10th biennial PSEPB Conference

“Experimental plant biology at various scales: from molecules to environment”

Editors
Jolanta Kwaśniewska and Justyna Wróbel-Marek

September 20–23, 2021
Katowice, Poland
Session 2: Cell structure, function and bioimaging
Chairs: Magdalena Krzesłowska, Marta Lenartowska

10:20–12:35 Invited lectures
 Jordi Chan

 Juan de Dios Alchê

11:20–11:50 Plasmodesmata: new insights and tools to dissect their function in plant development.
 Yoselin Benitez-Alfonso

11:50–12:20 Live cell and deep tissue imaging during plant-microbe interactions and plant development.
 Ton Timmers

12:20–12:35 In-depth TEM characterization of male sterile mutants in barley (*Hordeum vulgare*).
 Ulla Neumann

12:35–13:00 Break

13:00–15:00 Oral presentation session
13:00–13:15 Mapping the regions of PLASTID MOVEMENT IMPAIRED 1 protein responsible for the regulation of chloroplast movement.
 Olga Sztatelman

13:15–13:30 Molecular architecture of wood: from sugars to trees.
 Jan Łyczakowski

 Michał Bykowski

13:45–14:00 Topology of ER PINs: PIN5 versus PIN8 “the Heads and Tails” of Auxin Flux?
 Yewubnesh Seifu

14:00–14:15 Break

14:15–14:30 Cell-to-cell communication via endomembrane system in wood of angiosperm tree species.
 Katarzyna Sokolowska

14:30–14:45 Nuclear retention of mRNAs as post-transcriptional regulation of gene expression in plants.
 Agnieszka Kołowerzo-Lubnau

14:45–15:00 The nuclear spatial arrangement of maize chromosome introgressions into oat.
 Dominika Idziak-Helmcke

Session 2: Invited lecture
15:00–15:30 The role of plasmodesmata in plant development and during biotic and abiotic stress.
 Jung-Youn Lee

15:30–15:35 Session summary

15:35–16:05 Break

16:05–17:05 Poster Session 2

Session 3: Plant epigenetics
Chairs: Piotr Ziolkowski, Szymon Świeżewski

17:05–18:05 Invited lectures
17:05–17:35 Genetic conflicts and seed development.
 Mary Gehring

17:35–18:05 Linker histones - their roles beyond the chromatin architecture.
 Kinga Rutowicz

18:15–20:00 Executive Committee and Board Members Meeting
Imaging ROS/NO production and homeostasis in plant reproductive biology

IL2.01

Juan de Dios Alché*, Adoración Zafra, Maria José Jiménez-Quesada, Elena Lima-Cabello, Jose Carlos Jimenez-Lopez, Antonio Jesús Castro

* Plant Reproductive Biology and Advanced Imaging Laboratory, Estación Experimental del Zaidín, CSIC, Granada, Spain

Abstract:
Reactive oxygen species (ROS) and nitric oxide (NO) are widely present in plant reproductive tissues, and are involved in the signalling processes taking place during the numerous interactions occurring at different levels in this process. We have used flowers of Olea europaea L. (olive tree) at different stages, and identified the localization of hydrogen peroxide (H$_2$O$_2$), superoxide (O$_2^-$) and nitric oxide (NO) in the developing anthers, pollen grains and stigmatic surface with the aid of histochemical stains and DCFH$_2$-DA, DHE and DAF-2DA fluorochromes for CLSM localization, as well as treatment with ROS and NO scavengers and a NO donor [1]. Moreover, we used the NO fluorescent probe DAF-2DA to image NO production in situ, which was correlated to pollen viability by using propidium iodide in double-labelling experiments [2].

The results obtained clearly demonstrate that both ROS and NO are produced in the olive reproductive organs in a stage- and tissue- specific manner, with enhanced production of NO by pollen grains and tubes during the receptive phase, and a decrease in the presence of ROS over the stigmatic surface when NO is actively produced.

This study was supported by ERDF-co-funded projects. CA8313, P18-RT-1577 (Junta de Andalucía), RTC-2016-4824-2, RTC-2017-6654-2 (Programa Retos-Colaboración); 09021200008 (contrato de apoyo tecnológico CSIC), BFU2016-77243-P, PID2020-113324GB-100 (Plan Nacional I+D). AZ thanks the JAE-CSIC program and the Agrifood Campus of International Excellence ceiA3 for the grant funding kindly provided.

Keywords:
gynoecium; NO; pollen; ROS; signaling