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a b s t r a c t

This paper presents a zonotopic set-invariance analysis of replay attacks affecting the communication
network that serves the supervisory layer of complex control systems using an observer-based
detection scheme. Depending on the attacker’s access to the system’s resources, two scenarios are
considered: (I) Sensors and controller data are counterfeited; (II) Only sensor measurements are
counterfeited. The effect of a physical attack against the plant during the data replay is also taken into
consideration. The representation of invariant sets as zonotopes allows to derive analytical expressions
for attack detectability under the presence of bounded uncertainties. The validity of the analysis is
demonstrated through simulations using a quadruple-tank process.
1. Introduction

The migration from traditional point-to-point control schemes
o widely interconnected systems, in conjunction with an increas-
ng number of registered attacks [1], has awakened the interest
n the study of cyber attacks on control systems. Consequently,
he so-called secure control has found increasing interest since the
end of the last century. In this regard, works like [2,3] propose
a general framework for the analysis of security on networked
control systems, while other works like [4] have modeled the
effect of cyber attacks compromising measurement and actuator
data integrity on the physical dynamics of a system.

One of the main threats to control systems are stealthy attacks,
i.e., attacks in which the attacker aims at remaining undetected
by anomalies detectors [5]. In order to achieve undetectability,
the attacker must be able to feed data that is consistent with
the nominal system operation to the monitoring system. Among
the different stealthy attacks reported in the literature, there are:
false data injection attacks [6], zero dynamics attacks [7], covert
attacks [8] and replay attacks [9]. This paper focuses on the latter
type of attacks.

The vast majority of works related to replay attacks takes into
consideration that the control loop is closed remotely by means
of a communications network which is prone to cyber attacks.
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Nebridi 10, Terrassa 08222, Spain.

E-mail address: carlos.trapiello@upc.edu (C. Trapiello).
Accordingly, the standard replay attack formulation considers
that the control loop has been affected either by deceiving the
system controller with previously recorded measurements [9–
12], or by replaying back previous control actions directly to the
system [13,14]. Nevertheless, in many industrial control systems
the low-level controller (regulatory layer) makes use of dedicated
networks which are hard to access while, on the other hand, it is
common that the supervisory layer, in charge of the systemmoni-
toring and set-point reference generation, operates remotely. This
difference has been taken into account, for example, in the study
of cyber-attacks affecting the load frequency control of power
systems [15]. In this line, this paper is devised from the super-
visor’s point of view, analyzing different replay attack scenarios
that arise when the system operation is assessed using a state
estimator located at the supervisory layer.

Moreover, a high percentage of security-related works (not
only concerning attacks but also faults) makes use of assumptions
about the statistical properties of the uncertainties. A different
approach is the use of set-theoretic methods, which are built
upon norm-bounded uncertainty assumptions. These techniques
have proven useful in fault-related secure control, as they allow
to construct sets for the system in healthy and faulty operations,
so that it becomes possible to infer deterministically whether
a system is working under nominal or faulty conditions [16].
In this regard, ellipsoidal sets have been employed in [17] to
propose different security metrics, and design secure controllers,
against stealthy attacks affecting the control loop. On the other
hand, set-based attack detectors have been used in [18] to detect
bias injection attacks in a networked power plant, and in [19,20]
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combined altogether with set-theoretic controllers in an attack
resilient control scheme. However, these latter detectors do not
rely on an observer, and thus are subject to some limiting as-
sumptions concerning the knowledge of the initial state of the
system.

Within the set-theoretic techniques, positive set invariance
21] is a common analysis tool for systems affected by bounded
isturbances. By computing the healthy/attacked residual invari-
nt sets, it can be established that whenever the residual vector
xits the healthy set, attack detection is achieved. Note that
he inherent steady-state conditions of replay attacks suit per-
ectly with set invariant tools. Among the possible set repre-
entations, zonotopes will be employed in this paper due to
heir flexibility and the capability to separate the center (nom-
nal) evolution from the uncertainty evolution in the generators
epresentation [22].

The motivation of the paper is characterizing the detectabil-
ty of the replay attacks in a guaranteed manner using set-
nvariance analysis when an observer-based detection scheme
s used. Therefore, system’s vulnerabilities are analyzed for the
ase in which a malicious attacker compromises the communica-
ion between the regulatory and supervisory layers of a control
ystem, while the low-level controller at the regulatory layer re-
ains unaffected. The following scenarios are considered: (I) the
ttacker is able to record and replay sensors and controller data,
ausing the supervisory layer to operate based on false data; (II)
he attacker is able to replay sensors data to the supervisory layer
hile the low-level control actions are received unaffected. This
cenario models the case where the supervisory layer operates
ased on a set of sensors installed for system monitoring and that
ay differ from the sensors used for control. For both scenarios, a
ositive invariance approach is developed for analyzing attack de-
ectability with respect to the set-point reference signal injected
rom the supervisory layer and an external attack conducted over
he plant, where the invariant sets are represented as zonotopes.
onditions to guarantee attack detectability are derived under the
ssumption that the disturbances are bounded.
The article is structured as follows: Section 2 introduces some

