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Abstract 22 

Identifying the drivers of the response of soil microbial respiration to warming is 23 

integral to accurately forecasting the carbon-climate feedbacks in terrestrial 24 

ecosystems. Microorganisms are the fundamental drivers of soil microbial respiration 25 

and its response to warming; however, the specific microbial communities and 26 

properties involved in the process remain largely undetermined. Here, we identified 27 

the associations between microbial community and temperature sensitivity (Q10) of 28 

soil microbial respiration in alpine forests along an altitudinal gradient (from 2974 to 29 

3558 m) from the climate-sensitive Tibetan Plateau. Our results showed that changes 30 

in microbial community composition accounted for more variations of Q10 values than 31 

a wide range of other factors, including soil pH, moisture, substrate quantity and 32 

quality, microbial biomass, diversity and enzyme activities. Specifically, co-occurring 33 

microbial assemblies (i.e., ecological clusters or modules) targeting labile carbon 34 

consumption were negatively correlated with Q10 of soil microbial respiration, 35 

whereas microbial assemblies associated with recalcitrant carbon decomposition were 36 

positively correlated with Q10 of soil microbial respiration. Furthermore, there were 37 

progressive shifts of microbial assemblies from labile to recalcitrant carbon 38 

consumption along the altitudinal gradient, supporting relatively high Q10 values in 39 

high-altitude regions. Our results provide new insights into the link between changes 40 

in major microbial assemblies with different trophic strategies and Q10 of soil 41 

microbial respiration along an altitudinal gradient, highlighting that warming could 42 
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have stronger effects on microbially-mediated soil organic matter decomposition in 43 

high-altitude regions than previously thought. 44 

Keywords 45 

Soil microbial respiration; temperature sensitivity; microbial community composition; 46 

ecological clusters; altitudinal gradient; Tibetan Plateau 47 
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1. Introduction 48 

Soil contains about three times the carbon (C) stored in the atmosphere, and the 49 

release of C from soil through microbial respiration is a major component of global 50 

CO2 fluxes (Guo et al., 2020; Raich and Potter, 1995; Raich and Schlesinger, 1992). 51 

Consequently, changes in soil microbial respiration could have profound effects on 52 

atmospheric CO2 concentration, and thus affect future climate trajectories (Dacal et al., 53 

2019; Wang et al., 2018). Soil microbial respiration is susceptible to temperature 54 

fluctuations (Bradford et al., 2019; Li et al., 2021b; Wang et al., 2016), with the 55 

respiration rates commonly increasing with rising temperature (Karhu et al., 2014). 56 

The response of soil microbial respiration to temperature changes is usually 57 

represented by the term temperature sensitivity or Q10, quantified by the relative 58 

increase in respiration rate with each 10 °C rise in temperature (Davidson and 59 

Janssens, 2006; Xu et al., 2021; Yu et al., 2017). The Q10 value is a crucial parameter 60 

in benchmarking the magnitude and direction of terrestrial soil C-climate feedbacks 61 

(Davidson and Janssens, 2006; Li et al., 2020a). However, the magnitude of this 62 

feedback remains uncertain due to the different effects of biotic and abiotic factors 63 

(such as microbial activities, substrate quantity and quality) on soil respiration (Dacal 64 

et al., 2019; Wang et al., 2018). In particular, microbial communities are the 65 

fundamental drivers of soil microbial respiration (Bradford et al., 2019; Liu et al., 66 

2018b; Wang et al., 2020b); however, the role of soil microbial communities in 67 
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regulating the response of soil microbial respiration to warming remains largely 68 

unclear. 69 

A growing body of literature has demonstrated that temperature sensitivity of soil 70 

microbial respiration is significantly related to important microbial community-level 71 

properties, including the biomass and physiology (Bradford et al., 2019; Wang et al., 72 

2018). For example, microbial biomass C (MBC) has been confirmed to have a 73 

positive correlation with temperature sensitivity of soil microbial respiration (Čapek 74 

et al., 2019). In addition, physiological features of microbial community, such as 75 

extracellular enzymatic activities, have also been quantitatively linked to the response 76 

of soil microbial respiration to temperature changes (Chen et al., 2018; Wang et al., 77 

2020a). Recent studies suggest that physiological activities at the community level 78 

were dominantly determined by the composition of microbial communities (Monteux 79 

et al., 2018; Wieder et al., 2014). Different microbial taxa decompose various organic 80 

matter fractions at different rates and can fundamentally alter the response of soil 81 

microbial respiration to warming (Bai et al., 2017; Luo et al., 2020; Wang et al., 2021). 82 

For instance, some specific bacteria (e.g., Chlamydiae and Planctomycetia) and fungi 83 

(e.g., Agaricomycetes and Mucoromycotina) are considered as main decomposers of 84 

recalcitrant C, while other taxa such as Tremellomycetes and Pezizomycotina can 85 

prefer utilizing labile C (Hale et al., 2019; Sun et al., 2020). Similarly, the specific 86 

trophic patterns of soil microbes, such as r-strategists and K-strategists, can also affect 87 

temperature sensitivity of soil microbial respiration due to differences in substrate 88 
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preference and C use efficiency (Bai et al., 2017; Li et al., 2021a; Luo et al., 2020). 89 

However, soil respiration is generally considered as a “broad biological process” 90 

involving a wide array of microbial taxa, metabolic reactions, and associated genes, 91 

hence precluding targeting the taxa involved with classical molecular approaches 92 

