SNP 

microarray.28 Genotype data passed quality controls for GWAS analysis.  

 

Detection of mosaic CME and LOY 

The genotype CEL files from everyone were used to extract the log-R ratio (LRR) and B-allele 

(BAF) frequency from SNP probes. We used the apt software for quality control (QC) and the 

extraction of the array intensity signals. Following the QC pipeline with filters axiom-dishqc-

DQC>0.82 and call-rate>0.97, we observed that all individuals could be included. The signals 

were obtained from CNV calling pipeline with default parameters mapd-max=0.35 and 

waviness-sd-max=0.1. We also called mosaicisms in autosomes and chromosome X with the 

MAD algorithm.29 The method uses the fixed deviation from the expected BAF value of 0.5 for 

heterozygous SNPs (Bdev) to call allelic imbalances by using a segmentation procedure. The 

segmentation was performed using the three different parameters of MAD: T>8, aAlpha=0.8, 
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minSegLength>100. Some false positive alterations were detected in bad quality arrays. 

Therefore, curation via visual inspection, considering variability of LRR and BAF mean values in 

the segment, was performed by two independent investigators. Each mosaic alteration was 

classified as copy-loss, copy-gain or copy-neutral. The estimated percentage of abnormal cells 

was computed based on the B-deviation as previously reported.10  

 

Mosaic LOY detection and quantification was performed using the MADloy tool which 

implements LOY calling using the mean LRR (mLRRY) and B-deviation derived-measures from 

chromosome Y across subjects.30 For each sample, MADloy first estimates the normalized 

mLRRY given by its ratio with the trimmed-mean of mLRRY values in the autosomes to discard 

regions with copy number alterations. B-deviation is calculated for the pseudoautosomal regions 

1 and 2 (PAR1, 0-2.5Mb on both Xp and Yp; PAR2, 300kb on distal Xq and Yq, Mb 155 and 59 

respectively), and the XY transposed region (88-92Mb on X, 2.5-6.5Mb on Y). The method is 

calibrated to detect mosaicism when the proportion of affected cells is above 10%. We then 

plotted the values of the mLRRY signals for males and females. A signal from chromosome Y in 

females is observed due to the background noise of the array and some cross-hybridization. 

While we observed variability of the mLRRY signal, numerous males were identified with 

extreme low values of mLLRY, suggesting loss of chromosome Y. We categorized the level of 

LOY status into three groups according to the magnitude of the decrease in mLRRY, believed to 

be a function of XCM/LOY cellularity.  

 

Bulk transcriptome data 

Gene expression was obtained with Illumina whole-genome expression BeadChips (HT12v3) 

from peripheral blood RNA in the EGCUT cohort. Low quality samples were excluded. All 

probes with primer polymorphisms were left out, leaving 34,282 probes. The expression dataset 

is publicly available at GEO (Gene Expression Omnibus) under the accession number 

GSE48348.31 In this dataset, a total of 11 individuals with LOY were identified. In order to 

consider the effect of aging on LOY detection and to have the maximum power, 32 age and 

gender-paired normal samples without LOY (3 controls per case) were selected for the 

transcriptomic analyses.  

 

The effect of SARS-CoV-2 infection on gene expression was assessed in independent 

biological triplicates of two different cell lines that were mock treated or infected with SARS-

CoV-2 (USA-WA1/2020). One corresponds to primary human lung epithelium (NHBE) and the 

other to transformed lung alveolar cells (A549). These data are available at GEO under the 

accession number GSE147507. 

 

Statistical data analyses 

Gene expression data was quantile-normalized to the median. We analyzed linear regression 

residuals of gene expression data on forty multidimensional scaling components, to correct for 
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possible unwanted variability. Array quality was assessed using arrayQualityMetrics 

Bioconductor package. genefilter Bioconductor package was used to filter for features without 

annotation and/or exhibiting little variation and low signal across samples, leaving a total of 

15,592 probes from 34,282. Differential expression (DE) between individuals with and without 

LOY was then performed using limma Bioconductor package. Significant DE genes were 

considered at false discovery rate (FDR) <0.05. Significant DE genes at p<0.001 level were 

selected for Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 

enrichment analysis with clusterProfiler Bioconductor package. Over-representation of DE 

genes in the gene set obtained from the analysis of SARS-CoV-2 infected cell lines (p<0.001 

and log-foldchange >0.5) was performed using exact Fisher test. Cell-type composition of the 

43 individuals with bulk transcriptomic data (11 LOY, 32 normal) was estimated using the 'xcell' 

method implemented in the immunodeconv R package.32 

 

Association analysis between CME or LOY status and clinical data, including blood cell counts 

and biochemical parameters, was assessed using linear models adjusted by age. All statistical 

analyses were performed using the statistical software R version 3.6.3 (http://www.r-

project.org). 