reliminary developments regarding the zonotopic representa-
ion of invariant sets, as well as the different phases that con-
titute the attack. Section 3 is devoted to the description of the
ystem in healthy operation, while the assumptions on the sys-
em operation during the record phase are detailed in Section 4.
ection 5 presents the analysis of the detectability of the attack
uring the replay phase. An illustrative example is presented in
ection 6. Finally, Section 7 presents concluding remarks.

. Preliminaries

.1. Zonotopes and basic set operations

Zonotopes are centrally symmetric convex polytopes that can
e described as Minkowski sums of line segments [23]. In the
enerator representation, a zonotope Z is described by its center
∈ Rn and generators g1, . . . , gm ∈ Rn as Z = {c + Hξ :

∈ Rm, ∥ξ∥∞ ≤ 1} where H ≡ [g1, . . . , gm] indicates the
enerators matrix and the ratio m/n is the order of the zonotope.
or simplicity, zonotopes will be denoted by Z = ⟨c,H⟩.
Let the sets Z, W ⊂ Rn, the matrix P ∈ Rk×n, and define

PZ ≡ {Pz : z ∈ Z}, (1a)

⊕ W ≡ {z + w : z ∈ Z, w ∈ W}. (1b)

Zonotopes are closed under previous set operations, i.e., when
= ⟨c ,H ⟩ and W = ⟨c ,H ⟩ are zonotopes, linear mappings
z z w w
1a) and Minkowski sums (1b) are also zonotopes which can be
omputed as

PZ = ⟨Pcz, PHz⟩, (2a)

⊕ W = ⟨cz + cw,
[
Hz Hw

]
⟩. (2b)

.2. Invariant sets

Let us define a discrete-time linear time-invariant (LTI)
ystem
+

= Ax + Bδ, (3)

here x ∈ Rn is the system state, x+
∈ Rn its successor and

∈ Rnδ is a disturbance constrained to the compact zonotopic
et ∆ = ⟨c∆,H∆⟩ ⊂ Rnδ . Besides, A ∈ Rn×n, B ∈ Rn×nδ are
onstant matrices with A an asymptotically stable matrix (all the
igenvalues of A are strictly inside the unit disk).

efinition 1 (Robust Positive Invariance). The set Ω ⊂ Rn is said
o be robustly positively invariant (RPI) for the system (3) and
disturbance set ∆, if Ax + Bδ ∈ Ω for all x ∈ Ω and all δ ∈ ∆.
Equivalently, Ω is RPI if and only if AΩ ⊕ B∆ ⊆ Ω .

Definition 2 (Minimal RPI). The minimal RPI (mRPI) set of (3) is
the RPI set in Rn that is contained in every closed RPI set of (3)
and disturbance set ∆.

For LTI asymptotically stable systems like (3), the mRPI set
exists and is unique and compact [24, Sec. IV]. In addition, such
mRPI set is the limit set of all trajectories of the system. Hence-
forth, a zonotopic ϵ-approximation of the mRPI set will be com-
puted by means of Algorithm 1 detailed in Appendix. When
referring to Algorithm 1, the center and the generators matrix
recursion will be provided.

For a detailed analysis on set invariance the reader is referred
to comprehensive studies [24,25].

2.3. Attack time windows

In the attack under study, it is assumed that at a first stage
a malicious attacker secretly records the data transmitted from
the regulatory layer to the supervisory layer. Then, the recorded
data are replayed back to the supervisory layer with the in-
tention of masking a physical attack conducted over the plant.
Consequently, the following time windows are defined:

1. Record window: transmitted data are assumed to be
recorded for Krec = {k ∈ N : k ∈ [k0, k0 + l − 1]},
where l ∈ N denotes the size of the record window.

2. Replay window: real data are replaced for Krep = {k ∈ N :

k ∈ [k1 + (n − 1)l, k1 + nl − 1], ∀n ∈ {1, . . . , nr}}, where
nr ∈ N+ accounts for the total number of repetitions of the
recorded sequence.

3. Physical attack window: a physical attack against the
plant is launched for Kphy = {k ∈ N : k ∈ [k2, k3]} ⊆ Krep,
i.e., k2 ≥ k1 and k3 ≤ k1 + nr l − 1.

Whenever one of the above temporal sets is mentioned, it is
assumed implicitly that the index k lies within it.