(Banerjee et al., 2016; Crowther et al., 2019). Therefore, detailed information on 93 

specific microbial taxa that drive the responses of soil microbial respiration to 94 

warming is still lacking. Unraveling the major microbial assemblies (groups) 95 

associated with temperature sensitivity of soil microbial respiration is fundamental to 96 

better forecasting the C-climate feedbacks in a warmer planet. 97 

Here, we aimed to (1) investigate the associations between soil microbial 98 

community composition and temperature sensitivity of soil microbial respiration, and 99 

(2) identify major microbial assemblies associated with temperature sensitivity of soil 100 

microbial respiration. We hypothesized that (1) shifts of soil microbial community 101 

composition accounted for a large proportion of variations in temperature sensitivity 102 

of soil microbial respiration; (2) particular ecological assemblies including co-103 

occurring microbial taxa had strong links with the temperature sensitivity of soil 104 

microbial respiration. To test our hypotheses, we collected soil samples from 27 sites 105 

along an altitudinal gradient on the Tibetan Plateau. This region is regarded as the 106 

Earth’s largest and highest plateau with relatively pristine environment and high 107 

sensitivity to climate change (Dong et al., 2020; Li et al., 2019). It has been reported 108 

that the region is undergoing a more rapid warming than other parts of the world 109 
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(Zhao et al., 2017), thus the responses of multiple ecosystem process to warming in 110 

this region is currently receiving great attention (Ma et al., 2020a; Xu et al., 2021). 111 

There were drastic changes of climatic, biotic and abiotic environmental conditions 112 

over short vertical distances (Zeng et al., 2016). Moreover, soil microbial 113 

communities had been reported to vary significantly with abiotic factors (such as soil 114 

pH, moisture, and substrate availability etc.) along altitudinal gradient of the plateau 115 

(Li et al., 2019; Shen et al., 2019; Wang et al., 2017). Therefore, it provides an ideal 116 

natural platform for exploring the effect of soil microbial community on temperature 117 

sensitivity of soil microbial respiration. We evaluated the associations between soil 118 

microbial community-level properties (biomass, enzyme activities, bacterial and 119 

fungal diversity and community composition) and the temperature sensitivity of soil 120 

microbial respiration. Further, we identified the major microbial assemblies associated 121 

with the response of soil microbial respiration to temperature changes by constructing 122 

co-occurrence networks. The results of this study hold the potential in improving 123 

prediction of terrestrial C turnover in response to global climate changes. 124 

2. Materials and Methods 125 

2.1 Study area and field sampling 126 

The study was conducted along an altitudinal gradient in Nyingchi Prefecture on the 127 

southeastern Tibetan Plateau (29°34′-29°37′ N, 94°19′-94°22′ E) (Fig. S1). The 128 

altitude ranges from 2974 to 3558 m, with mean annual temperature declining 129 
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significantly (R2 = 0.86) from 8.6 to 4.7 °C along increasing altitude according to 130 

WorldClim (http://www.worldclim.org). The mean temperature in the growing season 131 

(between June and August) declined from approximately 19 to 6 °C with increasing 132 

altitude (Chen et al., 2014; Zhuo et al., 2010). Mean annual precipitation ranges from 133 

680 to 1134 mm, with the most of precipitation occurring in July and August (Chen et 134 

al., 2014; Liang et al., 2009). The major ecosystem types changed from the temperate 135 

coniferous and broadleaved mixed forests (dominated by Quercus aquifolioides and 136 

Populus simonii) to frigid dark coniferous forests (dominated by Pinus densata and 137 

Picea likiangensis var. linzhiensis) with increasing altitude. Other coexisting plant 138 

species mainly included Rhododendron triflorum Hook., Caragana franchetiana 139 

Kom., Iris latistyla and Anemone rivularis. The dominant soil types belong to 140 

Luvisols and Cambisols based on World Reference Base for Soil Resources (IUSS 141 

Working Group WRB, 2007). Twenty-seven sites were selected in alpine forests along 142 

the altitudinal gradient in August 2018. At each site, a 50 m × 50 m plot was selected 143 

and then five 1 m × 1 m sub-plots were set up to represent five replicates. Composite 144 

soil samples (0-10 cm, from five soil cores) were collected from the understory or 145 

adjacent open grasslands of each sub-plots. Collected soil samples were immediately 146 

transported to the laboratory on ice. The stones and roots were carefully picked out, 147 

and then the soil samples were divided into two portions. One was stored at −20 °C 148 

for the analyses of microbial community (i.e., Miseq Illumina sequencing), and the 149 

other portion was stored at 4 °C for the analyses of enzyme activities and Q10 of soil 150 

http://www.worldclim.org/
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microbial respiration. 151 

2.2 Analyses of soil chemical and microbial properties 152 

Soil pH was determined at a ratio of soil to water ratio of 1: 2.5 (w/v) by a glass 153 

electrode. Soil moisture was measured by oven-drying fresh soil for 24 h at 105 °C. 154 

Soil organic carbon (SOC) content was determined by the K2CrO7 oxidation titration 155 

method (Walkley, 1947). Soil total nitrogen (TN) was directly quantified by an 156 

elemental analyzer (Vario PYRO Cube, Elementar, Germany). Dissolved organic 157 

carbon (DOC) was extracted with deionized water at a ratio of 1:4 (w/v), and then 158 

filtered through a 0.45 μM Millipore filter. The concentrations of DOC in the extracts 159 

were analyzed using a TOC Analyzer (vario TOC, Elementar, Germany). Labile and 160 

recalcitrant fractions of SOC were measured using a two-step acid hydrolysis method 161 