 

 

Results 

 

Higher Covid-19 severity and mortality in males, a sex-bias that increases with aging 

Accumulated data on the age-stratified case fatality ratio and infection fatality ratio in a large 

sample from Spain, show a pattern with a remarkable sex-bias increase with advancing age 

(Figure 1). Available reports, mostly based on hospital records, show the same tendency in 

other countries. COVID-19 lethality, CME prevalence and LOY prevalence in men, as previously 

reported in multiple reports including the UK biobank dataset, appear to increase exponentially 

with age (Figure 1).18-21 

 

COVID-19 severity variables and their association with age  

We first studied the SCOURGE clinical data. Phenotype data was available from all 9578 

individuals (5134 females and 4444 males) patients diagnosed with COVID-19 and recruited to 

the SCOURGE study (Table 1). According to disease severity, there were 607 cases 

asymptomatic (6.8% A), 2727 individuals with mild symptoms (30% L), 2141 patients with 

moderate disease (23.6% M), 2449 with severe manifestations (27% G), 1157 critical (12.7% 

C). We visually inspected the contrasts defined together with the level of severity and the age of 

the patients. Mean age was 62.58 years, 64.34 for males and 61.06 for females, with an age 

difference between sexes that was statistically significant (P = 4.1×10-19). All clinical categories 

and variables correlated with age except for “critical” and “history of pulmonary 

thromboembolism”. 
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Association between CME and COVID-19 severity (lethality)  

The algorithm followed by manual curation finally detected 133 individuals (1.42%), 61 males 

and 72 females, carrying CMEs in blood affecting the autosomes and/or the X chromosome 

(Table 1, Table S1, Figures 2A & 2B and Figure S1). Globally, 95 individuals had a single CME 

while 38 of them had more than one event, for a total of 213 CMEs. There were 88 deletions, 5 

whole chromosome monosomies, 20 segmental gains and 21 whole chromosome trisomies, 

along with 78 copy-neutral changes (somatic segmental uniparental disomies), and a few 

complex rearrangements. Mean age for individuals with CMEs was 75.04±12.7. We then 

performed association analyses across the different outcome variables related to COVID-19 

severity and the presence of mosaicism. We first confirmed the strong association between 

mosaicism and age (year) (OR = 1.051, P = 1.05×10-16), as previously reported. We then 

observed a significant association between the presence of CME and COVID-19 lethality (1-

survival, OR = 1.77, P = 0.015), after adjusting for sex and age (Figure 3).  

 

Association between LOY and COVID-19 severity  

Among all male cases, we detected 226 individuals with LOY (mean age 82.0±7.9), a 5,08% 

prevalence of LOY in this cohort (Table 1, Table S2). According to the estimated proportion of 

cells with XCM/LOY, 162 individuals had mild LOY (<25% cells with XCM), 43 moderate LOY 

(25-65% cells with XCM) and 21 had extreme LOY (>65% cells with XCM) (Figure 2C). We also 

identified three women with detectable chromosome Y in a proportion of cells, then likely 

corresponding to X0/XY mosaicism and a possible diagnosis of Turner syndrome, as well as 

three individuals with non-mosaic XYY (Figure 2C). We observed 6 men with both LOY and 

CME, 220 with LOY and no CME, and 55 with CME and no LOY, which resulted in no 

significant correlation between the presence of LOY and CME.  

 

We first confirmed a strong association between XCM/LOY in males and age (OR = 1.11, P = 

5.65×10-51). We then fitted a series of models between LOY and the contrast CG > MLA, for 

which we had observed a strong association with age. We first observed a significant 

association between the contrast and LOY, primarily due to its association with age (not 

significant after adjusting by age, OR = 1.25, P = 0.15). We also performed association tests for 

all the contrasts and clinical variables adjusting only by age and we observed some significant 

associations. LOY was associated with reduction in survival (OR = 0.713, P = 0.045) and with 

clinical history of vascular disease (OR = 0.627, P = 0.001) and lung thromboembolism (OR = 

0.271, P = 0.042). While associations with severity were not significant, we observed a 

consistent estimate of their risk given by LOY.  

