

EGU21-9649, updated on 09 Feb 2022 https://doi.org/10.5194/egusphere-egu21-9649 EGU General Assembly 2021 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.



## Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if Paris 2 °C is not met

**Maribel I. García-Ibáñez**<sup>1,2</sup>, Nicholas R. Bates<sup>3,4</sup>, Dorothee C.E. Bakker<sup>1</sup>, Marcos Fontela<sup>2,5</sup>, and Antón Velo<sup>2</sup>

<sup>1</sup>Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

<sup>2</sup>Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain

<sup>3</sup>Bermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, St. Georges, Bermuda

<sup>4</sup>Department of Ocean and Earth Science, University of Southampton, Southampton, UK

<sup>5</sup>Center of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal

The uptake of carbon dioxide  $(CO_2)$  from the atmosphere is changing the ocean's chemical state. Such changes, commonly known as ocean acidification, include reduction in pH and the carbonate ion concentration ([ $CO_3^{2}$ -]), which in turn lowers oceanic saturation states ( $\Omega$ ) for calcium carbonate (CaCO<sub>3</sub>) minerals. The  $\Omega$  values for aragonite ( $\Omega_{aragonite}$ ; one of the main CaCO<sub>3</sub> minerals formed by marine calcifying organisms) influence the calcification rate and geographic distribution of cold-water corals (CWCs), important for biodiversity. In this work we use high-quality data of inorganic carbon measurements, collected on thirteen cruises along the same track during 1991–2018, to determine the long-term trends in  $\Omega_{aragonite}$  in the Irminger and Iceland Basins of the North Atlantic Ocean, providing the first trends of  $\Omega_{aragonite}$  in the deep waters of these basins. The entire water column of both basins showed significant negative  $\Omega_{aragonite}$  trends between -0.0015 ± 0.0002 and -0.0061  $\pm$  0.0016 per year. The decrease in  $\Omega_{aragonite}$  in the intermediate waters, where nearly half of the CWC reefs of the study region are located, caused the  $\Omega_{aragonite}$  isolines to migrate upwards rapidly at a rate between 6 and 34 m per year. The main driver of the observed decline in  $\Omega_{aragonite}$  in the Irminger and Iceland Basins was the increase in anthropogenic CO<sub>2</sub>. But this was partially offset by increases in salinity (in Subpolar Mode Water), enhanced ventilation (in upper Labrador Sea Water) and increases in alkalinity (in classical Labrador Sea Water, cLSW; and overflow waters). We also found that water mass aging reinforced the  $\Omega_{aragonite}$  decrease in cLSW. Based on the observed  $\Omega_{aragonite}$  trends, we project that the entire water column of the Irminger and Iceland Basins will likely be undersaturated for aragonite when in equilibrium with an atmospheric mole fraction of CO<sub>2</sub> (xCO<sub>2</sub>) of ~860 ppmv, corresponding to climate model projections for the end of the century based on the highest CO<sub>2</sub> emission scenarios. However, intermediate waters will likely be aragonite undersaturated when in equilibrium with an atmospheric xCO<sub>2</sub> of ~600 ppmv, an xCO<sub>2</sub> level slightly above that corresponding to 2  $^{\circ}$ C warming, thus exposing CWCs inhabiting the intermediate waters to undersaturation for aragonite.