(Rovira and Vallejo, 2008; Wu et al., 2018). Briefly, 0.5g of soil was hydrolyzed with 162 

25 mL of 2.5 M H2SO4 at 105 °C for 30 min. The residue decanted by centrifuging 163 

was washed twice with water and dried at 60 °C. The dried residue was re-hydrolyzed 164 

with 2 mL of 13 M H2SO4 at 105 °C for 3 h, washed and then dried. The C content in 165 

this fraction was measured using an elemental analyzer (Vario PYRO Cube, 166 

Elementar, Germany) as recalcitrant C (ROC). The labile C (LOC) was calculated by 167 

subtraction of ROC from total SOC. 168 

Microbial biomass C was determined using the fumigation-extraction methods 169 

(Vance et al., 1987). Soil enzyme activities involved in C cycling, including α-1,4-170 
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glucosidase (AG), β-1,4-glucosidase (BG), cellobiohydrolase (CBH) and xylanase 171 

(XYL), were estimated by a fluorimetric microplate method (Marx et al., 2001). 172 

Briefly, 0.5 g of fresh soil was blended in 50 mL of deionized water for 15 min. Then 173 

each aliquot of soil homogenate was mixed with 100 μL of fluorometric substrate 174 

solution (200 μmol L-1) and 50 μL of acetate buffer (0.2 mol L-1, pH 5.5). Microplates 175 

were then incubated for 3 h at 30 °C (Feng et al., 2018). The released fluorescence 176 

was measured using a multifunctional fluorimetric plate reader (Tecan Spark™ 10M, 177 

Männedorf, Switzerland) with 360 nm excitation and 450 nm emission filters. The 178 

activities were expressed as nmol g-1 soil h-1. 179 

2.3 Measurements of temperature sensitivity of soil microbial respiration 180 

Temperature sensitivity of soil microbial respiration was estimated using a short-term 181 

incubation method following many other studies (Liu et al., 2017; Wang et al., 2018). 182 

Specifically, all soil samples were incubated for 14 days at 10 °C and 20 °C, 183 

respectively, following the approximate air temperature ranges of growing season at 184 

our study sites (Li et al., 2021a; Zhang et al., 2020). We selected 14 days short-term 185 

aerobic incubation following previous studies to prevent significant changes in 186 

microbial community composition (Li et al., 2019; Zhang et al., 2020), as the legacy 187 

effects of environmental factors on soil microbial communities may last for years 188 

(Averill et al., 2016; Rousk et al., 2013). Our evaluation of Q10 can, at least potentially, 189 

reflect the responses of soil microbial respiration to temperature changes, as done in 190 

many previous studies (Guo et al., 2020; Johnston and Sibly, 2018; Xu et al., 2021). 191 
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The fresh soil sample (10 g, equivalent dry weight) was placed in a 250 mL 192 

incubation bottle (three replicates for each soil) and adjusted to 60% water holding 193 

capacity (WHC), which is well-suited for microbial respiration (Li et al., 2020b). The 194 

experimental bottles were sealed using parafilm with small holes for ventilation and to 195 

reduce water loss (Wang et al., 2018). In total, 162 incubations were performed, 196 

including 27 sites × 2 incubation temperatures × 3 replicates. During the incubation, 197 

soil WHC was maintained by adding deionized water based on the weighing method 198 

at intervals of 3-4 days (Liu et al., 2017). After 14-days incubation, we measured soil 199 

respiration rates of all incubation bottles. Before the incubation bottles were sealed, 200 

ambient air was continuously passed through the headspace of bottles for 201 

approximately 30 minutes by an air distribution system. After achieving the 202 

equilibrium stage, the incubation bottles were sealed, and 6 mL headspace samples 203 

were collected by plastic syringes. We additionally compared the CO2 concentrations 204 

in the bottle headspace with the ambient air, and found no significant differences 205 

between them (P > 0.05). Moreover, the amounts of CO2 in the headspace of different 206 

bottles at the time of sealing were comparable to those in the ambient air. We also 207 

conducted a pre-experiment to evaluate the effect of sampling time on the rates of soil 208 

respiration. We found that the concentration of CO2 increased linearly over 0-5 h 209 

sampling period at both 10 °C and 20 °C incubation (Fig. S2; R2 = 0.83 ~ 0.99), 210 

indicating that CO2 was produced at a relatively constant rate during the sampling 211 

period. Therefore, we evaluated the soil microbial respiration rate based on the 212 
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measurement of CO2 concentrations at 0 and 2 h, as done in previous studies (Chen et 213 

al., 2019; Li et al., 2020c). After 2 hours incubation, the headspace sample of each 214 

bottle was collected again. The concentrations of CO2 were analyzed by gas 215 

chromatography (Agilent 7890A, Agilent Technologies, USA). The rate of soil 216 

microbial respiration was calculated using Eqs. (1) (Shaaban et al., 2016): 217 

Rs = ρ × V / W × ∆c / ∆t × 273 / (T + 273)        (1) 218 

where Rs is the soil microbial respiration rate (mg kg-1 h-1); ρ is CO2 density at 219 

standard conditions (g L-1); V is the volume of the incubation bottle (L), W is soil dry 220 

weight (g), ∆c is the gas production during the sealed 2 h (mg kg-1), ∆t is the sealed 221 

time for gas production (h), and T is the incubation temperature (°C). 222 

The Q10 of soil microbial respiration was calculated using Eqs. (2) (Hicks Pries 223 

et al., 2017):  224 

Q10= (
R(T2)