 

We then tested the association with the continuous value for mLRRY across all severity contrast 

and clinical variables. We found a significant association with survival for higher relative levels 

of chromosome Y content (β = 0.86, P = 0.0054).  
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We then performed a joint analysis for all mosaicisms, CMEs and LOY, confirming their strong 

association with age (OR = 1.08 P = 1.95 × 10-62) and also with COVID-19 lethality (OR = 1.53, 

P = 0.004) after corrections, including adjustment for other clinical variables (Figure 3). The 

associations of all type mosaicism with severity contrasts were not significant but consistent 

across all contrasts.  

 

Germline aneuploidies and COVID-19  

In addition to 6 individuals with XCM and likely Turner syndrome, 3 cases with 45,X0/46,XY 

mosaicism mentioned above, 2 more cases with 45,X0/46,XX mosaicism and one with likely 

45,X0/46,XY/46,XX mosaicism, the algorithm also detected a total of 25 individuals with 

germline (non-mosaic) aneuploidies. We detected 7 cases with Down syndrome (trisomy 21) 

and 18 with gonosomal aneuploidies, including 9 with Klinefelter syndrome (47,XXY), 6 with 

triple X syndrome (47,XXX) and 3 with XYY syndrome (47,XYY) (Table S3). We found an 

association of aneuploidies with the presence of CMEs (OR = 9.90, P = 0.0047).  

 

We then performed association tests of phenotypic features with all the aneuploidies, removing 

individuals with CMEs. We did not find any significant association between COVID-19 severity 

parameters and any type of aneuploidy given this small sample size, although previous history 

of cardiopathy was significantly associated, as expected (OR = 4.02, P = 0.004). 

 

Correlation of LOY with cellular and biochemical phenotypes in EGCUT individuals 

We analyzed SNP microarray data with MADloy of a selected sample of 530 apparently healthy 

adult men from the Estonian Genome Center of the University of Tartu cohort (EGCUT) and 

classified them as having (n=28) or not having LOY (n=502). We then correlated genotype 

classification with several clinical parameters. Individuals with LOY had significantly age-

adjusted decrease in red cell counts, decrease in mean corpuscular hemoglobin concentration 

and higher red cell distribution width, low basophil counts and borderline low lymphocyte 

proportions. Biochemical parameters revealed low albumin levels, low triglycerides and elevated 

homocysteine and urea levels (Table S3).  

 

Blood transcriptome in individuals with LOY reveals immune defects and cardiovascular 

risk 

We also compared blood transcriptome from 11 men with LOY (median age: 69, range: 58-84) 

and 32 age-paired men without LOY (median age: 68, range: 60-87) as controls. Multiple genes 

differentially expressed between groups were found, including autosomal and gonosomal genes 

(Tables S4-S6 and Figs S2-S3), providing insight into the mechanisms of disease susceptibility 

caused by LOY with implications for COVID-19. CSF2RA, located on the X-Y chromosome 

pseudoautosomal 1 (PAR1) region, is one of the most significantly down-regulated genes in 
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LOY (Fig 4A), along with other multiple Y chromosome genes with homologs on the X 

chromosome that escape X inactivation and with known function in immunity (Table S6).  

 

Top autosomal genes overexpressed in LOY, such as VWF and MYL9 (Fig 4A), are associated 

with cardiovascular risk. VWF codes for the von Willebrand factor (vWF), a pro-coagulant 

protein that promotes platelet adhesion and smooth muscle cell proliferation, while MYL9 

encodes Myosin Light Chain 9, regulatory, important in inflammatory immune responses.  

 

Since changes in gene expression may reflect differences in cell-type composition and 

functionality, we estimated the average cell-type functional composition of samples from 

individuals with LOY compared to those without LOY using bulk transcriptome data (Table S7). 

The results were consistent with LOY individuals having significantly decreased GM-progenitors 

and B cell naïve cells, along with increased counts of endothelial cells (Fig 4B). Enrichment 

gene set analysis using differentially expressed genes revealed a few categories significantly 

over-enriched, most notably the coagulation and cellular detoxification, the leukocyte migration 

and neutrophil activation (Fig 4C, Tables S8-S9). Overall, gene expression in LOY individuals 

leads to a down-regulated immune score.  