3. System under healthy operation

Let us consider the following system

xk+1 = Axk + Buk + Ewwk, (4)

yk = Cxk + Evvk,
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where xk ∈ Rnx is the state vector, uk ∈ Rnu is the applied control
action and yk ∈ Rny corresponds to the sensor measurements at
time instant k. Furthermore, wk ∈ Rnw and vk ∈ Rnv represent
the process disturbances and measurement noise, respectively.
Henceforth, the index k + 1 will be replaced by the superscript
+ and k will be omitted for the sake of simplified notations.

Assumption 1. The pair (A, B) is asymptotically stabilizable and
the pair (A, C) is asymptotically detectable.

Assumption 2. Uncertainties are bounded by

w ∈ W = ⟨cw,Hw⟩, v ∈ V = ⟨cv,Hv⟩, (5)

with Hw ∈ Rnw×mw , Hv ∈ Rnv×mv known generator matrices and
cw ∈ Rnw , cv ∈ Rnv known zonotope centers.

The control objective is to regulate the plant tracking error
defined at each sample as z = x − xref , where xref ∈ Rnx is the
reference signal governed by

x+

ref = Axref + Buref , (6)

and uref ∈ Rnu is the reference signal generated at the supervisory
layer, which is sent to the low-level controller (regulatory layer)
in charge of regulating the plant’s tracking error (see Fig. 1). For a
desired output set-point yref = Cxref , the corresponding uref signal
can be obtained by means of classical model inversion-based
feedforward schemes [26].

3.1. Regulatory layer

In order to satisfy the control objective, the low-level con-
troller is assumed to perform an estimate-feedback control ac-
tion based on the estimates provided by its own set-based ob-
server [27–29], and that differs from the one used in the super-
visory layer. In this regard, the difference between the system’s
state and the state estimate generated by the low-level estimator
x̂c ∈ Rnx , is denoted as η = x − x̂c .

Assumption 3. The controller estimation error η lies within the
zonotopic set

η ∈ H = ⟨cη, Hη⟩, (7)

with generators matrix Hη ∈ Rnx×mη and center cη ∈ Rnx .

Hence, the control law is given by

u = ū + uref , (8)

where ū denotes the estimate-feedback action computed by the
low-level controller

ū = −K (x̂c − xref ) = −Kz − Kη. (9)

Accordingly, under control law (8), the tracking error dynam-
ics is governed by the equation

z+
= x+

− x+

ref = (A − BK )z − BKη + Eww, (10)

with K designed such that A−BK is asymptotically stable. There-
fore, Eq. (10) represents an asymptotically stable dynamical sys-
tem subject to bounded disturbances.

3.2. Supervisory layer

In the supervisory layer, an anomalies detector monitors the
plant operation. For this purpose, a generic Luenberger observer
is considered as follows

x̂+
= (A − LC)x̂ + Bu + Ly, (11)

where x̂ ∈ Rnx represents the state estimation vector.
Fig. 1. Overall scheme. Solid (dotted) lines represent local (remote) connections.

Let us denote the estimation error as e = x− x̂. Then, from (4)
and (11), we obtain

e+
= x+

− x̂+
= (A − LC)e + Eww − LEvv, (12)

ith L designed such that A− LC is asymptotically stable. Conse-
uently, Eq. (12) represents an asymptotically stable dynamical
ystem subject to bounded disturbances.

ssumption 4. The system is in stationary operation such that
≥ k∗, with k∗

∈ N+ a finite sample by which the trajectories of
10) and (12) have converged into their respective mRPI sets.

In the sequel, an RPI zonotopic over-approximation of the
RPI set for system (12) will be denoted as E = ⟨ce,He⟩, and may
e computed through Algorithm 1 in the Appendix, obtaining

ce = Λ−1(Ewcw − LEvcv), (13a)

e,j+1 =
[
(A − LC)He,j EwHw −LEvHv

]
, (13b)

ith Λ = I − (A − LC) and (13b) representing the required
enerators matrix recursion.

.3. Anomalies detector

The presence of anomalies is monitored based on the values
dopted by the following residual vector

= y − Cx̂ = C(x − x̂) + Evv = Ce + Evv. (14)

Therefore, the healthy residual zonotopic set is given by

H = CE ⊕ EvV = ⟨chr ,H
h
r ⟩, (15)

sing the set operations (2), it follows

chr = CΛ−1(Ewcw − LEvcv) + Evcv, (16a)
h
r =

[
CHe EvHv

]
. (16b)

Hence, the following can be established

r ∈ RH H⇒ Healthy system,

otherwise H⇒ Something is wrong.