R(T1)
)

10

(T2-T1)
        (2) 225 

where R(T2) and R(T1) are the CO2 production rates (mg kg-1 h-1) in the two 226 

incubation temperatures T1 and T2 (°C), respectively. 227 

2.4 Soil microbial community analysis 228 

Soil DNA was extracted from 0.25 g of fresh soil stored at −20 °C using the MoBio 229 

Power Soil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according 230 

to the manufacturer’s instructions. The V3-V4 region of the bacterial 16S rRNA gene 231 
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and ITS of fungi were amplified using primers 338F/806R (ben Omar and Ampe, 232 

2000; McBain et al., 2003) and ITS1F/ITS2R (Gardes and Bruns, 1993; White et al., 233 

1990), respectively. The purified amplicons with different barcodes were equimolarly 234 

mixed, and 2 × 300 bp paired-end sequencing was carried out on an Illumina Miseq 235 

sequencer (Illumina, Inc., San Diego, CA, USA). The raw sequence data were 236 

processed using QIIME 1.7.0. The quality-filtered sequences were clustered and 237 

operational taxonomic units (OTUs) were generated according to the 97% sequence 238 

similarity (Metcalf et al., 2016). The diversity (Shannon index) and community 239 

composition of bacteria and fungi were calculated based on 97% OTUs similarity of 240 

obtained sequences. 241 

2.5 Microbial co-occurrence network analysis 242 

We constructed a co-occurrence network based on the relative abundances of bacterial 243 

and fungal OTUs, and then identified main ecological clusters (modules) of strongly 244 

associated OTUs as defined in Delgado-Baquerizo et al. (2020). To reduce rare OTUs 245 

in the data set, the OTUs with a relative abundance more than 0.01% were chosen 246 

(Ma et al., 2016), resulting in a dataset with 2340 taxa including 1433 bacterial and 247 

907 fungal phylotypes (the operational taxonomic units or OTUs). We then calculated 248 

Spearman correlation coefficients between all the OTUs using the “WGCNA” 249 

package in R 4.0.2 (http://cran.r-project.org/) (Langfelder and Horvath, 2012). To 250 

reduce the chances of obtaining false positive results, the Benjamini and Hochberg 251 

FDR was used to adjust all P-values (Benjamini et al., 2006), as implemented in the 252 

http://cran.r-project.org/
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“multtest” R package (Pollard et al., 2005). Robust correlations with the Spearman 253 

correlation coefficients > 0.60 and FDR adjusted P-value < 0.01 were used to 254 

construct the network. The network was visualized by the interactive Gephi platform 255 

(https://gephi.org/). The nodes in this network represent the OTUs and the edges 256 

represent the significant correlations between different OTUs. We used default 257 

parameters from Gephi to identify modules and the modularity reached 0.658 (values > 258 

0.4 suggest that the network has a modular structure; Shi et al., 2016). The relative 259 

abundance of each module was calculated by averaging the standardized relative 260 

abundances (z-score) of the taxa that belong to each module (Liu et al., 2018a). We 261 

also calculated the degree (i.e., the number of connections for each node) of each node 262 

in the co-occurrence network by Gephi (Jiao et al., 2020). Nodes with high degree 263 

values were considered as keystone taxa in the co-occurrence network (Zhang et al., 264 

2019). 265 

2.6 Statistical analysis 266 

The microbial community composition was determined by using the two axes of a 267 

non-metric multidimensional scaling (NMDS) analysis based on the Bray-Curtis 268 

dissimilarity matrix. Mantel test was used to test the statistical differences in 269 

microbial community composition along the altitudinal gradient, using “vegan” R 270 

package (Oksanen et al., 2016). We used correlation analysis to identify the 271 

relationships between Q10 of soil microbial respiration, soil properties and microbial 272 

community-level properties. We then conducted Random Forest machine learning 273 

https://gephi.org/
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analysis to identify the significant environmental and microbial predictors of Q10 of 274 

soil microbial respiration using the “rfPermute” R package. We compared the 275 

percentage increases in the mean squared error (%IncMSE) of Q10 values to estimate 276 

the importance of different variables, with higher %IncMSE indicating more 277 

important variables. After that, we used regression analysis to further evaluate the 278 

relationships between Q10 of soil microbial respiration and main environmental and 279 

microbial factors. 280 

Structural equation modeling (SEM) was conducted to evaluate the direct and 281 

indirect associations between altitude, soil and microbial properties and Q10 of soil 282 

microbial respiration. A prior model was established according to the known 283 

relationships between environmental variables and Q10 of soil microbial respiration 284 

(Banerjee et al., 2016; Dong et al., 2020; Feng et al., 2017) (Fig. S3). We considered 285 

that (1) altitude could drive Q10 of soil microbial respiration directly, and indirectly 286 

through impacting soil and microbial properties; (2) soil properties could indirectly 287 

drive Q10 of soil microbial respiration through microbial properties; (3) particular 288 

microbial assemblies (i.e., modules) including co-occurring microbial taxa could also 289 

directly affect Q10 of soil microbial respiration. Because the activities of four enzymes 290 