 

Down-regulated genes in LOY involved in response to SARS-CoV-2 infection 

We tested whether the genes that participate in the primary response to SARS-CoV-2 infection 

were significantly deregulated in blood cells of individuals with LOY. We obtained 249 

deregulated genes with SARS-CoV-2 infection in primary human lung epithelium (NHBE) and 

130 for transformed lung alveolar (A549) (339 unique genes for the two cell lines). This gene set 

is highly over-represented in several pathways including defense response to virus, IL-17, type I 

interferon and NF-Kappa B signaling (Table S10). From the deregulated genes in cells infected 

with SARS-CoV-2 13 were also deregulated in individuals with LOY (Figure 5A and Table S11) 

indicating a strong significant over-representation (OR of enrichment = 7.23, p=1.5x10-7). Most 

of these genes are interferon response genes (IFIT3, IFI44L, ITFT1, IFI6), which are down-

regulated in individuals with LOY (Figure 5B-D).  
 

 

Discussion 

 

We have shown in the SCOURGE study that clonal detectable CMEs, including XCM, are 

relatively common in blood of aging individuals, as previously reported,14 with much higher 

frequency in males due to somatic LOY.18 In addition to a risk factor for cancer, cardiovascular 

complications, incidental infections and all cause early mortality,12,16,18,33 clonal hematopoiesis 

with CME and/or XCM due to LOY is a risk factor for COVID-19 lethality with a combined odds 

ratio of 1.53. Despite some limitations of our study due to a relatively small sample size and the 

possibility of uncontrolled confounding factors, similar results have been recently reported in the 
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UK biobank revealing increased risk for diverse incident infections and COVID-19 

hospitalization in people with clonal hematopoiesis.16,34 Our data indicate that these two types of 

chromosomal mosaicism underlie at least part of the aging-related and sex-biased severity and 

mortality of COVID-19. Therefore, identification of CME and LOY in blood cells is likely to have 

an immediate clinical relevance in the management of aged patients with COVID-19. 

 

The mechanisms predisposing to autosomal events and LOY seem be mostly unrelated, as no 

significant association has been found between both types of events in our cohort and the 

germline loci reported to predispose to autosomal CMEs and LOY are different.16,19,21 While only 

10% of autosomal CMEs correspond to whole chromosome aneuploidies (mainly trisomies 8, 

12 and 15 and monosomy 7) likely mediated by mitotic non-disjunction, this is the main 

mechanism for XCM and LOY. Mitotic non-disjunction of Y chromosomes may be facilitated by 

the higher rate of cellular turnover of aging men. In mice, while the Y chromosome is stably 

transmitted during meiotic cell divisions, there is a high frequency of non-disjunction in mitosis, 

mainly in the earliest cleavage divisions.35 

 

A possible pathogenetic mechanism that could be common to clonal CMEs and XCM is 

immunosenescence, which involves modifications of humoral and cellular immunity. One aspect 

of immunosenescence is a decline in the absolute number of peripheral blood lymphocytes with 

locus-dependent reduction of HLA class-I cell surface expression, related with increased risk of 

subsequent mortality. T-lymphocytes also play a central role in the effector and regulatory 

mechanisms of the adaptive immune response.36 

 

Many of the biochemical and transcriptomic alterations found in individuals with LOY have been 

already associated to poor prognosis for SARS-CoV-2 infection.37-40 Several genes located on 

the Y chromosome with relevant functions in the immune system have functional homologs on 

the X chromosome that escape X inactivation in females (Table S4). Cells with XCM are likely 

haploinsufficient for many of those genes, which are downregulated in individuals with mosaic 

XCM due to LOY. In this regard, we observed low expression of CSF2RA in individuals with 

LOY, who also have low GM progenitors. CSF2RA codes for the alpha subunit of the 

heterodimeric receptor for colony stimulating factor 2, a cytokine that regulates the production, 

differentiation, and function of granulocytes and macrophages (GM-CSF), key cells for antigen 

presentation in infections, and is also critical for T cell function. GM-CSF increases IL-2R and 

IL-2 signaling, which can increase expansion of lymphocytes and IFN-γ production important for 

anti-viral response. Therefore, GM-CSF leads to enhanced protective responses.41 Loss or 

inactivation of both copies of the CSF2RA gene is associated with surfactant metabolism 

dysfunction-4 and pulmonary alveolar proteinosis, a primary immunodeficiency (OMIM 

300770).42 As Leukine® (sargramostim, rhu-GM-CSF) is currently being assessed in the 

SARPAC trial because of its potential positive effect on antiviral immunity and contribution to 

restore immune homeostasis in the lungs (https://clinicaltrials.gov/ct2/show/NCT04326920), our 
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data suggest that patients with LOY might be predictive of a poor response due to their low 

expression of one of the receptor subunits for GM-CSF (CSF2RA).43 

 