. Record phase

Two different attack scenarios are considered:

• Scenario I: the attacker has gained access to the input/
output data sent by the low-level controller to the moni-
toring center. Thus, the recorded data sets are Y ≡ {yk : k ∈

K } and U ≡ {ū : k ∈ K }.
rec k rec
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• Scenario II: the attacker is able to access only the output
sensors data, such that the recorded data set is Y ≡ {yk : k ∈

Krec}. Note that this scenario models also the case where the
monitoring center operates based on a set of input/output
sensors installed for monitoring the plant operation and the
attacker has gained access to the output sensors only. These
sensors may differ from the ones used by the controller to
close the low-level control loop.

Let us denote with the superscripts r and a the state of the sys-
em variables during the record and replay phases, respectively.
s an example, for the state variable it follows: xrk = xk ∀k ∈ Krec ,
hile xak = xk ∀k ∈ Krep.

.1. Regulatory layer

The control signal that is being injected during the record
hase ur

= ūr
+ ur

ref , encompasses the low-level control action

¯
r
= −Kzr − Kηr , (17)

ith ηr
∈ H, plus the fixed-set point reference signal ur

ref .
Therefore, the tracking error dynamics is

zr+ = xr+ − xr+ref = (A − BK )zr − BKηr
+ Ewwr . (18)

4.2. Supervisory layer

The estimator dynamics during the record phase is

x̂r+ = (A − LC)x̂r + Bur
+ Lyr , (19)

starting at the initial state x̂rk0 = x̂k0 . Accordingly, the associated
residual vector during the replay phase is

r r = yr − Cx̂r = C(xr − x̂r ) + Evv
r , (20)

which, by means of Assumption 4, satisfies

r r ∈ RH ∀k ∈ Krec . (21)

5. Attack phase

During the attack phase, the attacker replays back previous
measurements aiming to make a physical attack conducted over
the plant undetectable (cf. Section 2.3).

Assumption 5. The attacker knows the model of the system
and is capable of compromising the state variables independently
by means of an attack signal a(k) ∈ Rnx (e.g. liquid theft from
different tanks of a distribution network).

Assumption 5 is in line with the attack modeling performed
in other works like [3]. According to the time windows defined
in Section 2.3, the attack vector satisfies

a(k)
{

≠ 0 if k ∈ Kphy,

= 0 otherwise.
(22)

Following the previously presented notation, for all k ∈ Krep
we have

xa+ = Axa + Bua
+ Ewwa

+ a, (23)

starting at the initial state xak1 = xk1 . Moreover, process distur-
bances/noise satisfy wa

∈ W, va
∈ V .

Remark 1. The analysis performed below is also applicable
to the case in which a is injected through the input matrix,
i.e. substituting a in (23) with Bā (with ā ∈ Rnu ). This case would
describe cyber-attacks that modify the set-point signals sent from
the supervisory to regulatory layer.
5.1. Regulatory layer

In the considered attacks, the malicious attacker is unable to
access the dedicated network of the low-level controller, so the
control loop remains healthy.

The injected signal during the replay phase is ua
= ūa

+ ua
ref ,

with

ūa
= −Kza − Kηa, (24)

where ηa
∈ H. Besides, ua

ref denotes the reference signal that is
being sent from the supervisory layer during the replay phase.

Note that the controller capability to regulate the tracking
error is affected by the presence of a

za+ = xa+ − xa+ref = (A − BK )za + Ewwa
− BKηa

+ a, (25)

that is, since the controller remains healthy it will react to the
physical attack a.

5.2. Scenario I

The first scenario considers that the recorded data sets Y and
U are replayed back. Hence, from the supervisory layer point of
view, the received signals are ya = yr and ūa

= ūr
∀k ∈ Krep.

Accordingly, the residual vector during the replay phase is

ra = yr − Cx̂a = (yr − Cx̂r ) + (Cx̂r − Cx̂a) = r r + C(x̂r − x̂a), (26)

with the state estimator evolving according to

x̂a+ = (A − LC)x̂a + Būr
+ Bua

ref + Lyr . (27)

Let us denote by x̄ = x̂r − x̂a the difference in the estimation
between record and replay phases. Thus, comparing (19) and (27),
we obtain

x̄+
= x̂r+ − x̂a+ = (A − LC)x̄ + B∆uref , (28)

where ∆uref = ur
ref − ua

ref represents the difference in the
reference signal between the record and replay phases for a fixed
ur
ref . Since (28) is not affected by uncertainties, by denoting cx̄ = x̄

the evolution of (28) can be rewritten in zonotopic form as X̄ =

⟨cx̄, 0⟩.
Hence, taking into consideration (21), from (26) the computa-

tion of the residual set under attack is

RA = RH ⊕ CX̄ = ⟨chr ,H
h
r ⟩ ⊕ ⟨Ccx̄, 0⟩ = ⟨chr + δcr ,Hh

r ⟩, (29)

with δcr = car − chr = Ccx̄ denoting the center difference.