(AG, BG, CBH and XYL) were highly positively correlated (Table S1), we used a 291 

principal component analysis (PCA) to simplify the model and reduce the 292 

multicollinearity (Delgado-Baquerizo et al., 2016). The first component extracted 293 

from four enzymes (Enzyme) explained 81% of the total variance and was thus 294 



 

16 
 

considered as the representative of the overall variation in enzyme activities. The 295 

maximum likelihood method was used for parameter estimations (Boldea and Magnus, 296 

2009). There is no universally accepted single test of overall goodness of fit for SEM. 297 

We used two goodness of fit measures of the model including (1) the chi-squared test 298 

(χ2; the model has a good fit when 0 ≤ χ2/df ≤ 2 and 0.05 < P ≤ 1.00, and acceptable 299 

fit when 2 < χ2/df ≤ 3 and 0.01 ≤ P ≤ 0.05) and (2) the root mean square error of 300 

approximation (RMSEA; the model has a good fit when 0 ≤ RMSEA ≤ 0.05 and 0.10 301 

< P ≤ 1.00, and acceptable fit when 0.05 < RMSEA ≤ 0.08 and 0.05 ≤ P ≤ 0.10) 302 

(Delgado-Baquerizo et al., 2017). With a good model fit, we were free to interpret the 303 

path coefficients of the model and their associated P values. Meanwhile, we also 304 

calculated the standardized total effects of altitude, soil and microbial properties on 305 

the Q10 values. All the SEM analyses were performed using AMOS 17.0 (SPSS Inc., 306 

Chicago, IL, USA). 307 

3. Results 308 

3.1 Variations in temperature sensitivity of soil microbial respiration along the 309 

altitudinal gradient 310 

The results of regression analysis showed that Q10 of soil microbial respiration 311 

increased significantly along the altitudinal gradient (P < 0.001; Fig. 1). We found 312 

significant variations in soil pH (P = 0.003), moisture (P < 0.001), and substrate 313 

quantity (SOC, DOC, P < 0.001; TN, P = 0.011) and quality (C/N, P = 0.009; 314 



 

17 
 

LOC/ROC, P = 0.012; Fig. S4) along the altitudinal gradient, which were 315 

significantly correlated with Q10 of soil microbial respiration excluding pH and 316 

LOC/ROC (P < 0.05; Fig. 2b and S5). Specifically, Q10 of soil microbial respiration 317 

correlated positively with soil moisture (P = 0.004), carbon and nitrogen content 318 

(SOC, P = 0.026; TN, P = 0.023; DOC, P = 0.047) and C/N ratio (P = 0.041). 319 

3.2 Relationships between temperature sensitivity of soil microbial respiration and 320 

microbial properties at the community level 321 

The Q10 values of soil microbial respiration were generally correlated with microbial 322 

community-level properties (Fig. S6). Specifically, Q10 values were positively 323 

correlated with MBC and enzyme activities, including BG, CBH, and XYL (P < 0.05). 324 

More importantly, both Random Forest machine learning analyses and correlation 325 

analysis consistently indicated that bacterial community composition 326 

(Bacteria_NMDS2) and fungal diversity (Fungi_shannon) explained the highest 327 

proportion of variations in Q10 values (Fig. 2 and S6). However, the proportion of 328 

most dominant bacterial and fungal phyla, except for Mortierellomycota, had no 329 

significant associations with the Q10 values (P > 0.05; Table S2). Additionally, these 330 

microbial properties at the community level varied significantly along the altitudinal 331 

gradient (Fig. S7 and S8). In brief, microbial biomass (MBC, P = 0.02) and enzyme 332 

activities (AG, P = 0.041; XYL, P = 0.02) showed overall increasing trends as the 333 

altitude increased (Fig. S7), while bacterial and fungal diversity (Shannon) declined 334 

significantly with the increasing altitude (P < 0.05; Fig. S8). Mantel test and 335 
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correlation analysis consistently indicated that bacterial and fungal community 336 

composition also varied significantly along the altitude (P < 0.05; Fig. S6 and S9). 337 

3.3 Microbial assemblies and their relationships with temperature sensitivity of soil 338 

microbial respiration 339 

Soil bacterial and fungal taxa within the co-occurrence network could be grouped into 340 

eight major ecological modules (with nodes > 2, Fig. 3a). Among them, the relative 341 

abundances of module #1 and #8 decreased with the increasing altitude, while module 342 

#4 and #5 showed the opposite patterns (Fig. S10). Results of Random Forest 343 

machine learning analysis indicated that module #1 and #4 were significant predictors 344 

(P < 0.05) of the Q10 of soil microbial respiration, even considering other 345 

environmental factors (i.e., soil and microbial community-level properties; Fig. S11 346 

and S12). Further regression analysis showed that the Q10 values were correlated 347 

negatively with the relative abundance of module #1 but positively with that of 348 

module #4 (Fig. 3b). The module #1 was dominated by Alphaproteobacteria (e.g., 349 

Sphingomonas, Methylobacterium and Nordella), Actinobacteria (e.g., Conexibacter 350 

and Arthrobacter), Ascomycota (e.g., Cladophialophora and Knufia). The dominant 351 

phylotypes within module #4 were Acidobacteria (e.g., RB41), Deltaproteobacteria 352 