Patients severely affected with COVID-19 have lower lymphocyte counts, especially T cells, 

higher leukocyte counts and neutrophil-lymphocyte-ratio, lower percentages of monocytes, 

eosinophils, and basophils, along with generally elevated levels of infection-related biomarkers 

and inflammatory cytokines, including IL-6. Helper, suppressor and regulatory T cells were all 

below normal levels in the severe group, with increased naïve helper T cells and decreased 

memory helper T cells.1,44 We observed a significant overlap of deregulated genes in LOY 

individuals that participate in the immediate immune response elicited by SARS-CoV-2 virus 

infection. Some of these genes clearly activated in both studied cell types infected by SARS-

CoV-2 are markedly under expressed in individuals with LOY (SLPI, IFI6, IFIT1, IFIT3, and 

IFI44L) (Figure 3B-D). Secretory leukocyte protease inhibitor (SLPI) is a regulator of innate and 

adaptive immunity that protects the host from excessive inflammation in infectious disease, 

while the other four genes encode interferon induced proteins of the innate immune system that 

participate in the immediate host response to viral infections.45 Dysfunctions of the adaptive 

immunity and interferon-mediated immediate host response in individuals with XCM/LOY are 

consistent with the observed sexual dimorphism in human immune system aging, and might 

underlie a poor immune response to SARS-CoV-2 infection.46 This patterns along with the 

increased severity in older males, suggests that XCM due to LOY may be one underlying factor 

for susceptibility to COVID-19 in a proportion of patients. 

 

In addition to depleted hematopoietic progenitor cells and possible immunodeficiency, 

individuals with LOY may have increased levels of circulating endothelial cells, which are known 

biomarkers for endothelial dysfunction and cardiovascular disease.47 We observed up-

regulation of VWF and MYL9 in LOY. Pro-coagulant vWF promotes platelet adhesion and 

smooth muscle cell proliferation, and elevated levels of vWF have been associated with higher 

risk for thrombosis and cardiovascular disease.48 MYL9 is a ligand for CD69 to form a net-like 

structure inside blood vessels in inflamed lungs and is also a risk factor for cardiovascular 

disease risk found over-expressed in aged versus young injured arteries.49,50 Through these 

mechanisms, XCM/LOY seems to contribute to COVID-19 lethality by its associated 

cardiovascular risk.  
 

Conclusion 

 

In summary, clonal detectable CME & XCM are relatively common in aging individuals with 

much higher frequency in males due to somatic LOY. LOY is associated to decreased 

progenitors and stem cells, along with immune system dysfunction and increased coagulation 

and cardiovascular risk, as revealed by biochemical and gene expression data. Our data 

indicate that this type of mosaicism underlies at least part of the sex-biased severity and 
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mortality of COVID-19 in aging patients. Given its potential relevance for modulating prognosis, 

therapeutic intervention, and immunization responses, we propose that evaluation of CME/LOY 

by currently established methods should be implemented in both, retrospective studies and all 

prospective and currently ongoing clinical trials with different medications and vaccines for 

COVID-19. Testing for CME/LOY at large scale in elderly people may also be helpful to 

evaluate vaccination response and to identify still unexposed people who may be especially 

vulnerable to severe COVID-19 disease. 
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FIGURES 
 
 
 

 
 
Figure 1: Increasing male (orange) to female (blue) differences in hospitalization and mortality 
rates for COVID-19 in Spain in the different age intervals (updated December 2021). Estimated 
prevalence by age in the population of detectable CME (black) or LOY in men (grey) in blood is 
also shown.13,14  
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Figure 2: (A) Plot representing the whole-genome molecular karyotype obtained by SNParray 
of blood DNA from an individual with several CMEs. Dots in grey are LRR values (average per 
widow shown by a green lane), while colored dots are BAF values of homozygous and 
heterozygous SNPs from odd (red) and even number (orange) chromosomes, respectively. 
Abnormal BAF and average LRR values in three regions (blue lanes interrupting the black lane 
in the upper part) correspond to mosaicism for trisomy 12, a small interstitial deletion in 13q and 
X-chromosome monosomy. The blue lanes interrupting the green lane at LRR=0 correspond to 
small regions of homozygosity. (B) Circus plots showing all detected CMEs in the SCOURGE 
dataset. In red deletions, in blue gains and in green copy neutral events. (C) Analysis of LOY in 
male individuals in the SCOURGE study based on mean LRR from chromosome Y (mLRRY: 
relative amount of DNA from the Y chromosome with respect to autosomes). Blue dots 
correspond to males with mosaic LOY in more than 65% of cells (XCM>65%), green dots to 
males with LOY/XCM between 25%-65%, and red dots to males with LOY/XCM in less than 
25% of cells. The three individuals with top mLRRY values have apparently non-mosaic gains of 
chromosome Y (47,XYY). 
 