Definition 3. Guaranteed attack detection is achieved if and only
if RH ∩ RA = ∅ at some k ∈ Krep.

5.2.1. Steady-state analysis
The main advantage of the zonotopic invariant set analysis

is that it allows to derive analytic expressions regarding the
separability of the residual sets in order to enforce detectabil-
ity. Accordingly, below it is considered that the reference signal
imposed from the supervisory layer ua

ref is constant, and thus,
∆uref = const . since ur

ref is fixed.
Related to the set separation condition introduced in Defi-

nition 3, the zonotopic interpretation (see [30]) of Lemma 2.1
in [31], is formulated as

Lemma 1. Let Z = ⟨az + bz,Hz⟩ and Y = ⟨ay + by,Hy⟩. Then,
Z ∩ Y = ∅ if and only if ay − az /∈ ⟨bz,Hz⟩ ⊕ ⟨−by,Hy⟩.

Accordingly, the following proposition regarding the output
set-point imposed from the supervisory layer can be obtained.
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Proposition 1. Guaranteed attack detection is achieved in the
teady-state if the output set-point difference between record and
eplay phases ∆yref = yrref − yaref fulfills

∆yref /∈ ⟨0,M−1 [
Hh

r Hh
r

]
⟩, (30)

ith M = (I − CΛ−1L).

Proof. From ∆uref = const., and taking into consideration the
asymptotically stable system (28) and that δcr = Ccx̄, the dis-
placement of the residual set center settles at

δcr = car − chr = CΛ−1B∆uref . (31)

By denoting as yaref the fixed set-point generated by yaref =

(I − A)−1Bua
ref . Then, from the linearity of the reference model

6), it follows

yref = C(I − A)−1B∆uref . (32)

esides, by taking into consideration the equality
−1

= (I − A)−1
− Λ−1LC(I − A)−1, (33)

hen, using (32) and (33), (31) can be rewritten as

δcr = C((I − A)−1
− Λ−1LC(I − A)−1)B∆uref =

= (I − CΛ−1L)∆yref = M∆yref .
(34)

Therefore, by considering RH = ⟨chr ,H
h
r ⟩ and RA = ⟨chr +

δcr ,Hh
r ⟩, from Lemma 1 it follows that RH ∩ RA = ∅ if and only

if (30) is satisfied. □

Note that the vector δcr is independent of the physical attack
a, and thus its presence is masked to the supervisory layer.
Besides, for δcr = 0, the attack is completely undetectable in the
steady-state since for this case RH = RA = ⟨0,Hr⟩.

Remark 2. Based on the performed analysis, watermarking sig-
nals can be further developed by designing input sequences that
take into account the transient behavior of δcr in order to enforce
the guaranteed detection condition in Definition 3, while mini-
mizing the performance loss induced in the system operation.

5.3. Scenario II

For the second scenario, the received sensors data at the
supervisory layer are ya = yr , while the controller inputs are
received unaltered. Thus, the residual vector is

ra = yr − Cx̂a = C(xr − x̂a) + Evv
r . (35)

Denoting x̃ = xr − x̂a, its dynamics evolves according to

x̃+
= xr+ − x̂a+ = (A − LC)x̃ + B∆uref +

+ B(ūr
− ūa) + Ewwr

− LEvv
r .

(36)

Note that the evolution of (36) depends also on the dynamics
of systems (18) and (25) through the control action ūr and ūa,
respectively. Let us gather the evolution of those systems in q =[
x̃T zrT zaT

]T , such that

q+
= Θq + Πd + Σ∆uref + Φa, (37)

where vector d =
[
wrT waT vrT ηrT ηaT

]T encompasses the differ-
ent disturbances. The augmented system matrices are

Θ =

[A − LC −BK BK
0 A − BK 0
0 0 A − BK

]
, Σ =

[B
0
0

]
,

Π =

[Ew 0 −LEv −BK BK
Ew 0 0 −BK 0
0 Ew 0 0 −BK

]
, Φ =

[0
0
I

]
.

5.3.1. Steady-state analysis
An analysis similar to the one performed in Section 5.2 will

be carried out. In this regard, let us consider ua
ref to be constant

during the replay phase, i.e. ∆uref = const., and let us consider
the following assumption.

Assumption 6. The physical attack a is performed abruptly and
is kept constant over the attack set Kphy.