(e.g., Haliangium), Basidiomycota (e.g., Clavaria). The keystone taxa in module #1 353 

included Sphingomonas, Blastococcus and Skermanella etc., and those in module #4 354 

included RB41, Xylophilus, Castanediella etc. (Fig. 3c, Table S3). 355 
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3.4 The role of soil microbial communities in driving temperature sensitivity of soil 356 

microbial respiration 357 

Our SEM analysis provided further statistical evidence that Q10 of soil microbial 358 

respiration had a strong link with microbial properties when we concurrently 359 

considered microbial community-level properties and other environmental properties 360 

such as pH, moisture, SOC, TN, DOC, C/N and LOC/ROC in the model (Fig. 4). 361 

Importantly, ecological module abundances explained the highest proportion of 362 

variations in Q10 of soil microbial respiration, with module #1 showing the largest 363 

total standardized effect (sum of direct and indirect effects) on the Q10 values. 364 

Specifically, the relative abundance of module #1 was directly and negatively 365 

associated with the Q10 values, while module #4 had a direct and positive relationship 366 

with Q10 values. In contrast, soil properties were indirectly related to the Q10 of soil 367 

microbial respiration through ecological modules and microbial diversity. However, 368 

we did not observe significant associations of MBC and enzyme activities with Q10 of 369 

soil microbial respiration according to the model. 370 

4. Discussion 371 

Our study provided empirical evidence for the important associations between soil 372 

microbial community composition and the temperature sensitivity of soil microbial 373 

respiration in alpine forests along the altitudinal gradient from the climate-sensitive 374 

Tibetan Plateau. Particularly, shifts in microbial community composition were more 375 
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closely related to temperature sensitivity of soil microbial respiration than other 376 

environmental factors such as soil pH, moisture, and substrate quantity and quality. 377 

More importantly, we identified major microbial assemblies (ecological clusters or 378 

modules) with different trophic strategies that were significant predictors of the 379 

temperature sensitivity of soil microbial respiration, providing unique information on 380 

microbial taxa potentially associated with the response of soil microbial respiration to 381 

temperature changes. Further, progressive shifts of microbial assemblies dominated 382 

by the taxa preferentially utilizing labile C or recalcitrant C could be major regulators 383 

of variations in temperature sensitivity of soil microbial respiration along the 384 

altitudinal gradient. These findings advance our understanding of the feedbacks of 385 

terrestrial C cycles to global climate changes. 386 

The increased Q10 values with the increasing altitude indicate that soil microbial 387 

respiration is more sensitive to temperature changes in cold high-altitude regions. This 388 

is in concordance with previous studies on different latitudinal and altitudinal 389 

gradients with distinct temperature patterns (Gutiérrez-Girón et al., 2015; Liu et al., 390 

2017; Wang et al., 2018). Consistent with our first hypothesis, we observed that the 391 

variations in the Q10 values along the altitudinal gradient largely depend on soil 392 

microbial community-level properties according to our combined analyses of SEM 393 

and Random Forest machine learning. Particularly, our findings highlight the 394 

important role of microbial community composition in driving Q10 of soil microbial 395 

respiration. Recent studies demonstrated that harsh environments (such as low 396 
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substrate quality and temperature) at high-altitude areas could favor the prevalence of 397 

particular microbial taxa that adapted to cold and oligotrophic conditions (Feng et al., 398 

2017; Karhu et al., 2014; Malik et al., 2020b), and further shift microbial community 399 

by deterministic processes (Xun et al., 2019). Similarly, our results showed that 400 

substrate quality decreased (i.e., increased C/N ratio and decreased LOC/ROC ratio) 401 

with increasing altitude, which supported unique microbial communities responsible 402 

for the decomposition of low-quality C (e.g., phenolic and aromatic compounds 403 

commonly with high C/N ratio) at the high-altitude areas (Ali et al., 2018; Liu et al., 404 

2017). Apart from soil substrate quality status, the altitude-induced changes in 405 

temperature could also influence soil microbial communities. Previous studies have 406 

suggested that shifts of microbial community composition responding to altitude were 407 

often dependent on temperature variations (Frindte et al., 2019; Ren et al., 2021). For 408 

instance, decreased temperature along increasing altitude would favor the dominance 409 

of fungal communities that preferentially utilize recalcitrant C, as lower temperature 410 

was more optimal for fungal growth compared with bacteria (Cheng et al., 2021; 411 

Whitaker et al., 2014). According to the C quality temperature hypothesis, the 412 

decomposition of low-quality substrate (recalcitrant C) is more sensitive to 413 

temperature changes than the high-quality substrate (labile C) because of its higher 414 

activation energy (Lefevre et al., 2014; Wang et al., 2018). Thus, the increased Q10 of 415 

soil microbial respiration could be partly attributed to the shifts in microbial 416 

community composition that subjected to the decreased substrate quality and 417 
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temperature along the altitudinal gradient. This is evident by the strong associations 418 

between altitude, soil C/N and LOC/ROC ratios and microbial community structure, 419 

which is in accordance with previous studies (Ding et al., 2015; Fanin and Bertrand, 420 

2016; Frindte et al., 2019). Our study also presents that the decreased fungal diversity 421 

had a direct relationship with the increased Q10 values along increasing altitude, 422 

further indicating that microbial communities shaped by environmental selection 423 

contribute to temperature sensitivity of soil microbial respiration. Furthermore, 424 

changes in other factors (such as SOC, TN, MBC, enzyme activities etc.) along the 425 

altitudinal gradient may also affect Q10 (Čapek et al., 2019; Chen et al., 2018; Li et al., 426 