 
 
 
 

 
 
 
Figure 3: Associations of detectable CMEs and LOY with COVID-19-related mortality (<90 days 
after infection). Analyses are adjusted for age, sex, and 10 principal components of ancestry. 
Individuals with prevalent hematologic cancer were excluded from the analysis.  
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Figure 4: (A) Decreased expression of CSF2RA mRNA and increased expression of MYL9 and 
VWF in individuals with LOY compared with controls with no LOY (mean gene expression in red 
dot). (B) Different predicted cell counts underlying the transcriptomic differences between cases 
with LOY and control individuals (no-LOY). (C) Gene Ontology (GO) enrichment of top 
differentially expressed genes. 
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Figure 5: (A) Overlap between top differentially expressed genes in individuals with LOY and 
deregulated genes in SARS-CoV-2 infected cells. Panels B, C and D show detailed gene 
expression patterns of some of these overlapping genes, including down-regulated in 
individuals with LOY (B), and over-expressed in NHBE (C) and A549 (D) cell lines infected with 
SARS-CoV-2.  
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Table 1: Number, proportion and mean age of patients in the different clinical categories of 
COVID-19 severity in the SCOURGE study, with and without detectable CMEs or LOY (males).  
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Legends of the Supplemental Material 
 
Table S1:  
Patients with CMEs. In each case with a patient identifier (ID), detected CMEs are indicated by 
chromosome (chr), start and end coordinates of the event, estimated proportion of cells carrying 
the CME (cellularity) and type of event (gain, loss, or copy neutral loss of heterozygosity – 
cnloh). Patient age, COVID-19 severity, and patient status (dead or alive) 90 days after disease 
are shown in the three last columns. NA: data not available. 
 
Table S2:  
Male patients with XCM due to LOY. In addition to the patient identifier (ID) and patient age at 
diagnosis of COVID-19, columns show the estimated proportion of cells with XCM (LOY 
proportion), COVID-19 severity, and patient status (dead or alive) 90 days after disease. NA: 
data not available. 
 
Table S3:  
Individuals with germline (non-mosaic) complete aneuploidies (chromosome 21 and 
gonosomes), and developmental mosaic X-chromosome aneuploidies.  
 
Table S4:  
Comparison of analytical parameters between age-matched individuals with and without LOY in 
the EGCUT biobank. 
 
Table S5:  
Top 30 differentially expressed genes in blood of individuals with LOY. 
 
Table S6:  
Top 30 differentially expressed Y-linked genes in blood of individuals with LOY. 
 
Table S7a and S7b:  
Y-linked genes with homologs in the X-chromosome and a possible role in immunity. 
 
Table S8:  
Association between cell-type composition estimated using bulk transcriptomic data 
(immunedecov R package) and LOY status. 
 
Table S9:  
GO enrichment analysis of differentially expressed genes in individuals with LOY. GO terms 
significant at 5% FDR are shown. 
 
Table S10:  
KEGG enrichment analysis of differentially expressed genes in individuals with LOY. KEGG 
terms significant at 5% FDR are shown. 
 
Table S11:  
Top GO enrichment of differentially expressed genes in the two cell lines infected with SAS-
CoV-2 (NHBE and A549). 
 
Table S12:  
Intersection between significant genes in the blood transcriptomic comparison of LOY versus no 
LOY individuals and in the two cell lines infected with SAS-CoV-2 (NHBE and A549). 
 
Figure S1:  
Plots of the whole-genome molecular karyotype obtained by SNParray of blood DNA from all 
133 individuals of SCOURGE with detectable CMEs. 
 
Figure S2:  
Top differentially expressed genes in blood between individual with LOY and controls at 
genome level. The plots show the gene expression for individuals with (LOY) and without LOY 
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(normal). The p-values correspond to a linear model adjusted for age and surrogate variables 
using limma.  
 
Figure S3:  
Top differentially expressed chromosome Y genes between individual with LOY and controls. 
The plots show the gene expression for individuals with (LOY) and without LOY (normal). The 
p-values correspond to a linear model adjusted for age and surrogate variables using limma.  
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