Consequently, at steady-state, a zonotopic over-approximation
Q = ⟨cq,Hq⟩ of the mRPI set for system (37) may be computed
through Algorithm 1, obtaining

cq =
[
I − Θ

]−1 (Πcd + Σ∆uref + Φa),

Hq,j+1 =
[
ΘHq,j Πdiag(Hw,Hw,Hv,Hη,Hη)

]
,

(38)

where cd =
[
cTw cTw cTv cTη cTη

]T and

[
I − Θ

]−1
=

⎡⎣Λ−1
−Λ−1BKΓ −1 Λ−1BKΓ −1

0 Γ −1 0
0 0 Γ −1

⎤⎦ ,

with Γ = I − (A − BK ).

Proposition 2. Guaranteed attack detection is achieved in the
steady-state if the output set-point difference ∆yref and attack vec-
tors a satisfy

M∆yref + CΛ−1BKΓ −1a /∈ ⟨0,
[
Hh

r Ha
r

]
⟩, (39)

with Ha
r = [CPHq EvHv] and P =

[
I 0 0

]
.

Proof. Given an attack vector a that satisfies Assumption 6
and ∆uref , by defining the projection matrix P =

[
I 0 0

]
, the

trajectories of (36) will converge into the zonotopic set X̃ =

PQ = ⟨cx̃,Hx̃⟩ = ⟨Pcq, PHq⟩, with

cx̃ = Λ−1(Ewcw − (BEu + LEv)cv + B∆uref + BKΓ −1a
)
. (40)

Hence, from (35), and taking into account (2), the residuals
under attack will settle in the set

RA = CX̃ ⊕ EvV = ⟨car ,H
a
r ⟩ = ⟨Ccx̃ + Evcv, [CHx̃ EvHv]⟩. (41)

Accordingly, by recalling that chr = CΛ−1(Ewcw −LEvcv)+Evcv ,
the center of the residual set under attack can be rewritten as a
function of the healthy center as car = chr + δcr , where

δcr = CΛ−1(BKΓ −1a + B∆uref ). (42)

Therefore, adapting the steps given in proof of Proposition 1,
it follows that RH ∩ RA = ∅ if and only if (39) is satisfied. □

Concerning this attack scenario, the following discussion may
be given regarding the attack detectability.

Residual set size: Note that for the attack case, the genera-
tors matrix contains additional terms with respect to the ones
included in the healthy case. This is a direct consequence of
the fact that the cause–effect relationship between the injected
control signal and the obtained measurements during the attack
is lost, i.e., the healthy control signal ūa and the replayed output
yr take independent values during the attack. The bigger size of
RA with respect to RH has two consequences: (I) it is possible to
detect the attack even without forcing the center displacement;
(II) the bigger size of the attacked set requires a bigger center
displacement in order to fulfill condition (39).

Center displacement: Note that the attack vector a appears
explicitly in the detectability condition (39). If the output set-
point is maintained constant between phases ∆yref = 0, the effect
of the injected vector a is particularly critical along the directions
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that belong to the null space of the matrix CΛ−1BKΓ −1, i.e., a ∈

(CΛ−1BKΓ −1), since these attacks would not cause a displace-
ent of δcr . In other words, a malicious attacker could carry
ut an unbounded attack a for which there are no detectability
uarantees from the defender’s point of view.
Regarding the existence of N (CΛ−1BKΓ −1), the following

roposition can be derived.

roposition 3. The dimension d of N (CΛ−1BKΓ −1) is lower
ounded by d = nx − rank(CΛ−1BKΓ −1) ≥ nx − min{rank(C),
ank(BK )}.

roof. The proof is based on well-known matrix rank properties.
et us denote X = CΛ−1, Y = BKΓ −1 such that N (CΛ−1BKΓ −1)

= N (XY ). The following holds

rank(XY ) ≤ min{rank(X), rank(Y )},
rank(X) = rank(C),
rank(Y ) = rank(BK ).

Therefore, it follows that

rank(XY ) ≤ min{rank(C), rank(BK )}.

Finally, by considering that the dimension of N (XY ) is d = nx −

rank(XY ), the proof is completed. □

Note that, given a null spaceN (CΛ−1BKΓ −1) of dimension d, a
malicious attacker could introduce an attack a ∈ N (CΛ−1BKΓ −1)
with nx − d + 1 components different that zero, i.e. the attacker
needs to have access only to nx − d + 1 states to carry out
this attack. Besides, the lower bound on d does not depend on
the supervisory observer gain L. Consequently, this motivates to
modify ∆yref in order to detect these possible unbounded attacks.

Remark 3. Note that, since the analysis developed considers the
steady-state operation of the system, the obtained expressions
are independent of the record/replay starting times.

6. Case study

The considered case study is a quadruple-tank process [32],
regulated using a low-level state estimated-feedback controller
and supervised by means of a state estimator. False data are
replayed to the anomalies detector.

Regarding the quadruple-tank system, vectors h = [h1, h2, h3,
h4]

T , u = [v1, v2]
T and y = [y1, y2]T denote the tank levels,

process inputs (voltages to the pumps) and outputs (voltages in
level measurements), respectively. The systemmodel is linearized
at the minimum-phase point (h∗, u∗), for the system parameters
presented in [32].