2020c). However, our SEM suggested no significant direct associations of these 427 

factors with Q10 of soil microbial respiration, emphasizing the importance of 428 

microbial community composition for predicting temperature sensitivity of soil 429 

microbial respiration. 430 

It is thus essential to unravel the taxonomic attributes of the microbes involved in 431 

C metabolisms, although identifying the taxa responsible for the Q10 variations 432 

remains challenging. Soil respiration is generally considered as a “broad biological 433 

process” involving a wide array of microbial taxa in terrestrial ecosystems (Banerjee 434 

et al., 2016; Crowther et al., 2019). Further, different microbial taxa may utilize 435 

resources via distinct trophic strategies, contributing differently to Q10 of soil 436 

microbial respiration at a community level. Our results indicated that the phylogenetic 437 

groups based on high-level classification (e.g., class or phylum level) might be weak 438 
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predictors of changes in Q10 of soil microbial respiration along the altitudinal gradient, 439 

as most dominant bacterial and fungal taxa at the phylum level had no significant 440 

associations with Q10 values. This weak association could be due to taxa within each 441 

phylum that have enormous phylogenetic and physiological diversity and thus have 442 

distinct potential to metabolize C (Li et al., 2021a). Therefore, we identified particular 443 

ecological clusters associated with Q10 of soil microbial respiration based on the 444 

microbial co-occurrence network analysis, where the taxa that share similar niche and 445 

ecological functions could be grouped into the same ecological cluster (Liu et al., 446 

2018a; Ma et al., 2020b). The identification of co-occurring microbial assemblies has 447 

implications for screening the microbial taxa associated with temperature sensitivity 448 

of soil microbial respiration, though their specific functions need to be validated in the 449 

future. 450 

Our results are consistent with the second hypothesis that particular microbial 451 

ecological clusters are the most important predictors of the Q10 values. For example, 452 

keystone taxa within module #1 such as Skermanella and Blastococcus are known to 453 

preferentially utilize labile C (Wang et al., 2021). Moreover, the most genera of 454 

module #1 are essential members of Alphaproteobacteria and Actinobacteria (known 455 

as r-strategists), which are more adapted to warm and nutrient-rich conditions and 456 

efficient to mineralize labile C (Li et al., 2021a; Uksa et al., 2015; Yao et al., 2017). 457 

These r-strategists could also invest most energy and resources into reproduction and 458 

subsequently reduce the proportion of substrate allocated to respiration (Malik et al., 459 
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2020a). Thus, the decreased module #1 may lead to the increased Q10 of soil microbial 460 

respiration with the increasing altitude. In contrast, our results imply that module #4 461 

may have a positive effect on the Q10 of soil microbial respiration. This is because 462 

considerable members of module #4 belonged to Acidobacteria, Basidiomycota, and 463 

Deltaproteobacteria, which are commonly classified as K-strategists (Bledsoe et al., 464 

2020; Yao et al., 2017). Previous studies indicated that Basidiomycota, and 465 

Deltaproteobacteria were generally found to be predominant in the Antarctic and 466 

Arctic samples and may thus represent typical colonizers of cold ecosystems (Duarte 467 

et al., 2018; Varin et al., 2012). These K-strategists in harsh environments (i.e., low 468 

substrate quality and temperature) commonly have slow growth rates and 469 

preferentially utilize recalcitrant C (Hale et al., 2019; Sun et al., 2020). The 470 

decomposition of recalcitrant C via enzymes is energy cost, and thus K-strategists are 471 

likely to invest a large proportion of energy and resources into the respiration rather 472 

than growth yield (Malik et al., 2020a). The positive relationship between module #4 473 

and Q10 values further confirmed that the Q10 of soil microbial respiration would 474 

increase with the prevalence of microbial K-strategists along the altitudinal gradient. 475 

This finding was also supported by a recent measurement of the Q10 of soil microbial 476 

respiration along the latitudinal gradient in temperate mixed forest ecosystems (Li et 477 

al., 2021a). Therefore, these ecological clusters with different trophic strategies could 478 

help to explain the observed variations in Q10 of soil microbial respiration along the 479 

altitudinal gradient. However, we note that the trophic strategies of soil microbial 480 
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community require further validation using methods such as omics (i.e., genomics, 481 

transcriptomics, proteomics) and stable isotope tracing (Malik et al., 2020a). Future 482 

works on trophic strategies of microbial communities and their effects on temperature 483 

sensitivity of soil microbial respiration should consolidate our findings. 484 

In addition, the Q10 of soil microbial respiration was also related to the fungal 485 

community, which has been reported to have predominant ability to decompose 486 

complex and recalcitrant C (Cheng et al., 2021; Wang et al., 2018). Thus, a large 487 

proportion of soil fungi in the module #4, which could be attributed to the low 488 

temperature and soil C quality conditions, may partially account for the relatively high 489 

Q10 values at high-altitude regions (Fig. S13). These observations agree with a 490 

previous study indicating significant associations between fungal abundance and Q10 491 

of soil microbial respiration in high-altitude regions of the Western Carpathians 492 

(Klimek et al., 2016). In addition, some fungal genera within particular ecological 493 

cluster (i.e., module #4) such as Clavaria, Botryobasidium, Hypochnicium, and 494 

Pseudotricholoma may prefer degrading recalcitrant C, which likely stimulate the Q10 495 

of soil microbial respiration. We subsequently provide a conceptual framework for the 496 

links between microbial community composition and Q10 of soil microbial respiration. 497 