By performing an Euler discretization with sampling time Ts =

1s, and considering the disturbance/noise input matrices Ew =

10−3diag(5, 3, 1, 5), Ev = 10−3diag(4, 1), a discrete-time model
is obtained as
∆h+

= A∆h + B∆u + Eww,

y = C∆h + Evv,

where ∆h = h−h∗, ∆u = u−u∗. Process disturbances and sensor
noise, which take random values at each sample time within the
sets w ∈ ⟨0, I⟩ and v ∈ ⟨0, I⟩ are included in the simulations.

An LQR controller is designed with state and input weight
matrices Q = 100I and R = I . Besides, the error for the state
estimate used by the controller is constrained to η ∈ ⟨0, 10−3I⟩.

The observer in charge of the plant monitoring is also com-
puted in an optimal way following the dual LQR design with
Q = 100I R = I . Setting ϵ = 10−4, a guaranteed ϵ-approximation

for the estimation error is obtained for l ≥ 182 (see Appendix). a
Fig. 2. Residuals at the supervisory layer - Scenario I.

Fig. 3. Set-point imposed from the supervisory layer.

By performing an interval over-approximation of the healthy
residual zonotope RH , the following bounds are obtained: |r1| ≤

0.0117 and |r2| ≤ 0.0059.

6.1. Scenario I

The considered attack windows are: Krec = [100, 300] and
rep = [400, 1000]. Besides, an attack vector a = [1, 1, 1, 1]T

is injected during Kphy = Krep. Note that the replayed data
encompass the repetition of nr = 3 times the recorded data set.

The set-point differences ∆yref = [δy1, δy2]T obtained by
computing an interval overapproximation of the zonotope in
condition (30) are: |δy1| ≤ 1.984, |δy2| ≤ 1.435. This means that
y imposing a set-point difference in any of the outputs bigger
han the computed limits |δy1| and |δy2|, it can be guaranteed
hat the residual vector will exit the healthy residual set in the
teady-state.
In this regard, Figs. 2 and 3 show the system residuals and

he imposed set-point for the attack described above. The dashed
ed lines in Fig. 2 show the computed limits of the healthy resid-
al set. Note that during the time interval before the set-point
odification (yellow background), the attack remains completely
ndetectable despite the injection of vector a. Besides, it can be
een how the imposed set-point difference ∆yref = [1.99, 1.44]T
resented in Fig. 3, enforces the system residuals to exit the
ealthy residual set at steady-state.

.2. Scenario II

The considered attack windows in the simulation of Sce-
ario II are: Krec = [100, 300] and Krep = [400, 1000].
or the system under study, N (CΛ−1BKΓ −1) has a dimension

= 2. Thus, the system is attacked following the direction
=

[
−0.018 − 0.002 0.017 0

]T
∈ N (CΛ−1BKΓ −1) for the time

nterval Kphy = [500, 1000] (note that the fourth state in vector
is set to zero).



Fig. 4. System outputs during the different attack phases.

Fig. 5. Residuals at the supervisory layer - Scenario II.

Fig. 4 shows the effect that the injection of the attack a
has on the system outputs. The real outputs (in blue) are com-
pared to the replayed outputs (green). The attack a is intro-
duced incipiently in the interval [500, 750] and later main-
tained constant. Consequently, Fig. 5 plots the residual signals
generated in the supervisory layer. Since the injection of the
attack a ∈ N (CΛ−1BKΓ −1) does not displace the attack residual
center, attack detectability cannot be guaranteed unless a tem-
poral mismatch is forced in the reference signal generated at the
supervisory layer.

7. Conclusions

This work used zonotopic sets to develop a set-invariance
analysis on the detectability of replay attacks against the supervi-
sory layer using an observer-based detection scheme. In spite of
its inherent conservativeness, invariant analysis is an interesting
tool in the attack analysis, as it allows to derive analytical expres-
sions regarding attack detectability. Attack detectability when
an attacker is replaying directly false data has been analyzed. It
was shown how even in the case where the attacker is able to
replay only sensor measurements, no guarantees regarding attack
detectability can be given unless a temporal mismatch between
record and replay phases is forced by means of a signal sent from
the supervisory layer. The performed analysis serves as a basis for
the future design of efficient watermarking signals that guarantee
the attack detection during the transient, while minimizing the
performance degradation induced to the system.
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Appendix. Zonotopic ϵ-approximation of the mRPI set

Below, the computation of a zonotopic ϵ-approximation of the
mRPI set for the disturbed system (3) is discussed. This computa-
tion follows the iterative procedure used in [33] where, starting
from an initial RPI, its reachable set is computed recursively, thus
obtaining at each iteration a tighter RPI outer-approximation of
the mRPI.

Initial RPI set

Let us consider system (3) and the zero centered disturbance
δ ∈ ∆̄ = ⟨0,H∆⟩. From Theorem 1 in [34], it follows that for a
given scalar α ∈ [0, 1) there exists a finite s ∈ N+ that satisfies

AsB∆̄ ⊆ αB∆̄. (A.1)

Besides, if (A.1) is satisfied, then the zonotope ⟨0,H0⟩ with

H0 = (1 − α)−1
[BH∆ ABH∆ ... As−1BH∆], (A.2)

is an RPI set for (3). Note that the evaluation of (A.1) can be
formulated as a convex problem as proposed in [35].

For the specific case where matrix A in (3) has real eigenvalues,
a zonotopic RPI can be obtained directly by making use of the
ultimate bound analytic formula reported below.

Theorem 1 (See [33]). Consider (3) and let A = VΛV−1 be the
Jordan decomposition of A. Then the set

{x ∈ Rn
: |V−1x| ≤ (I − |Λ|)−1

|V−1B|δ̄ + θ}, (A.3)

is an RPI and it is attractive for the trajectories of (3), with θ any
(arbitrarily small) vector with positive elements and vector δ̄ with
elements δ̄i = ∥H∆i∥1.

For the case in which A has real eigenvalues, the similarity
transformation matrix is such that V ∈ Rn×n, and thus (A.3) is the
half-space representation of a paralletope, which is known to be
a first order zonotope. The relationship between a zero centered
paralletope like (A.3) and its generators representation ⟨0,H0⟩ is
formulated in [36].

Forward propagation and stopping criterion

Proposition 4 (See [33]). Consider (3) and denote as Φ0 an RPI
initial set for (3). Each of the set iterations:

Φj+1 = AΦj ⊕ B∆,

where j ∈ N denotes the jth element of the sequence, is an RPI
approximation of the mRPI set. Moreover, as j tends to infinity, the
set sequence converges to the mRPI set.

By means of the previous recursion, a certified outer ϵ-
approximation of the mRPI set Ωm can be obtained.

Theorem 2 (See Theorem 3.5 in [33]). For all ϵ > 0 there exists an
l ∈ N+ such that the following RPI outer ϵ-approximation exists:

Ωm ⊂ Φl ⊂ Ωm ⊕ Bn
p(ϵ),

n n
where Bp(ϵ) = {x ∈ R : ∥x∥p ≤ ϵ} and ∥x∥p is the p-norm.
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From Appendix A of [33], by choosing an l such that
lΦ0 ⊂ Bn

∞
(ϵ/2), (A.4)

t is guaranteed that Ωm ⊂ Φl ⊂ Ωm ⊕ Bn
∞
(ϵ). Therefore, given

an ϵ > 0, the following holds

∥AlΦ0∥∞ ≤ ∥Al
∥∞∥Φ0∥∞ < ϵ/2 → AlΦ0 ⊂ Bn

∞
(ϵ/2). (A.5)

y eigendecomposing A as A = TΨ T−1, the spectral radius of
atrix A can be expressed as ρ(A) = ∥Ψ ∥∞. Thus, ∥Al

∥∞ can be
bounded as

∥Al
∥∞ = ∥TΨ sT−1

∥∞ ≤ ∥T∥∞∥T−1
∥∞ρ(A)l. (A.6)

y replacing (A.6) in (A.5), and by computing φ = ∥Φ0∥∞ and κ =

∥T∥∞∥T−1
∥∞, an ϵ-approximation to the mRPI set is guaranteed

by choosing

l >
log(ϵ/2) − log(κφ)

log(ρ(A))
, l ∈ N+. (A.7)

Algorithm 1 summarizes the procedure for obtaining a zono-
topic ϵ-approximation of the mRPI for the system (3).
Algorithm 1 Zonotopic ϵ-approximation of the mRPI set

Input: Pair (A, B), parameter ϵ > 0 and zonotopic represen-
ation of the disturbance set ∆ = ⟨c∆,H∆⟩.

Output: Zonotopic RPI approximation X of the mRPI.
1: Compute H0 either using (A.2) or by means of (A.3)
2: Compute the spectral radius ρ(A), κ and φ = ||H0||∞
3: Compute the minimum l ∈ N+ such that

l >
(
log(ϵ/2) − log(κφ)

)
/log

(
ρ(A)

)
4: For j = 0 to j = l − 1 propagate Hj+1 = [AHj BH∆]

5: Compute the RPI set X = ⟨cx, 0⟩ ⊕ ⟨0,Hl⟩ with:
cx = (I − A)−1Bc∆
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