The altitude-induced differences in temperature and soil substrate quantity and quality 498 

have significant effects on the shifts of microbial assemblies with different trophic 499 

strategies, and eventually influence the response of soil microbial respiration to 500 

temperature changes. In high-altitude regions with historically low temperature, the 501 
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large accumulation of recalcitrant C favors the growth of soil microbes such as 502 

bacterial Haliangium and fungal Clavaria, shaping microbial community dominated 503 

by taxa that prefer utilizing recalcitrant C. Our results advance the present knowledge 504 

by providing a list of candidate microbial taxa associated with temperature sensitivity 505 

of soil microbial respiration, though further work needs to be done to uncover the 506 

underlying mechanisms of how the specific taxa affect temperature sensitivity of soil 507 

microbial respiration. 508 

Overall, our study determines the role of soil microbial communities in affecting 509 

Q10 of soil microbial respiration. We clearly showed that microbial community 510 

composition is responsible for the Q10 values along the altitudinal gradient. We have 511 

identified two major microbial assemblies associated with Q10 of soil microbial 512 

respiration. However, microbial assemblies are characterized by distinct altitudinal 513 

patterns that often covary with other abiotic factors such as soil pH and moisture 514 

(Delgado-Baquerizo et al., 2018; Wang et al., 2015). Therefore, the roles of these 515 

abiotic factors in regulating Q10 of soil microbial respiration cannot be ignored. In this 516 

study, Q10 values was well related to soil moisture, which is concordant with the 517 

previous studies showing that Q10 of soil respiration was positively correlated with 518 

soil moisture (Liu et al., 2016; Zhao et al., 2017). For instance, increased soil moisture 519 

could facilitate mobility of those microorganisms towards substrate (i.e., recalcitrant 520 

C) due to substrate diffusion (Abera et al., 2011; Liu et al., 2019). However, it should 521 

be noted that microbial properties, particularly microbial assemblies with different 522 
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trophic strategies, were important predictors of the response of soil microbial 523 

respiration even after considering these key abiotic factors. The effects of abiotic 524 

factors (e.g., soil pH and moisture) on Q10 values could be achieved partly through 525 

their effects on microbial community properties along the altitudinal gradient (Liu et 526 

al., 2017; Zhao et al., 2017). Therefore, our results highlighted the potential 527 

importance of shifts in microbial assemblies with different trophic strategies in 528 

affecting temperature sensitivity of soil microbial respiration.  529 

5. Conclusions 530 

Our results identify how shifts of microbial assemblies from labile to recalcitrant C 531 

utilization affect Q10 of soil microbial respiration in alpine forests along the altitudinal 532 

gradient on the Tibetan Plateau. Progressive shifts of microbial assemblies from labile 533 

to recalcitrant C consumption could contribute to the higher Q10 values in relatively 534 

higher altitude regions. These findings indicate that the historically accumulated huge 535 

amounts of C in high-altitude regions are more vulnerable to global warming. Our 536 

study offers new insights from specific shifts in microbial assemblies to understand 537 

Q10 of soil microbial respiration along the altitudinal gradient on the Tibetan Plateau. 538 

By exploring the potential links between specific microbial taxa and soil C dynamics 539 

and by incorporating those links into data-driven models, we could improve the 540 

understanding of microbially-mediated soil C dynamics under climate warming 541 

scenarios. 542 
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Figure Legends 

Figure 1. The pattern of the temperature sensitivity (Q10) of soil microbial respiration 

along the altitudinal gradient. 

Figure 2. The potential predictors of Q10 of soil microbial respiration evaluated by 

Random Forest machine learning analysis (a), and relationships between selected 

biotic and abiotic factors and Q10 of soil microbial respiration (b). Significant 

predictors (P < 0.05) are plotted in orange or blue. The higher %IncMSE values 

represent the more important variables. SOC, soil organic carbon; TN, total nitrogen; 

DOC, dissolved organic carbon; LOC/ROC, percentage of labile and recalcitrant C; 

MBC, microbial biomass carbon; AG, α-1,4-glucosidase; BG, β-1,4-glucosidase; 

CBH, cellobiohydrolase; XYL, xylanase. 

Figure 3. The network diagram with nodes colored by each of the eight ecological 

clusters (modules, Mod#1-8) (a), relationships between relative abundance of the 

selected ecological clusters and Q10 of soil microbial respiration (b), and operational 

taxonomic units (OTUs) number properties of the dominant bacterial and fungal 

genus in the main modules associated with Q10 of soil microbial respiration (c). The 

outer ring and interior pie represent OTUs number properties of the dominant phylum 

(top 10) and genus (top 20%), respectively. The red triangle represents the keystone 

taxa in modules. Additional information on the OTUs in the modules is available in 

Supplementary Table S3. 
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Figure 4. The structural equation modeling (SEM) identifying the direct and indirect 

associations between altitude, soil and microbial properties and Q10 of soil microbial 

respiration (a), and the standardized total effects (STE, direct plus indirect effects) 

derived from the SEM (b). Numbers labeling the arrow lines are indicative of the 

effect size of the relationship. We only included those direct or indirect associations 

that could affect Q10 values for graphical simplicity. *P < 0.05 and **P < 0.01. The 

rest of associations between altitude and soil and microbial properties are available in 

Supplementary Figure S14. Information on the environmental factors included in our 

SEM can be found in Supplementary Figure S3. 
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